diff --git a/python_project_1.ipynb b/python_project_1.ipynb index ff539b3..5b1c8d8 100644 --- a/python_project_1.ipynb +++ b/python_project_1.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 77, + "execution_count": 1, "id": "7acc26cb", "metadata": {}, "outputs": [], @@ -13,7 +13,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 2, "id": "c821dd0a", "metadata": {}, "outputs": [], @@ -23,7 +23,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 3, "id": "e080ce64", "metadata": {}, "outputs": [ @@ -33,7 +33,7 @@ "(212331, 15)" ] }, - "execution_count": 31, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -44,7 +44,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 4, "id": "57651a37", "metadata": { "scrolled": true @@ -71,7 +71,7 @@ "dtype: object" ] }, - "execution_count": 32, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -82,7 +82,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 5, "id": "7147a7d1", "metadata": {}, "outputs": [ @@ -102,7 +102,31 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 6, + "id": "377a2d08", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['K-8', 'High school', 'Junior High-Intermediate-Middle',\n", + " 'Secondary School', 'K-12 all grades', 'Elementary'], dtype=object)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# What kind of schools are included?\n", + "\n", + "df['School Level'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, "id": "897e335b", "metadata": {}, "outputs": [ @@ -127,7 +151,7 @@ "dtype: int64" ] }, - "execution_count": 34, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -140,7 +164,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 9, "id": "e0ab351b", "metadata": {}, "outputs": [ @@ -441,7 +465,7 @@ "209786 0 0 " ] }, - "execution_count": 35, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -452,7 +476,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 10, "id": "c9a49215", "metadata": {}, "outputs": [], @@ -467,7 +491,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 11, "id": "738ee993", "metadata": {}, "outputs": [], @@ -481,7 +505,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 12, "id": "258073d0", "metadata": {}, "outputs": [ @@ -599,7 +623,7 @@ "4 s " ] }, - "execution_count": 44, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -610,7 +634,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 13, "id": "1f05cd97", "metadata": {}, "outputs": [ @@ -655,7 +679,7 @@ }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 25, "id": "f86ea927", "metadata": {}, "outputs": [ @@ -692,26 +716,15 @@ " \n", " \n", " \n", - " 2222\n", + " 148870\n", " 02M605\n", " Humanities Preparatory Academy\n", " High school\n", - " Common Core English\n", - " 2016\n", - " 38\n", - " 74.2\n", - " 36.8\n", - " \n", - " \n", - " 2223\n", - " 02M605\n", - " Humanities Preparatory Academy\n", - " High school\n", - " Common Core English\n", - " 2017\n", - " 63\n", - " 77.8\n", - " 54.0\n", + " English\n", + " 2015\n", + " 33\n", + " 74.8\n", + " 24.2\n", " \n", " \n", " 2224\n", @@ -725,103 +738,15 @@ " 30.8\n", " \n", " \n", - " 23479\n", - " 02M605\n", - " Humanities Preparatory Academy\n", - " High school\n", - " Common Core English\n", - " 2016\n", - " 30\n", - " 74.9\n", - " 40.0\n", - " \n", - " \n", - " 23480\n", - " 02M605\n", - " Humanities Preparatory Academy\n", - " High school\n", - " Common Core English\n", - " 2016\n", - " 8\n", - " 71.9\n", - " 25.0\n", - " \n", - " \n", - " 59854\n", - " 02M605\n", - " Humanities Preparatory Academy\n", - " High school\n", - " Common Core English\n", - " 2016\n", - " 22\n", - " 76.8\n", - " 45.5\n", - " \n", - " \n", - " 59857\n", - " 02M605\n", - " Humanities Preparatory Academy\n", - " High school\n", - " Common Core English\n", - " 2017\n", - " 45\n", - " 77.5\n", - " 55.6\n", - " \n", - " \n", - " 59860\n", + " 107118\n", " 02M605\n", " Humanities Preparatory Academy\n", " High school\n", " English\n", " 2015\n", - " 49\n", - " 73.3\n", - " 26.5\n", - " \n", - " \n", - " 107113\n", - " 02M605\n", - " Humanities Preparatory Academy\n", - " High school\n", - " Common Core English\n", - " 2016\n", - " 23\n", - " 77.8\n", - " 52.2\n", - " \n", - " \n", - " 107114\n", - " 02M605\n", - " Humanities Preparatory Academy\n", - " High school\n", - " Common Core English\n", - " 2016\n", - " 15\n", - " 68.8\n", - " 13.3\n", - " \n", - " \n", - " 107115\n", - " 02M605\n", - " Humanities Preparatory Academy\n", - " High school\n", - " Common Core English\n", - " 2017\n", - " 36\n", - " 77.0\n", - " 44.4\n", - " \n", - " \n", - " 107116\n", - " 02M605\n", - " Humanities Preparatory Academy\n", - " High school\n", - " Common Core English\n", - " 2017\n", - " 27\n", - " 78.9\n", - " 66.7\n", + " 31\n", + " 71.8\n", + " 25.8\n", " \n", " \n", " 107117\n", @@ -835,15 +760,37 @@ " 35.3\n", " \n", " \n", - " 107118\n", + " 148869\n", " 02M605\n", " Humanities Preparatory Academy\n", " High school\n", " English\n", " 2015\n", - " 31\n", - " 71.8\n", - " 25.8\n", + " 25\n", + " 75.3\n", + " 40.0\n", + " \n", + " \n", + " 59860\n", + " 02M605\n", + " Humanities Preparatory Academy\n", + " High school\n", + " English\n", + " 2015\n", + " 49\n", + " 73.3\n", + " 26.5\n", + " \n", + " \n", + " 148861\n", + " 02M605\n", + " Humanities Preparatory Academy\n", + " High school\n", + " Common Core English\n", + " 2016\n", + " 22\n", + " 75.4\n", + " 36.4\n", " \n", " \n", " 148860\n", @@ -857,15 +804,103 @@ " 30.0\n", " \n", " \n", - " 148861\n", + " 107114\n", + " 02M605\n", + " Humanities Preparatory Academy\n", + " High school\n", + " Common Core English\n", + " 2016\n", + " 15\n", + " 68.8\n", + " 13.3\n", + " \n", + " \n", + " 2222\n", + " 02M605\n", + " Humanities Preparatory Academy\n", + " High school\n", + " Common Core English\n", + " 2016\n", + " 38\n", + " 74.2\n", + " 36.8\n", + " \n", + " \n", + " 59854\n", " 02M605\n", " Humanities Preparatory Academy\n", " High school\n", " Common Core English\n", " 2016\n", " 22\n", - " 75.4\n", - " 36.4\n", + " 76.8\n", + " 45.5\n", + " \n", + " \n", + " 23480\n", + " 02M605\n", + " Humanities Preparatory Academy\n", + " High school\n", + " Common Core English\n", + " 2016\n", + " 8\n", + " 71.9\n", + " 25.0\n", + " \n", + " \n", + " 23479\n", + " 02M605\n", + " Humanities Preparatory Academy\n", + " High school\n", + " Common Core English\n", + " 2016\n", + " 30\n", + " 74.9\n", + " 40.0\n", + " \n", + " \n", + " 107113\n", + " 02M605\n", + " Humanities Preparatory Academy\n", + " High school\n", + " Common Core English\n", + " 2016\n", + " 23\n", + " 77.8\n", + " 52.2\n", + " \n", + " \n", + " 59857\n", + " 02M605\n", + " Humanities Preparatory Academy\n", + " High school\n", + " Common Core English\n", + " 2017\n", + " 45\n", + " 77.5\n", + " 55.6\n", + " \n", + " \n", + " 107116\n", + " 02M605\n", + " Humanities Preparatory Academy\n", + " High school\n", + " Common Core English\n", + " 2017\n", + " 27\n", + " 78.9\n", + " 66.7\n", + " \n", + " \n", + " 2223\n", + " 02M605\n", + " Humanities Preparatory Academy\n", + " High school\n", + " Common Core English\n", + " 2017\n", + " 63\n", + " 77.8\n", + " 54.0\n", " \n", " \n", " 148864\n", @@ -912,26 +947,15 @@ " 71.4\n", " \n", " \n", - " 148869\n", + " 107115\n", " 02M605\n", " Humanities Preparatory Academy\n", " High school\n", - " English\n", - " 2015\n", - " 25\n", - " 75.3\n", - " 40.0\n", - " \n", - " \n", - " 148870\n", - " 02M605\n", - " Humanities Preparatory Academy\n", - " High school\n", - " English\n", - " 2015\n", - " 33\n", - " 74.8\n", - " 24.2\n", + " Common Core English\n", + " 2017\n", + " 36\n", + " 77.0\n", + " 44.4\n", " \n", " \n", "\n", @@ -939,79 +963,79 @@ ], "text/plain": [ " School DBN School Name School Level \\\n", - "2222 02M605 Humanities Preparatory Academy High school \n", - "2223 02M605 Humanities Preparatory Academy High school \n", + "148870 02M605 Humanities Preparatory Academy High school \n", "2224 02M605 Humanities Preparatory Academy High school \n", - "23479 02M605 Humanities Preparatory Academy High school \n", - "23480 02M605 Humanities Preparatory Academy High school \n", - "59854 02M605 Humanities Preparatory Academy High school \n", - "59857 02M605 Humanities Preparatory Academy High school \n", - "59860 02M605 Humanities Preparatory Academy High school \n", - "107113 02M605 Humanities Preparatory Academy High school \n", - "107114 02M605 Humanities Preparatory Academy High school \n", - "107115 02M605 Humanities Preparatory Academy High school \n", - "107116 02M605 Humanities Preparatory Academy High school \n", - "107117 02M605 Humanities Preparatory Academy High school \n", "107118 02M605 Humanities Preparatory Academy High school \n", - "148860 02M605 Humanities Preparatory Academy High school \n", + "107117 02M605 Humanities Preparatory Academy High school \n", + "148869 02M605 Humanities Preparatory Academy High school \n", + "59860 02M605 Humanities Preparatory Academy High school \n", "148861 02M605 Humanities Preparatory Academy High school \n", + "148860 02M605 Humanities Preparatory Academy High school \n", + "107114 02M605 Humanities Preparatory Academy High school \n", + "2222 02M605 Humanities Preparatory Academy High school \n", + "59854 02M605 Humanities Preparatory Academy High school \n", + "23480 02M605 Humanities Preparatory Academy High school \n", + "23479 02M605 Humanities Preparatory Academy High school \n", + "107113 02M605 Humanities Preparatory Academy High school \n", + "59857 02M605 Humanities Preparatory Academy High school \n", + "107116 02M605 Humanities Preparatory Academy High school \n", + "2223 02M605 Humanities Preparatory Academy High school \n", "148864 02M605 Humanities Preparatory Academy High school \n", "148865 02M605 Humanities Preparatory Academy High school \n", "148866 02M605 Humanities Preparatory Academy High school \n", "148867 02M605 Humanities Preparatory Academy High school \n", - "148869 02M605 Humanities Preparatory Academy High school \n", - "148870 02M605 Humanities Preparatory Academy High school \n", + "107115 02M605 Humanities Preparatory Academy High school \n", "\n", " Regents Exam Year Total Tested Mean Score \\\n", - "2222 Common Core English 2016 38 74.2 \n", - "2223 Common Core English 2017 63 77.8 \n", + "148870 English 2015 33 74.8 \n", "2224 English 2015 65 74.1 \n", - "23479 Common Core English 2016 30 74.9 \n", - "23480 Common Core English 2016 8 71.9 \n", - "59854 Common Core English 2016 22 76.8 \n", - "59857 Common Core English 2017 45 77.5 \n", - "59860 English 2015 49 73.3 \n", - "107113 Common Core English 2016 23 77.8 \n", - "107114 Common Core English 2016 15 68.8 \n", - "107115 Common Core English 2017 36 77.0 \n", - "107116 Common Core English 2017 27 78.9 \n", - "107117 English 2015 34 76.3 \n", "107118 English 2015 31 71.8 \n", - "148860 Common Core English 2016 10 70.0 \n", + "107117 English 2015 34 76.3 \n", + "148869 English 2015 25 75.3 \n", + "59860 English 2015 49 73.3 \n", "148861 Common Core English 2016 22 75.4 \n", + "148860 Common Core English 2016 10 70.0 \n", + "107114 Common Core English 2016 15 68.8 \n", + "2222 Common Core English 2016 38 74.2 \n", + "59854 Common Core English 2016 22 76.8 \n", + "23480 Common Core English 2016 8 71.9 \n", + "23479 Common Core English 2016 30 74.9 \n", + "107113 Common Core English 2016 23 77.8 \n", + "59857 Common Core English 2017 45 77.5 \n", + "107116 Common Core English 2017 27 78.9 \n", + "2223 Common Core English 2017 63 77.8 \n", "148864 Common Core English 2017 6 76.7 \n", "148865 Common Core English 2017 16 78.6 \n", "148866 Common Core English 2017 34 76.9 \n", "148867 Common Core English 2017 7 81.1 \n", - "148869 English 2015 25 75.3 \n", - "148870 English 2015 33 74.8 \n", + "107115 Common Core English 2017 36 77.0 \n", "\n", " Percent Scoring 80 or Above \n", - "2222 36.8 \n", - "2223 54.0 \n", + "148870 24.2 \n", "2224 30.8 \n", - "23479 40.0 \n", - "23480 25.0 \n", - "59854 45.5 \n", - "59857 55.6 \n", - "59860 26.5 \n", - "107113 52.2 \n", - "107114 13.3 \n", - "107115 44.4 \n", - "107116 66.7 \n", - "107117 35.3 \n", "107118 25.8 \n", - "148860 30.0 \n", + "107117 35.3 \n", + "148869 40.0 \n", + "59860 26.5 \n", "148861 36.4 \n", + "148860 30.0 \n", + "107114 13.3 \n", + "2222 36.8 \n", + "59854 45.5 \n", + "23480 25.0 \n", + "23479 40.0 \n", + "107113 52.2 \n", + "59857 55.6 \n", + "107116 66.7 \n", + "2223 54.0 \n", "148864 50.0 \n", "148865 50.0 \n", "148866 52.9 \n", "148867 71.4 \n", - "148869 40.0 \n", - "148870 24.2 " + "107115 44.4 " ] }, - "execution_count": 70, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -1019,12 +1043,12 @@ "source": [ "# Filter the dataset. Let's have a look at the Humanities Preparatory Academy High School in Chelsea\n", "\n", - "df[df['School DBN'] == '02M605']" + "df[df['School DBN'] == '02M605'].sort_values(by = ['Year'])" ] }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 15, "id": "1cc0ab0a", "metadata": {}, "outputs": [ @@ -1038,7 +1062,7 @@ "Name: Mean Score, dtype: float64" ] }, - "execution_count": 67, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -1051,7 +1075,7 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 16, "id": "8ad44a32", "metadata": {}, "outputs": [ @@ -1065,7 +1089,7 @@ "Name: Mean Score, dtype: float64" ] }, - "execution_count": 72, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -1082,7 +1106,7 @@ }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 17, "id": "3b420509", "metadata": {}, "outputs": [ @@ -1096,13 +1120,13 @@ "Name: Mean Score, dtype: float64" ] }, - "execution_count": 74, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "# High schools in Bronx, Queens, Brooklyn and Staten Island\n", + "# Other high schools in other boroughs\n", "\n", "df[(df['School DBN'] != '02M605')\n", " & (df['School Level'] == 'High school')\n", @@ -1113,25 +1137,25 @@ }, { "cell_type": "code", - "execution_count": 105, - "id": "7b5fd34a", + "execution_count": 57, + "id": "e0e8e522", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 105, + "execution_count": 57, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEWCAYAAAB/tMx4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAQqElEQVR4nO3de4xnZ13H8ffH3WJLEdptZzcrS1mMa7HWtIUJog0GXNYUQXbVtBSFTLC6/8g1GFwvCSiJqUaJEC/JBpBRoLZUyK5ggM1INQgUphehZVuXS7vULrtDKZeWcGn79Y85y06nsztnfnP57bPzfiWTc85zzm/ON3kmnzzz/M4lVYUkqT0/MuwCJEmDMcAlqVEGuCQ1ygCXpEYZ4JLUKANckhq1diVPdu6559bmzZtX8pSS1Lybbrrpa1U1Mru9V4AneR3wO0ABnwNeATweuBbYDNwFXFFV95/o92zevJnJyckFFS5Jq12Su+dqn3cKJcmTgVcDo1V1IbAGuBLYBUxU1RZgotuWJK2QvnPga4EzkqxleuR9L7AdGO/2jwM7lrw6SdJxzRvgVfV/wF8BB4FDwDer6qPAhqo61B1zCFi/nIVKkh6tzxTK2UyPtp8G/DhwZpKX9T1Bkp1JJpNMTk1NDV6pJOlR+kyhPB/4clVNVdUPgPcDvwAcTrIRoFsemevDVbW7qkaranRk5DFfokqSBtQnwA8Cz07y+CQBtgL7gb3AWHfMGLBneUqUJM1l3ssIq+rGJNcDNwMPAbcAu4EnANcluYrpkL98OQuVJD1ar+vAq+qNwBtnNX+P6dG4JGkIVvROTEmrw+ZdHxp2CcvqrqtfOOwSAJ+FIknNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTql78T0bjBJpzJH4JLUqFN6BK52+d+TND9H4JLUKANckhplgEtSowxwSWqUAS5JjZo3wJOcn+TWGT/fSvLaJOuS7EtyoFuevRIFS5KmzRvgVXVnVV1cVRcDzwS+A3wA2AVMVNUWYKLbliStkIVOoWwFvlhVdwPbgfGufRzYsYR1SZLmsdAAvxK4plvfUFWHALrl+qUsTJJ0Yr0DPMnjgBcD71vICZLsTDKZZHJqamqh9UmSjmMhI/AXADdX1eFu+3CSjQDd8shcH6qq3VU1WlWjIyMji6tWkvRDCwnwl3Js+gRgLzDWrY8Be5aqKEnS/HoFeJLHA9uA989ovhrYluRAt+/qpS9PknQ8vZ5GWFXfAc6Z1XYf01elSJKGwDsxJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVF9X6l2VpLrk9yRZH+Sn0+yLsm+JAe65dnLXawk6Zi+I/C3Ah+uqqcDFwH7gV3ARFVtASa6bUnSCpk3wJM8EfhF4B0AVfX9qvoGsB0Y7w4bB3YsT4mSpLn0GYH/BDAF/GOSW5K8PcmZwIaqOgTQLdcvY52SpFn6BPha4BnAP1TVJcCDLGC6JMnOJJNJJqempgYsU5I0W58Avwe4p6pu7LavZzrQDyfZCNAtj8z14araXVWjVTU6MjKyFDVLkugR4FX1VeArSc7vmrYCnwf2AmNd2xiwZ1kqlCTNaW3P414FvCfJ44AvAa9gOvyvS3IVcBC4fHlKlCTNpVeAV9WtwOgcu7YuaTWSpN68E1OSGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqN6vVItyV3At4GHgYeqajTJOuBaYDNwF3BFVd2/PGVKkmZbyAj8eVV1cVUdfTfmLmCiqrYAE922JGmFLGYKZTsw3q2PAzsWXY0kqbe+AV7AR5PclGRn17ahqg4BdMv1y1GgJGluvebAgUur6t4k64F9Se7oe4Iu8HcCnHfeeQOUKEmaS68ReFXd2y2PAB8AngUcTrIRoFseOc5nd1fVaFWNjoyMLE3VkqT5AzzJmUl+7Og68MvAbcBeYKw7bAzYs1xFSpIeq88UygbgA0mOHv/eqvpwks8A1yW5CjgIXL58ZUqSZps3wKvqS8BFc7TfB2xdjqIkSfPzTkxJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY3qHeBJ1iS5JckHu+11SfYlOdAtz16+MiVJsy1kBP4aYP+M7V3ARFVtASa6bUnSCukV4Ek2AS8E3j6jeTsw3q2PAzuWtDJJ0gn1HYH/DfAG4JEZbRuq6hBAt1w/1weT7EwymWRyampqMbVKkmaYN8CTvAg4UlU3DXKCqtpdVaNVNToyMjLIr5AkzWFtj2MuBV6c5FeA04EnJnk3cDjJxqo6lGQjcGQ5C5UkPdq8I/Cq+sOq2lRVm4Ergf+oqpcBe4Gx7rAxYM+yVSlJeozFXAd+NbAtyQFgW7ctSVohfaZQfqiqbgBu6NbvA7YufUmSpD68E1OSGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIa1eet9Kcn+XSS/0lye5I/7drXJdmX5EC3PHv5y5UkHdVnBP494Jeq6iLgYuCyJM8GdgETVbUFmOi2JUkrpM9b6auqHug2T+t+CtgOjHft48CO5ShQkjS3XnPgSdYkuRU4AuyrqhuBDVV1CKBbrl+2KiVJj9ErwKvq4aq6GNgEPCvJhX1PkGRnkskkk1NTUwOWKUmabUFXoVTVN4AbgMuAw0k2AnTLI8f5zO6qGq2q0ZGRkcVVK0n6oT5XoYwkOatbPwN4PnAHsBcY6w4bA/YsU42SpDms7XHMRmA8yRqmA/+6qvpgkk8C1yW5CjgIXL6MdUqSZpk3wKvqs8Alc7TfB2xdjqIkSfPzTkxJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY3q81LjpyT5WJL9SW5P8pqufV2SfUkOdMuzl79cSdJRfUbgDwGvr6qfBp4N/F6SC4BdwERVbQEmum1J0gqZN8Cr6lBV3dytfxvYDzwZ2A6Md4eNAzuWqUZJ0hwWNAeeZDPTb6i/EdhQVYdgOuSB9cf5zM4kk0kmp6amFlmuJOmo3gGe5AnAvwKvrapv9f1cVe2uqtGqGh0ZGRmkRknSHHoFeJLTmA7v91TV+7vmw0k2dvs3AkeWp0RJ0lz6XIUS4B3A/qp6y4xde4Gxbn0M2LP05UmSjmdtj2MuBV4OfC7JrV3bHwFXA9cluQo4CFy+LBVKkuY0b4BX1ceBHGf31qUtR5LUl3diSlKjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqP6vBPznUmOJLltRtu6JPuSHOiWZy9vmZKk2fqMwN8FXDarbRcwUVVbgIluW5K0guYN8Kr6L+Drs5q3A+Pd+jiwY2nLkiTNZ9A58A1VdQigW65fupIkSX0s+5eYSXYmmUwyOTU1tdynk6RVY9AAP5xkI0C3PHK8A6tqd1WNVtXoyMjIgKeTJM02aIDvBca69TFgz9KUI0nqq89lhNcAnwTOT3JPkquAq4FtSQ4A27ptSdIKWjvfAVX10uPs2rrEtUiSFsA7MSWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNWpRAZ7ksiR3JvlCkl1LVZQkaX4DB3iSNcDfAS8ALgBemuSCpSpMknRiixmBPwv4QlV9qaq+D/wLsH1pypIkzWfet9KfwJOBr8zYvgf4udkHJdkJ7Ow2H0hy5yLOebI7F/jaSp0sf7FSZ1oV7Lu2ner999S5GhcT4JmjrR7TULUb2L2I8zQjyWRVjQ67Di2cfde21dp/i5lCuQd4yoztTcC9iytHktTXYgL8M8CWJE9L8jjgSmDv0pQlSZrPwFMoVfVQklcCHwHWAO+sqtuXrLI2rYqpolOUfde2Vdl/qXrMtLUkqQHeiSlJjTLAJalRBrgkNcoAl6RGGeADSHLurO2XJXlbkp1J5rrBSSeRJL+WZF23PpLkn5J8Lsm1STYNuz6dWJK3JLl02HWcDLwKZQBJbq6qZ3TrfwI8B3gv8CLgnqp63TDr04kl+XxVXdCtXwt8Cngf8Hzgt6pq2zDr04klmQLuBkaAa4FrquqW4VY1HIu5lX41mznK/nXgOVX1YJL3AjcPqSb1t2bG+k9W1Uu69Xclee0Q6tHC3FNVo0m2MH0D4bu7p6New3SY/+9wy1s5TqEM5owklyR5JrCmqh4EqKofAA8PtzT1cEOSP0tyRre+AyDJ84BvDrUy9VEAVXWgqt5cVT8DXAGcDvz7UCtbYU6hDCDJx2Y1/WZVHUpyDvCR1fhQnZYkOQ34Y+C3u6ZNwIPAvwG7qurgsGrT/JLcUlWXDLuOk4EBvoS6f+N+tKq+M+xa1E+SJwFrq+q+YdeifpI8oaoeGHYdJwOnUJZQVT0MnDfsOtRfVX1zZngnefow69H8ThTeq63/HIEvsSQHq8oQb5T917bV1n9ehTKAJG873i7grBUsRQOw/9pm/x3jCHwASb4NvB743hy7/7qqzp2jXScJ+69t9t8xjsAH8xngtqr6xOwdSd608uVogey/ttl/HUfgA+huw/6uV5u0yf5rm/13jAEuSY3yMsIBJHlSkquT3JHkvu5nf9d21rDr04nZf22z/44xwAdzHXA/8NyqOqeqzgGe17W9b6iVqQ/7r232X8cplAEkubOqzl/oPp0c7L+22X/HOAIfzN1J3pBkw9GGJBuS/AHwlSHWpX7sv7bZfx0DfDAvAc4B/jPJ/Um+DtwArGP6qWg6udl/bbP/Ok6hDKh75sIm4FMzn82Q5LKq+vDwKlMf9l/b7L9pjsAHkOTVwB7glcBtSbbP2P3nw6lKfdl/bbP/jvFOzMH8LvDMqnogyWbg+iSbq+qtPPptPTo52X9ts/86Bvhg1hz9t62q7kryXKb/iJ7KKvsDapT91zb7r+MUymC+muTioxvdH9OLgHOBnx1WUerN/mub/dfxS8wBJNkEPFRVX51j36VV9d9DKEs92X9ts/+OMcAlqVFOoUhSowxwSWqUAa5TWqZ9PMkLZrRdkWTV3OyhU5dz4DrlJbmQ6afUXQKsAW4FLquqLw7wu9ZU1cNLW6E0GANcq0KSvwQeBM7slk9l+pKztcCbqmpPd1PIP3fHALyyqj7RXWf8RuAQcHFVXbCy1UtzM8C1KiQ5E7gZ+D7wQeD2qnp39wKATzM9Oi/gkar6bpItwDVVNdoF+IeAC6vqy8OoX5qLd2JqVaiqB5NcCzzA9BPrfjXJ73e7TwfOA+4F/ra7SeRh4Kdm/IpPG9462RjgWk0e6X4C/EZV3TlzZ/dG88PARUx/wf/dGbsfXKEapd68CkWr0UeAVyUJQJJLuvYnAYeq6hHg5Ux/4SmdtAxwrUZvBk4DPpvktm4b4O+BsSSfYnr6xFG3Tmp+iSlJjXIELkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWrU/wNCLPxJAgxBxQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAE+CAYAAABC9C7yAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAoq0lEQVR4nO3deZyXZb3/8deHARlUNEDwKESIoYDMMOCwKIooii2EaKC5grikHgtPRqGmkqU/SovSk3XMhanU45YHxY6KBiLlhooKgpKdERDCcQEBJWG4fn/MlwlkmxtmmGHm9Xw8eNzf+7q3z3e4gDfXvUVKCUmSJFVdo9ouQJIkaVdjgJIkScrIACVJkpSRAUqSJCkjA5QkSVJGBihJkqSMGu/Mg+2zzz6pQ4cOO/OQkiRJ2+XFF198L6XUenPLdmqA6tChAzNnztyZh5QkSdouEfH2lpZ5Ck+SJCmjKgWoiPiPiJgTEbMj4u6IyI+IlhExJSLm56YtarpYSZKkumCbASoi2gLfBopTSt2APOAbwFjgyZRSJ+DJ3LwkSVK9V9VroBoDzSJiDbA7sBi4DBiQW14CTAO+X831SbusNWvWsGjRIlavXl3bpUjVIj8/n3bt2tGkSZPaLkWqddsMUCmldyLiBmAB8AnweErp8YjYN6W0JLfOkohos7ntI+J84HyA9u3bV1/lUh23aNEimjdvTocOHYiI2i5H2iEpJd5//30WLVrEAQccUNvlSLWuKqfwWgAnAAcA+wN7RMQZVT1ASumWlFJxSqm4devN3gko1UurV6+mVatWhifVCxFBq1atHFGVcqpyEfmxwP+llMpSSmuAPwKHA0sjYj+A3PTdmitT2jUZnlSf2J+lf6lKgFoA9I2I3aPiT89AYC7wEDAit84IYFLNlChpe+25554bzU+cOJGLL764lqqBww8/HIDS0lLuuuuuyvaZM2fy7W9/e4f336FDBwoKCujevTuDBg3iH//4xw7vU5I2pyrXQD0XEfcDLwFrgZeBW4A9gXsj4hwqQtbwmixU2tV1GPtIte6vdPxXq3V/O8Nf//pX4F8B6rTTTgOguLiY4uLiajnG1KlT2Weffbj88su57rrruPHGGyuXpZRIKdGokY/Ak7RjqvS3SErp6pRS55RSt5TSmSmlf6aU3k8pDUwpdcpNP6jpYiVVn5EjR3L//fdXzq8frZo2bRpHHXUUJ598MgcddBBjx47lzjvvpHfv3hQUFPDWW28B8PDDD9OnTx969OjBsccey9KlSwEYN24co0aNYsCAAXTs2HGjALP+GGPHjuXpp5+mqKiICRMmMG3aNAYPHgzAqlWrGDVqFL169aJHjx5MmlQxuD1nzhx69+5NUVERhYWFzJ8/f6vfr3///vztb3+jtLSULl26cNFFF9GzZ08WLlzI9ddfT69evSgsLOTqq68GKkJd586dGTFiBIWFhQwbNoyPP/64On7UkuqhnfoqF0k71yeffEJRUVHl/AcffMCQIUO2ud0rr7zC3LlzadmyJR07duTcc8/l+eef55e//CU33XQTv/jFLzjiiCN49tlniQhuvfVWfvrTn/Kzn/0MgHnz5jF16lRWrFjBwQcfzIUXXrjRre/jx4/nhhtuYPLkyUBFaFvv2muv5ZhjjuH2229n2bJl9O7dm2OPPZbf/OY3jB49mtNPP51PP/2U8vLyrX6HyZMnU1BQAMAbb7zBHXfcwc0338zjjz/O/Pnzef7550kpMWTIEKZPn0779u154403uO222+jXrx+jRo3i5ptv5rvf/W5Vf9zaBVT3SHAWu+KosbbMACXVY82aNWPWrFmV8xMnTqzS+yh79erFfvvtB8CBBx7IoEGDACgoKGDq1KlAxWMaTjnlFJYsWcKnn3660a3tX/3qV2natClNmzalTZs2LF26lHbt2lWp5scff5yHHnqIG264Aai4m3HBggUcdthhXHvttSxatIiTTjqJTp06bXb7o48+mry8PAoLC/nxj3/MsmXL+MIXvkDfvn0r9//444/To0cPAFauXMn8+fNp3749n//85+nXrx8AZ5xxBjfeeKMBStJmGaCkBqpx48asW7cOqLg26NNPP61c1rRp08rPjRo1qpxv1KgRa9euBeBb3/oW3/nOdxgyZAjTpk1j3Lhxm90+Ly+vcpuqSCnxwAMPcPDBB2/U3qVLF/r06cMjjzzC8ccfz6233soxxxyzyfbrr4Fab9myZeyxxx4b7f+yyy7jm9/85kbblZaWbnKXmXedSdoSr6SUGqgOHTrw4osvAjBp0iTWrFmTafvly5fTtm1bAEpKSjJt27x5c1asWLHZZccffzw33XQTKSUAXn75ZQD+/ve/07FjR7797W8zZMgQXn311UzH3HD/t99+OytXrgTgnXfe4d13K57CsmDBAp555hkA7r77bo444ojtOoak+s8AJTVQ5513Hk899RS9e/fmueee22iUpirGjRvH8OHDOfLIIzca8amKwsJCGjduTPfu3ZkwYcJGy6688krWrFlDYWEh3bp148orrwTgnnvuoVu3bhQVFTFv3jzOOuusTMdcb9CgQZx22mkcdthhFBQUMGzYsMow16VLF0pKSigsLOSDDz7gwgsv3K5jSKr/Yv3/8naG4uLiVJXrL6T6YO7cuXTp0qW2y1AVlZaWMnjwYGbPnl3bpdRpu3q/9iJyZRERL6aUNvuMFUegJEmSMjJASRIV14Q5+iSpqgxQkiRJGRmgJEmSMjJASZIkZWSAkiRJysgAJdVjixYt4oQTTqBTp04ceOCBjB49uvKJ47NmzeJPf/pT5brjxo2rfH1KdRg5ciS77777Rg/MHD16NBHBe++9t9373PAFyNuybNkybr755sr50tJS7rrrru06dlXrWf/C5MWLFzNs2LBt7mP9+pJ2Lb7KpQp8boiqxbi9q3l/y7e6OKXESSedxIUXXsikSZMoLy/n/PPP54orruD6669n1qxZzJw5k6985SvVUk55eTl5eXkbtX3xi19k0qRJnHHGGaxbt46pU6dWPr18Z1gfoC666CLgXwHqtNNOq/Fj77///pnCnqRdiyNQUj315z//mfz8fM4++2yg4p10EyZM4Pbbb+ejjz7iqquu4p577qGoqIh77rkHgNdff50BAwbQsWNHbrzxxsp9/eEPf6B3794UFRXxzW9+k/LycqBi9OSqq66iT58+la9A2dCpp55aue9p06bRr18/Gjf+1//bhg4dyqGHHsohhxzCLbfcUtm+5557csUVV9C9e3f69u3L0qVLK5dNnz6dww8/nI4dO1YGlJUrVzJw4EB69uxJQUEBkyZNAmDs2LG89dZbFBUVMWbMGMaOHcvTTz9NUVEREyZMoLS0lCOPPJKePXvSs2dP/vrXv1bWOmDAAIYNG0bnzp05/fTTyfrQ4dLSUrp16wbAxx9/zMknn0xhYSGnnHIKffr02eilzpv7rvfddx/dunWje/fu9O/fP9OxJdU8R6CkemrOnDkceuihG7XttddetG/fntLSUq655hpmzpzJf/7nfwJw4XfG8tKrs7n1nodZtWolJxzVi35fO5WFpX/ntyV/4Nf3PEKTJk249vJLGX/Tb/nasG+watUqmu93AL994DEAXl20rPJYH676lN1a7s/b7/yDGbNL+dWtJXz1xJN5aPIjzFm8nBarG3Ppjyawd4sWdGrVlF69evH1r3+dVq1asWrVKvr27cu1117L9773PX7729/ygx/8AIAlS5YwY8YM5s2bx5AhQxg2bBj5+fk8+OCD7LXXXrz33nv07duXIUOGMH78eGbPns2sWbOAimB0ww03MHnyZKAi2EyZMoX8/Hzmz5/PqaeeWhlsXn75ZebMmcP+++9Pv379+Mtf/rLZd+ONGTOGH//4x1v9vbj55ptp0aIFr776KrNnz6aoqKhy2Za+6zXXXMNjjz1G27ZtWbZs2Rb3Lal2GKCkeiqlRERUuR3gyGMGsVvTpuzWtCkt92nNB++9y3N/eYq5r77C6YOPAWD16tW03Kc1UDGqdexXhmy1joFfHsyjDz3Aay/P5MrxG7/37q47/os/PzqZ/CZ5LFy4kPnz59OqVSt22203Bg8eDMChhx7KlClTKrcZOnQojRo1omvXrpWjNSklLr/8cqZPn06jRo145513Nhq12pI1a9Zw8cUXM2vWLPLy8njzzTcrl/Xu3Zt27doBUFRURGlp6WYD1PXXX7/RtU6bu6ZpxowZjB49GoBu3bpRWFhYuWxL37Vfv36MHDmSk08+mZNOOmmb30XSzmWAkuqpQw45hAceeGCjto8++oiFCxdy4IEH8uKLL26yzW67Na383KhRI9auLScl+NrwbzB67NWbrt80f5Prnj7rS0NO4htfHsDXhp1Ko0b/umrghWdm8OyMafxu0uP06bQ/AwYMYPXq1QA0adKkMuTl5eWxdu3ayu2aNv1XjetPq915552UlZXx4osv0qRJEzp06FC5r62ZMGEC++67L6+88grr1q0jPz9/s8f5bA1Zbe3035a+629+8xuee+45HnnkEYqKipg1axatWrXa7hokVS8DlFRPDRw4kLFjx/K73/2Os846i/Lyci699NLKu+OaN2++0R1yW9KnX38uOed0zjj3Ilrt05rlH37IqlUr2L9d+yrVsV/bz3Px935A3yMGbNS+8qOP2Gvvz9Gs2e7MmzePZ599dnu+JgDLly+nTZs2NGnShKlTp/L2228DbPIdPzu/fPly2rVrR6NGjSgpKam8tqu6HXHEEdx7770cffTRvP7667z22mvb3Oatt96iT58+9OnTh4cffpiFCxcaoHZ11X0jSaZjb/2mE2XnReRSPRURPPjgg9x333106tSJgw46iPz8fK677jqAyn/MN7yIfHMOPKgz/z7mCi48/SSGHdePb55+Iu+9u+3TYxsafsbZfL7DARu19RswkPK1axl2XD+uvPJK+vbtm/1L5px++unMnDmT4uJi7rzzTjp37gxAq1at6NevH926dWPMmDEUFhbSuHFjunfvzoQJE7jooosoKSmhb9++vPnmm+yxxx7bXcPWXHTRRZSVlVFYWMhPfvITCgsL2Xvvrf9jOmbMGAoKCujWrRv9+/ene/fuNVKbpO0TWe8s2RHFxcVpwztPdhU+xkDbY+7cuXTp0qW2y6iyDS8A39kK232u1o69M5SXl7NmzRry8/N56623GDhwIG+++Sa77bZbbZeW2a7Wrz+rVv8+z6/5x2dskSNQ2yUiXkwpFW9umafwJKmGffzxxxx99NGsWbOGlBK//vWvd8nwJOlfDFCSVMOaN2/Orjj6LmnLvAZKkiQpo20GqIg4OCJmbfDro4i4JCJaRsSUiJifm7bYGQVLkiTVtm2ewkspvQEUAUREHvAO8CAwFngypTQ+Isbm5r9fc6U2UN72qoZg8cu1d+z9e9TesSXtsrKewhsIvJVSehs4ASjJtZcAQ6uxLkmSpDora4D6BnB37vO+KaUlALlpm81tEBHnR8TMiJhZVla2/ZVKyuyzrxWZOHEiF198MVDxpOvf/e53W91+0r13cd0PxmzzOE898Sgnf6k/wwcdwYnH9OW+P9yxxXXfWbiAkwYeVoXqt23kJVdz/+Qnqrz+/zw6lcJjT6Zz/5MoGHgy//Po1MplEydOZPHixZXzHTp04L333quWOqHiKeNFRUV07959oxcX14aRI0dWvohZ0vap8l14EbEbMAS4LMsBUkq3ALdAxXOgMlUn1SMFJQXVur/XRmz7adZbc8EFF1RLHWvWrOFH3/8P7pz8BPvu15ZP//lPFi9aUC37rk6vzHmT7/5oAlPu/jUHtG/L/y14h+NOvZCOxcdSWFjIxIkT6datG/vvv/8OH2vt2rU0brzxX6/NmjWrfKnxY489xmWXXcZTTz1Vpf2Vl5dv85U5knauLCNQXwZeSimtfwTx0ojYDyA3fbe6i5NUc8aNG8cNN9wAwAsvvMCw4/px5gmD+PmPr9xohKhs6T+48IxhfO3IQ5lw7VWb7OfjlStZW76WvT/XEoDdmjalw4GdAHi/7F0uOfcMhg86guGDjmDWzOcAWLduHT/83mhOHHgY3zztJD75pOK9dbNmv0HfwWdReOzJnHjOpXy47KOttm9o7HU30nXA1yk89mS+e82ETZbf8Jvfcfm3RnFA+7YAHNC+LZddPIrrr7+e+++/n5kzZ3L66adTVFTEJ598AsBNN91Ez549KSgoYN68eQCsWrWKUaNG0atXL3r06MGkSZOAihGs4cOH87WvfY1BgwZt9Wf/0Ucf0aJFxX03KSXGjBlDt27dKCgoqHwq/LRp0zj66KM57bTTKCgoYPXq1Zx99tkUFBTQo0cPpk6dWnnc9aOKAIMHD2batGkA3HbbbRx00EEMGDCA8847b6P1pk+fzuGHH07Hjh0rR6OWLFlC//79KSoqolu3bjz99NNb/R5SQ5YlQJ3Kv07fATwEjMh9HgFMqq6iJFWPTz75hKKiospfV121aQACOPvss/nB//s5v5/0OI0+M9Lxxuuv8dObb+P+KX/hsYcf5B+LF220fO8WLRhw3Jf50mGFfP/fz+GRB+9l3bp1AIy/aizFfftx3+Mz+O//fYoDD6p4xcqC/3uLU0acy4NPPsNee+/NA396EoCzLrmSn1wxmlefuJeCzl/khz//r622r/fBh8t58H+nMmfq/bz6xL38YPS5m3zHOW/+nUMLum7UVlzYlTlz5jBs2LDK18DMmjWLZs2aAbDPPvvw0ksvceGFF1aGzWuvvZZjjjmGF154galTpzJmzBhWrVoFwDPPPENJSQl//vOft/h70blzZ84991yuvPJKAP74xz8ya9YsXnnlFZ544gnGjBnDkiVLAHj++ee59tpref311/nVr34FwGuvvcbdd9/NiBEjtvrC5MWLF/OjH/2IZ599lilTplQGwPWWLFnCjBkzmDx5MmPHjgXgrrvu4vjjj6+sp6ioaIv7lxq6KgWoiNgdOA744wbN44HjImJ+btn46i9P0o5Yf9po/a9rrrlmk3WWLVvGihUrKCruA8BXhg7baHmffkfRfK+9aZqfT8dOB7N40cJN9jHu+hv57d3/Q7eiQyn5r//k6ksrRjpe+Ot0Tj5zFFBxDVDzvSruKm37+S/Q+ZCKU5pdCrpTunAJyz9awbLlKznqsEMBGDF8MNOfe3mL7Rvaq/ke5DfdjXO/ew1//NOT7N4sf5MaU0pEbK4tNll3vZNOOgmAQw89lNLSUgAef/xxxo8fT1FREQMGDGD16tUsWFBxyvK4446jZcuWm93X+t+LefPm8eijj3LWWWeRUmLGjBmceuqp5OXlse+++3LUUUfxwgsvANC7d28OOKDiHYIzZszgzDPPBKBz58584Qtf4M0339xi7c8//zxHHXUULVu2pEmTJgwfPnyj5UOHDqVRo0Z07dqVpUsrTiz06tWLO+64g3HjxvHaa6/RvHnzLe5fauiqFKBSSh+nlFqllJZv0PZ+SmlgSqlTbvpBzZUpqaZs632YTTZ45UijvDzKy8s3u16nLodw5nkX8V93PcgT//twlfeZ1yiPteVrM1S8qcaNG/P8I7/n618ZyP88Oo0vnf7vm6xzyMEdmfnq6xu1vTR7Ll27dt1k3fWaNm1aUWNeHmvXVtSYUuKBBx6oDKULFiyofDdcVV9GfNhhh/Hee+9RVla21Z//hvvb0nqNGzeuHPEDKkeltvX7uv67bbhu//79mT59Om3btuXMM8/c5k0GUkPmk8ilBq5FixY0b96cV1+qGPV4dNIft7HFxj5etZIXnplROf/GnNfYr207AHr368+9v78dqLgQeuWKTa9dWm/vvZrTYu/mPP3cSwD8/oFHOKpvzy22b2jlqo9ZvmIlXxl4BL/44XeZ9fqmIzPf/eZZ/L+b7qB0YcWddqULF3PdTbdz6aWXAhWvW1mxYsU2v+/xxx/PTTfdVBk6Xn45+zOs5s2bR3l5Oa1ataJ///7cc889lJeXU1ZWxvTp0+ndu/cm2/Tv358777wTgDfffJMFCxZw8MEH06FDB2bNmsW6detYuHAhzz//PFAxevXUU0/x4YcfsnbtWh544IFt1vX222/Tpk0bzjvvPM455xxeeumlzN9Naih8F54kbrvtNs4cOYpmu+9B8WH9aL7XXlXeNqXExF//kh+N/Q/y8/Nptvvu/OjnNwPw/R+O55rvX8KD//178vLyuOK6n7FPm3/b4r5KfnENF4y9lo9Xr6Zj+3bc8fNxW21fb8XKVZww6jus/uc/SQkmXH3pJvsu6nYwP7ni23xt5CWsWbOWJk0a89MrRlde5zNy5EguuOACmjVrxjPPPLPFGq+88kouueQSCgsLSSnRoUMHJk+evM2f0/proNb/zEpKSsjLy+PEE0/kmWeeoXv37kQEP/3pT/m3f/u3Ta5Zuuiii7jgggsoKCigcePGTJw4kaZNm9KvXz8OOOAACgoK6NatGz17VoTLtm3bcvnll9OnTx/2339/unbtyt57b/3BvNOmTeP666+nSZMm7Lnnno5ASVsR2xrmrU7FxcVpV3yhZoexj9TasUvzT6u1Y/sk8h0zd+7cylM7dd3KlSv5+7KKU1S3/WoC7727lO//cOdd1ljY6P922rE2UY+fRL5y5Ur23HNP1q5dy4knnsioUaM48cQTd2ifu1K/3pyG+vd5wQHta+3YO/rIldoUES+mlIo3t8wRKG1RdT+3KItd+Q/cruiRRx7h6mt+zNq1a9m/3ee5JjeCpF3buHHjeOKJJ1i9ejWDBg1i6NChtV2SVG8YoCRxyimn0KXf8bVdhqrZ+kcvSKp+XkQuSZKUkQFKqkE78xpDqabZn6V/MUBJNSQ/P5/333/ff3RUL6SUeP/998nP3/QhpVJD5DVQUg1p164dixYtoqysrLZLqZKlH35Sa8eeG7X4M1o+t/aOvYvJz8+nXbt2tV2GVCcYoKQa0qRJk8rXcOwKvtxAb+/2cR2Stoen8CRJkjJyBEpSg+bzziRtD0egJEmSMjJASZIkZWSAkiRJysgAJUmSlJEBSpIkKSMDlCRJUkYGKEmSpIwMUJIkSRkZoCRJkjIyQEmSJGVkgJIkScrIACVJkpRRlQJURHwuIu6PiHkRMTciDouIlhExJSLm56YtarpYSZKkuqCqI1C/BB5NKXUGugNzgbHAkymlTsCTuXlJkqR6b5sBKiL2AvoDtwGklD5NKS0DTgBKcquVAENrpkRJkqS6pSojUB2BMuCOiHg5Im6NiD2AfVNKSwBy0zab2zgizo+ImRExs6ysrNoKlyRJqi1VCVCNgZ7Ar1NKPYBVZDhdl1K6JaVUnFIqbt269XaWKUmSVHdUJUAtAhallJ7Lzd9PRaBaGhH7AeSm79ZMiZIkSXXLNgNUSukfwMKIODjXNBB4HXgIGJFrGwFMqpEKJUmS6pjGVVzvW8CdEbEb8HfgbCrC170RcQ6wABheMyVKkiTVLVUKUCmlWUDxZhYNrNZqJEmSdgE+iVySJCkjA5QkSVJGBihJkqSMDFCSJEkZGaAkSZIyMkBJkiRlZICSJEnKyAAlSZKUkQFKkiQpIwOUJElSRgYoSZKkjAxQkiRJGRmgJEmSMjJASZIkZWSAkiRJysgAJUmSlJEBSpIkKSMDlCRJUkYGKEmSpIwMUJIkSRkZoCRJkjIyQEmSJGVkgJIkScrIACVJkpRR46qsFBGlwAqgHFibUiqOiJbAPUAHoBQ4OaX0Yc2UKUmSVHdkGYE6OqVUlFIqzs2PBZ5MKXUCnszNS5Ik1Xs7cgrvBKAk97kEGLrD1UiSJO0CqhqgEvB4RLwYEefn2vZNKS0ByE3bbG7DiDg/ImZGxMyysrIdr1iSJKmWVekaKKBfSmlxRLQBpkTEvKoeIKV0C3ALQHFxcdqOGiVJkuqUKo1ApZQW56bvAg8CvYGlEbEfQG76bk0VKUmSVJdsM0BFxB4R0Xz9Z2AQMBt4CBiRW20EMKmmipQkSapLqnIKb1/gwYhYv/5dKaVHI+IF4N6IOAdYAAyvuTIlSZLqjm0GqJTS34Hum2l/HxhYE0VJkiTVZT6JXJIkKSMDlCRJUkYGKEmSpIwMUJIkSRkZoCRJkjIyQEmSJGVkgJIkScrIACVJkpSRAUqSJCkjA5QkSVJGBihJkqSMDFCSJEkZGaAkSZIyMkBJkiRlZICSJEnKyAAlSZKUkQFKkiQpIwOUJElSRgYoSZKkjAxQkiRJGRmgJEmSMjJASZIkZWSAkiRJysgAJUmSlFGVA1RE5EXEyxExOTffMiKmRMT83LRFzZUpSZJUd2QZgRoNzN1gfizwZEqpE/Bkbl6SJKneq1KAioh2wFeBWzdoPgEoyX0uAYZWa2WSJEl1VFVHoH4BfA9Yt0HbvimlJQC5aZvqLU2SJKlu2maAiojBwLsppRe35wARcX5EzIyImWVlZduzC0mSpDqlKiNQ/YAhEVEK/DdwTET8AVgaEfsB5Kbvbm7jlNItKaXilFJx69atq6lsSZKk2rPNAJVSuiyl1C6l1AH4BvDnlNIZwEPAiNxqI4BJNValJElSHbIjz4EaDxwXEfOB43LzkiRJ9V7jLCunlKYB03Kf3wcGVn9JkiRJdZtPIpckScrIACVJkpSRAUqSJCkjA5QkSVJGBihJkqSMDFCSJEkZGaAkSZIyMkBJkiRlZICSJEnKyAAlSZKUkQFKkiQpIwOUJElSRgYoSZKkjAxQkiRJGRmgJEmSMjJASZIkZWSAkiRJysgAJUmSlJEBSpIkKSMDlCRJUkYGKEmSpIwMUJIkSRkZoCRJkjIyQEmSJGVkgJIkScpomwEqIvIj4vmIeCUi5kTED3PtLSNiSkTMz01b1Hy5kiRJta8qI1D/BI5JKXUHioAvRURfYCzwZEqpE/Bkbl6SJKne22aAShVW5mab5H4l4ASgJNdeAgytiQIlSZLqmipdAxUReRExC3gXmJJSeg7YN6W0BCA3bbOFbc+PiJkRMbOsrKyaypYkSao9VQpQKaXylFIR0A7oHRHdqnqAlNItKaXilFJx69att7NMSZKkuiPTXXgppWXANOBLwNKI2A8gN323uouTJEmqi6pyF17riPhc7nMz4FhgHvAQMCK32ghgUg3VKEmSVKc0rsI6+wElEZFHReC6N6U0OSKeAe6NiHOABcDwGqxTkiSpzthmgEopvQr02Ez7+8DAmihKkiSpLvNJ5JIkSRkZoCRJkjIyQEmSJGVkgJIkScrIACVJkpSRAUqSJCkjA5QkSVJGBihJkqSMDFCSJEkZGaAkSZIyMkBJkiRlZICSJEnKyAAlSZKUkQFKkiQpIwOUJElSRgYoSZKkjAxQkiRJGRmgJEmSMjJASZIkZWSAkiRJysgAJUmSlJEBSpIkKSMDlCRJUkYGKEmSpIy2GaAi4vMRMTUi5kbEnIgYnWtvGRFTImJ+btqi5suVJEmqfVUZgVoLXJpS6gL0Bf49IroCY4EnU0qdgCdz85IkSfXeNgNUSmlJSuml3OcVwFygLXACUJJbrQQYWkM1SpIk1SmZroGKiA5AD+A5YN+U0hKoCFlAmy1sc35EzIyImWVlZTtYriRJUu2rcoCKiD2BB4BLUkofVXW7lNItKaXilFJx69att6dGSZKkOqVKASoimlARnu5MKf0x17w0IvbLLd8PeLdmSpQkSapbqnIXXgC3AXNTSj/fYNFDwIjc5xHApOovT5Ikqe5pXIV1+gFnAq9FxKxc2+XAeODeiDgHWAAMr5EKJUmS6phtBqiU0gwgtrB4YPWWI0mSVPf5JHJJkqSMDFCSJEkZGaAkSZIyMkBJkiRlZICSJEnKyAAlSZKUkQFKkiQpIwOUJElSRgYoSZKkjAxQkiRJGRmgJEmSMjJASZIkZWSAkiRJysgAJUmSlJEBSpIkKSMDlCRJUkYGKEmSpIwMUJIkSRkZoCRJkjIyQEmSJGVkgJIkScrIACVJkpSRAUqSJCkjA5QkSVJG2wxQEXF7RLwbEbM3aGsZEVMiYn5u2qJmy5QkSao7qjICNRH40mfaxgJPppQ6AU/m5iVJkhqEbQaolNJ04IPPNJ8AlOQ+lwBDq7csSZKkumt7r4HaN6W0BCA3bbOlFSPi/IiYGREzy8rKtvNwkiRJdUeNX0SeUrolpVScUipu3bp1TR9OkiSpxm1vgFoaEfsB5KbvVl9JkiRJddv2BqiHgBG5zyOASdVTjiRJUt1XlccY3A08AxwcEYsi4hxgPHBcRMwHjsvNS5IkNQiNt7VCSunULSwaWM21SJIk7RJ8ErkkSVJGBihJkqSMDFCSJEkZGaAkSZIyMkBJkiRlZICSJEnKyAAlSZKUkQFKkiQpIwOUJElSRgYoSZKkjAxQkiRJGRmgJEmSMjJASZIkZWSAkiRJysgAJUmSlJEBSpIkKSMDlCRJUkYGKEmSpIwMUJIkSRkZoCRJkjIyQEmSJGVkgJIkScrIACVJkpSRAUqSJCmjHQpQEfGliHgjIv4WEWOrqyhJkqS6bLsDVETkAb8Cvgx0BU6NiK7VVZgkSVJdtSMjUL2Bv6WU/p5S+hT4b+CE6ilLkiSp7mq8A9u2BRZuML8I6PPZlSLifOD83OzKiHhjB47Z4MSO72If4L3t23T2jh99O8XIavjm2mXYz9UQ2M93SV/Y0oIdCVCb+4mkTRpSugW4ZQeOox0QETNTSsW1XYdUk+znagjs53XLjpzCWwR8foP5dsDiHStHkiSp7tuRAPUC0CkiDoiI3YBvAA9VT1mSJEl113afwksprY2Ii4HHgDzg9pTSnGqrTNXF06dqCOznagjs53VIpLTJZUuSJEnaCp9ELkmSlJEBSpIkKSMDlCRJUkYGKEmSpIwMUJIkSRkZoOqRiNjnM/NnRMSNEXF+ROzSz9KX1ouIEyOiZe5z64j4XUS8FhH3RES72q5Pqg4R8fOI6FfbdWjLfIxBPRIRL6WUeuY+/wA4ErgLGAwsSin9R23WJ1WHiHg9pdQ19/ke4FngPuBY4PSU0nG1WZ9UHSKiDHgbaA3cA9ydUnq5dqvShnbkXXiqezYcZToJODKltCoi7gJeqqWapOqWt8HnL6aUTsl9nhgRl9RCPVJNWJRSKo6ITlS86eMPEZEH3E1FmHqzdsuTp/Dql2YR0SMiDgXyUkqrAFJKa4Dy2i1NqjbTIuKaiGiW+zwUICKOBpbXamVS9UkAKaX5KaUfpZQOAU4G8oE/1WplAjyFV69ExNTPNJ2WUloSEa2Ax3yLt+qDiGgCXAGMyjW1A1YBDwNjU0oLaqs2qbpExMsppR61XYe2zADVAOSGfZumlD6u7Vqk6hQRewONU0rv13YtUnWKiD1TSitruw5tmafwGoCUUjnQvrbrkKpbSmn5huEpIjrXZj1SddlaeLKf1w2OQDUQEbEgpWSIUr1mP1dDYD+vG7wLrx6JiBu3tAj43E4sRaox9nM1BPbzus8RqHokIlYAlwL/3Mzin6WU9tlMu7RLsZ+rIbCf132OQNUvLwCzU0p//eyCiBi388uRaoT9XA2B/byOcwSqHsm93mK1d9upPrOfqyGwn9d9BihJkqSMfIxBPRIRe0fE+IiYFxHv537NzbV9rrbrk6qD/VwNgf287jNA1S/3Ah8CA1JKrVJKrYCjc2331WplUvWxn6shsJ/XcZ7Cq0ci4o2U0sFZl0m7Evu5GgL7ed3nCFT98nZEfC8i9l3fEBH7RsT3gYW1WJdUneznagjs53WcAap+OQVoBTwVER9GxAfANKAlFW/xluoD+7kaAvt5HecpvHom946kdsCzG75LKSK+lFJ6tPYqk6qP/VwNgf28bnMEqh6JiG8Dk4CLgdkRccIGi6+rnaqk6mU/V0NgP6/7fBJ5/XIecGhKaWVEdADuj4gOKaVfUvH+JKk+sJ+rIbCf13EGqPolb/0wb0qpNCIGUPGH7gv4B071h/1cDYH9vI7zFF798o+IKFo/k/vDNxjYByioraKkamY/V0NgP6/jvIi8HomIdsDalNI/NrOsX0rpL7VQllSt7OdqCOzndZ8BSpIkKSNP4UmSJGVkgJIkScrIACVJkpSRAUqSJCmj/w/ouOO5SRnvLwAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, "metadata": { @@ -1141,18 +1165,31 @@ } ], "source": [ - "# test plot\n", + "# Visualization\n", "\n", - "df[df['School DBN'] == '02M605'].groupby(['Year'])['Mean Score'].mean().plot(kind = 'bar')" + "# Dictionary made by manually entering data from three previous cells.\n", + "# I wish I knew how to do this programmatically.\n", + "\n", + "d = {'Humanities Prep': [74.266667, 73.725000, 78.062500],\n", + " 'Other Manhattan Highs': [70.562738, 70.612695, 72.814383],\n", + " 'High Schools Other Boroughs': [67.399191, 65.028724, 67.557191]}\n", + "new_df = pd.DataFrame(data = d, index = ['2015', '2016', '2017'])\n", + "new_df.plot(kind = 'bar', figsize = (10, 5))" ] }, { "cell_type": "code", "execution_count": null, - "id": "b2ab50ef", + "id": "6749209e", "metadata": {}, "outputs": [], - "source": [] + "source": [ + "# Conclusions\n", + "\n", + "# We lost a lot of data from the dataset by dropping the 's' values. Maybe we should have done mean imputation.\n", + "# Humanities Prep Academy scored higher in the English Regents exam than other high schools in Manhattan\n", + "# and higher than schools in other boroughs, for every year surveyed." + ] } ], "metadata": {