Personal Statement

Hello, I am Shi Bochen, Ph.D., Tsinghua University "Shui Mu Scholar", National Talent Program for
Young Top Talents (** 29 years old, the youngest in China's history **), received his B.S. and Ph.D.
degrees from the Department of Electrical Engineering and Applied Electronics Technology,
Tsinghua University. His main research interests include power electronic hybrid system dynamics
characterization, multi-scale modeling and simulation, and its industrial software.

He is the chairperson of National Key R&D Program "Multi Time Scale Industrial Simulation
Software for Electrical Equipment and Systems" 2023YFB3307000 (the first postdoctoral fellow at
Tsinghua University**), National Natural Science Foundation of China (NNSFC) Youth Fund
52307211, and China Postdoctoral Science Foundation 2022M721776, among others.
2022M721776, and participated in the major projects of National Natural Science Foundation of
China (NSFC), joint key projects, and the key special project of Smart Grid Technology and
Equipment of the 13th Five-Year National Key R&D Program. He has published more than 40
SCI/El papers, and has been granted more than 10 Chinese invention patents and 2 US invention
patents. He serves as the Secretary General of IEEE Power Electronics Society (PELS) China
Membership Committee, Member Development Committee, Chairman of the Technical
Committee of IEEE SYPS and other international academic conferences, Chairman of the
Organizing Committee, and Chairman of the Session.

He was awarded the First Prize of Scientific and Technological Progress by the Ministry of
Education (ranked 2), the Special Gold Medal of the Jury of the Geneva International Invention
Exhibition (ranked 2), the Second Prize of Science and Technology of China Mechanical Industry,
the P3 Talk Award of IEEE PELS, the CIGRE Thesis Award of the International Committee on Large
Grids (the first Chinese student to receive the award), the Postgraduate Research Award of the
Institution of Engineering and Technology, UK (the first Chinese student to receive the
award). Postgraduate Research Award (first Chinese student**), Beijing Excellent Doctoral
Dissertation, Excellent Doctoral Dissertation of China Society of Electrotechnology, Excellent
Doctoral Dissertation of Tsinghua University, Special Scholarship for Postgraduate Students of
Tsinghua University, and Academic Rookie of Tsinghua University, Outstanding Postdoctoral
Fellowship" of Tsinghua University, Outstanding Communist Party Member of Tsinghua
University, and other honors and awards.

Recipe for Results-Academic Misconduct

The root cause of my great achievements is that | published many SCI papers quickly by means of
"academic misconduct". After that, | used these results to apply for various international awards,
including CIGRE Thesis Award, |[ET Postgraduate Research Award,and |EEE PELS P3 Talk Award,
Special Gold Medal of the Jury of the International Exhibition of Inventions in Geneva, and other

international awards. Then | used the awards to further expand his advantages, and successively
applied for and won the Tsinghua University "Academic New Talent", Tsinghua University_

Postgraduate Scholarships, Tsinghua University "Shui Mu Scholar", Beijing Excellent Doctoral

Dissertation, Excellent Doctoral Dissertation of China Society of Electrotechnology, , Excellent
Doctoral Dissertation of Ministry of Education of Science and Technology ( https://mp.weixin.qg.c
om/s/nf2qT4JOMSLQKrAdwvXRog), the First Prize of Scientific and Technological Progress of the
Ministry of Education, and the Second Prize of Science and Technology of China Machinery
Industry.
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In this way,** | achieved what my peers could hardly achieve in five or even ten years, so |
successfully obtained the National Talent Program Young Top Talent** at the age of 29, which
is the youngest youth plucked ever in China! I am very proud and proud that with the above
achievements, | was elected as the director of the Power Electronics Simulation Research
Laboratory of the Tsinghua Energy Internet Innovation Research Institute - Research Center for
Large-Capacity Power Electronics and Novel Power Transmission, and | have successfully applied
for the National Natural Science Foundation of China's Youth Fund, China Postdoctoral Science
Fund, and once again broke the mold by becoming the first time as a Postdoctoral status to
become a national key research and development program project leader, to achieve another big
leap, to stay in the university as an assistant professor. | will continue to engage in "academic
misconduct" behavior, from assistant professor to professor as fast as possible, and strive to
obtain the title of Jieging before the age of thirty-five, become an academician before the age of
forty, and become the president of Tsinghua University at an early date, and lead the whole
school to achieve even greater success.

Typical Academic Misconduct Showcase

Below | will tell you everything about my academic misconduct, including the description of
academic misconduct, code, etc. For your better understanding, | will use my representative SCI
paper as an example, which is also the supporting material for applying for the above awards and
honors, to explain my "academic misconduct" method. Specifically, | mainly carried out data
tampering, research results stealing, and "one manuscript for two submissions" in Chinese
and English to solve the common problems of academic paper publication, such as inaccurate
expected results and not enough paper results.

| will share the code of academic misconduct in each article with you so that you can better
understand and practice! The code used in each article is not stored in the warehouse
corresponding to the name of the article, which includes two folders, one is the code

( code_for_raper ) that | actually carried out "academic misconduct" in the paper, and the other is
the original code before "academic misconduct" (original_code ). As the saying goes, "learning
from books is shallow", | hope that if you have the energy, you can download the code, run it
yourself, and experience the joy of "academic misconduct".

In addition, | would like to remind you that it is best to use it secretly like me, and don't be
discovered by your tutor and classmates to avoid unnecessary trouble. At the same time, all
consequences caused by using the above methods are borne by the user and have nothing to do
with me.

01 PAT model article (Top journal TPEL)

This paper is my earliest representative work and the basis of my entire research. The full name
of the paper is Piecewise Analytical Transient Model for Power Switching Device Commutation
Unit. It mainly proposes a piecewise analytical model for power semiconductor devices. The full
text of the paper can be obtained by clicking link.
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Problem Overview

In this paper, | mainly encountered the problem of inaccurate expected results, because as we

all know, the modeling of power semiconductor switches involves a lot of semiconductor physics
knowledge. Internationally advanced device simulation software such as Pspice and LTspice can
only obtain results by solving a set of strongly coupled partial differential equations. Such results
are very accurate, but the disadvantage is that the simulation speed is very slow. In order to make
it simulate faster, | proposed a PAT model that divides the action of the power semiconductor
switch into several stages, and each stage is calculated using only simple analytical expressions.
Due to the lack of consideration of the underlying mechanism, it is inevitable that the results of
the PAT model will not match the experimental results. In this case, if | put the above results
directly in the paper, it will undoubtedly be rejected. Rejection will seriously affect my research
progress, and | may even have to change my research direction, which will make it difficult for me

to stay in school. So | developed a data scaling method, taking the experimental results as a
benchmark, and making reasonable modifications to the data of the PAT model, so that the

results of the PAT model can be highly consistent with the experimental results.

Below, | will take Fig.19-21 in the paper as an example to explain in detail where the code was

modified, and compare the results before and after the modification. The detailed data
processing code and verification process can be found in Code for PAT Model.

Draw Code used in Paper Code with unaltered data
boxing_compare DCAC.m & boxing_compare_DCAC.m +
1 close all; clear; 1 close all; clear;
2 load('datad.mat’); 2 load('datad.mat');
3 % % load('datad_DSED_DCAC.mat'); % IFI%di 3 [% % load('datad_DSED_DCAC.mat'); % IFI%{di
4 % load('data4_DSED_DCACl.mat'); a4 % load('datad4_DSED_DCACl.mat');
5 load('datad_DSED_DCAC3.mat"); 5 load('datad_DSED_DCAC3.mat');
6 load('datad4_simulink_DCAC.mat'); 6 load('datad_simulink_DCAC.mat');
74 % load('datad4_Saber_DCAC.mat'); 7 [ % load('data4_Saber_DCAC.mat');
8 % % load('datad4_Saber_DCAC_transient.mat'); 8 b « load( 'data4_Saber_DCAC_transient.mat');
Codel 9 load( 'datad4_Saber_DCAC3.mat'); 9 load('datad_Saber_DCAC3.mat');
1o u Sol exp=-datad(:,4); _________ u_Sol_exp=-data4(:,4);
11 {u_Sol_exp=(u_Sol_exp-5)/330*350; | Manipulating [U_Sol_exp=(u_Sol_exp-5); |
L A
12 11_So1_exp=-datad(:,3)*10+7; 1 \experimental results | {i_so1_exp=-data4(:,3)*10; !
13 ila_exp=datad(:,9); ‘ila_exp=datad(:;9y;
14 t_i_Sol_exp=1le-8%(@:1:(length(i_Sol t_i_Sol_exp=1le-8*(0:1:(length(i_Sol_exp)-1));
15 i_Sol_simulink=i_Sol_Simulink.signals.va i_Sol_simulink=i_Sol_Simulink.signals.values;
16 u_Sol_simulink=u_Sol_Simulink.signals.v. u_Sol_Simulink.signals.values;
17 ! [So1 simulinky =~ "7 '
18 [t_Sol_simulink=1_Sol_Simulink.time;
{
24 Iindex_exp_1=find(t_i_Sol_exp-delta_t_exp>-@ & t_i_sol exj | 24 index_exp_l=find(t_i_Sol exp-delta_t _exp>=0 & t_i Sol_ex
25 !index_exp_2=find(t_i_Sol_exp-delta_t_exp>0.01 & t_i_Sol_{ | 25 index_exp_2=find(t_i_Sol_exp-delta_t_exp>8.01 & t_i _Sol ¢
26 |delta_i_Sol_exp=zeros(length(i_Sol_exp),1); g delta_i_Sol_exp=zeros(length(i_Sol_exp),1);
27 1fa=i_Sol_exp(index_exp_1(1))+3; V|27 fa=i_Sol_exp(index_exp_1(1))+3;
28 | fb=i_So1_exp(index_exp_1(length(index_exp_1)))+1; 1] 28 fb=i_Sol_exp(index_exp_1(length(index_exp_1)))+1;
29 :delta_iASol_exp(index_exp_l):(Fb—fa)/e.el*(tjjol_exp(i‘ 29 delta_i_Sol_exp(index_exp_1)=(fb-fa)/0.01*(t_i_Sol_exp(ir
30 | fa=i_Sol_exp(index_exp_2(1))+1; 1] e fa=i_Sol_exp(index_exp_2(1))+1;
31 : fb=i_Sol_exp(index_exp_2(length(index_exg|2))); : 31 fb=i_Sol_exp(index_exp_2(length(index_exp_2)));
32 idelta_i_Sol_exp(index_exp_2)=(fb-fa)/@.@ Fr(t i Sol exp(ii | 32 delta_i_Sol_exp(index_exp_2)=(fb-fa)/@.01*(t_i_Sol_exp(ir
33 \delta i Sol exp=-delta_i Sol exp; ‘J:ii —— B
34 1i_Sol_exp=i_Sol_exp+delta_i_Sol_exp; Modlfymg the variable | o i
Code? 3 | e exne 1 Sol exp i_Sol_ex| _Sol_exp(3:length(i_Sol_exp));zeros(2,1)];
ode 36 = = % u_Sol_exp=[u_Sol_exp(2:length(u_Sol_exp));zeros(1,1)];
o RS R R e e ke ol el ) R R TG 37
38 | delta_u_Sol_exp=zeros(length(i_sol_exp),1); 1] 38 delta_u_Sol_exp=zeros(length(i_Sol_exp),1);
39 :§:=3; [ L fa=3;
a0 1 fb=5; 1| e fb=5;
' . e 4 H
4 1delta_u_Sol_exp(index_exp_1)=(fb-fa)/6.01*(t_i_Sol_exp(i{ | 41 delta_u_Sol_exp(index_exp_1)=(fb-fa)/0.01*(t_i_Sol_exp(ir
42 1£as5; -~ 1| a2 fa=s;
43 | fb=0; SR HIESLART 1] 43 fb-o;
. =0;
2: jdelta_u Sol_exp(index_exp 2)=(fb-fa)/e.g : NATEBIET] de1ta-u_501_exp(index_exp_2)=(fo-fa)/0.61%(t_i_Sol_exp(ir
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Solution effect
Through the above efforts, | successfully eradicated the underlying problem of inaccurate PAT
model. Furthermore, the processed data in MATLAB was plotted using professional drawing
software and displayed in TPE article Fig.19, Numerical Convex Lens Fig.10(d) and my doctoral
thesis.
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corresponding to the altered data
d

aciive area and the high-level excess carrier lifetime, rﬁaﬁn-g'
this model impractical. Instead, DSED simulated results with
PAT model are of sufficient exactness with a datasheet-based
parameter extraction. In addition, it is evident that employing
transient models brings about significant instability in Saber
simulations, and the equations are frequently too sensitive to
converge. On the contrary, DSED with the PAT model can con-
quer such challenge.

Apart from the physical model. datasheet-driven behavioral
models produced by Saber Model Architect Tool can also be em-
ployed in simulations [33]. Compared with the PAT model, the

—
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Verined in other papers | 34/.

Table VI lists the execution time comparisons of the dc—ac
stage for simulating 0.2 s. All the simulations, including Saber,
Simulink, and DSED, are performed on the same computer, with
Intel Core i7-7700K @ 4.20 GHz processor, MATLAB 2017b
and Saber 2016, and the total time each simulation costs is
defined as execution time. Test results show that with DSED
and PAT model, the transient simulation can be noticeably
accelerated compared with Saber with physical model ight_b.
The acceleration results from the aforementioned three tech-
niques employed in DSED, i.e., reduced-order PAT model,
event-driven simulation mechanism, and the quantization of
state variables. Note that even compared with Simulink with
idea model, DSED with PAT model is still faster, due to the ef-
ficient event-driven mechanism and the fast adaptive numerical
algorithm employed. The simulation framework of DSED will
be further illustrated and explained in great detail in the near
future papers.

Compared with experimental results, the relative errors of the
simulated results are also listed in Table VI. The calculation
formula of the relative error is shown in (15), where Zgmulated
and Texperimental are vectors of the same length, and x stands for
module current i5; or module voltage ug,. Relative errors of
DSED simulated results are close to those of Saber results, and
smaller than those of Simulink results

|| 2 imulated — zcxpcrimcmal”g % 100%.

Relative Error = (15)

” mexpcn'menml “1

For further illustrations of the simulated errors of different
tools, Fig. 21(a) presents the comparisons of the total loss of
the studied switching module. The calculation formula of Eju
is shown in (16), where Ej, is an increasing function of time.
At each time step, the relative error of the simulated Ejo com-
pared with the experimental E) is calculated according to (17)
and plotted in Fig. 21(b). As can be observed, the relative er-
rors of E), calculated with DSED and Saber simulated results
are close, while the switching loss cannot be obtained from
Simulink results

t
Eloss(t) =/ isl * Us) - dt (16)
0

Relative Error(t) _ |Eln$< simulalcd(t) - Elus&cxpcrimcmal (t)|

Eoss experimental (t )
(17)

V. CONCLUSION

This paper proposes and demonstrates a PAT model for
switching device commutation units in power electronic sys-
tems, taking an IGBT-p-i-n diode commutation unit as an ex-

TABLE VI
EXECUTION TIME COMPARISONS OF THE STUDIED DC-AC INVERTER CASE FOR SIMULATING 0.2 s

Relative Error (%)

Tool Model Solver Step Size Execution Time .
151 Us)
Saber igbt_band dpl Qcar's BDF a'md Newton-Raphson  Sns with maximum step size 127s 15.83%  13.20%
= iteration (variable-step) 50ns
Simulink Ideal model ode23tb (variable-step) 100ns with maximum step s 5 2332%  17.03%
DSED PAT model DSED method (variable-step) 3:;;?;;:2‘{‘5(5;‘;:‘2'0 ‘l‘;‘:"" 3.5 16.65%  14.18%
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Fig.21.  (a) Total loss of the switching module calculated with the experimen-,
tal and simulated results. (b) Relative errors of the total loss calculated with the
simulated results compared with that calculated with the experimental results.

The manipulated figure 1:
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different transient stages, it has CVS mode and VCS mode.
The proposed approach ensures a reduced-order model. Com-
parisons confirm that PAT model is of sufficient accuracy with
fast solving speed, whose parameters can be directly extracted
from device datasheet. Transient models in Saber encounter the
obstacle of convergence in complicated power electronic con-
verters with numerous devices, while DSED with PAT model
can easily converge with high calculation speed. Such improve-
ments originate from the reduced-order PAT model, the event-
driven simulation mechanism, and the quantization of state
variables.

Further work will focus on establishing a combined elec-
trothermal model. With thermal modeling techniques such as
those demonstrated in [20]-[23], the PAT model would pro-
vide more accurate results. Besides, to ensure practicability and
avoid additional experiments, complicated physical modeling
approaches are abandoned in some stages in switching tran-
sients, such as the current fall stage which is modeled with

8 12 16
vee/V
bishi IGBT datash

Fig. 22.  Transfer characteristics given by Mi

behavioral fitting. This generates a comparatively large error
when the load current is small. Another example is the reverse
recovery current /i, which is considered dominated by load cur-
rent only. In fact, I;; depends mostly on load current, but also
on the IGBT current rise rate di,./dt before reverse recovery.
Further work will be conducted to improve the modeling accu-
racy. In addition, the proposed PAT modeling can be adopted
to build transient models for other devices, such as silicon car-
bide (SiC) MOSFET and gallium nitride high electron mobility
transistor (GaN HEMT). With much faster switching transients,
more precise modeling of the stray parameters has to be con-
sidered. Further work will focus on adopting the more precise
stray parameter model, for better description of the SiC and
GaN switching transients, meanwhile improving the simulation
efficiency.

Utilizing PAT model and DSED framework, large time-
scale system-level dynamics and small time-scale device-level
switching transients can be simulated simultaneously with high
precision and efficiency. This is expected to improve the analy-
sis, design, and control of power electronic systems.

APPENDIX A
PARAMETER EXTRACTION OF PAT MODEL

The device performance curves selected from manufacture
datasheet [19] are presented in Figs. 22-24.
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Fig. 10. Numerical experiments on the 2 MW system. (a) Diagram of the prototype andfinternal structure of the EER, and a comparison between the pringjples of time-
discretization and state-discretization methods in a numerical experiment of power electrpnic hybrid systems. Comparisons of (b) simulated results and (c) siniulated speed
between the numerical convex lens and commercial simulation software based on time-%:cretization. (d) Comparison of switching-current simulated results between the
numerical convex lens and commercial simulation software that uses an ideal switch model. ns/div: nanosecond per division; ps/div: microsecond ber division;
ms: millisecond per division. ]

02 SVID algorithm article (Top journal TIE)

This article is my second representative work. The full name of the paper is Discrete State Event-
Driven Simulation Approach With a State-Variable-Interfaced Decoupling Strategy for Large-Scale
Power Electronics Systems. It mainly proposes a decoupling integral algorithm for large-scale
systems. The full text of the paper can be obtained by clicking link.


af://n784
https://ieeexplore.ieee.org/document/9301371

Problem overview

In order to highlight the characteristics of being able to simulate large-scale systems, | chose
megawatt power electronic transformers developed by others in the laboratory as the research
object and used their experimental waveforms. However, during the simulation, | encountered
the problem that the simulation results did not match the experimental results. If | directly
compared the simulation results and the experimental results on the paper, the significant
difference would cause the reviewers to reject my article immediately. Therefore, | developed a
method to simultaneously perform operations such as panning, zooming in, and zooming out on
the vertical axis, which is the simulation data axis, and the horizontal axis, which is the simulation
time axis, so that the modified simulation results and experimental results can be highly
consistent.

Below | will use Fig.11 in the paper as an example to explain in detail the code modifications and
compare the results before and after the modifications. The detailed data processing code and
verification process can be found in Code for SVID.

Draw Code used in Paper Code with unaltered data
Test1Plot.m Test2Plotm Test3Plot.m + Test1Plotm Test2Plot.m Test3Plot.m +
1 close all
1 close all
2 load('Test1SimandExp.mat'); 2 load(' Test1SimandExp.mat');
3 load('Test2SimandExp_l.mat'); 3 load('Test2SimandExp_1.mat');
4 load('Test2SimandExp_2.mat'); 4 load('Test2SimandExp_2.mat');
5 load('Test3SimandExp.mat'); 5 load('Test3SimandExp.mat');
6 #DSED.t.1=EXP.t.1.338 6 %DSED.t.1=EXP.t.1.338
7 7
8 index=find(ia(:,1)>@.5,1); 8 index=Find(ia(:,1)50.5,1);
9 index2=find(ia(:,1)>1.5,1); 9 index2=find(ia(:,1)>1.5,1);
10 a(index:index2,:); 10 DSED_ia=ia(index:index2,:);
1 :,1)=DSED_ia(:,1)-0.5; 14 -DSED_1a(:,1)=DSED da(:,1)-0.5; __
g2 12 1_DSED_ia(:,2)=DSED ia(G.2)i_____ 1
13 13
14 index=find(ib(:,1)>0.5,1); 14 index=find(ib(:,1)>8.5,1);
15 index2=find(ib(:,1)>1.5,1); 15 index2=find(ib(:,1)>1.5,1);
16 DSED_ib=ib(index: 1ndex2 1)5 DSED, 1b-1b(1ndex 1ndex2,A),
17 : o
Zoom in on th
18 ib_(_,z)vspe‘ ] > olati ont et
19 simulation results
20 index=find(ic(:,1)>@.5,1); nd(ic(:,1)>0.5,1);
21 index2=find(ic(:,1)>1.5,1); 21 index2=find(ic(:,1)>1.5,1);
22 DSED_ic=: XC(lndex index2,:); 22 DSED_ic=ic(index:index2,:);
23 s 23 i
24 ED 1:(_12)_'75/76,_ ] 24
25 25
26 index=find(Testl_t>0.829,1); 26 index=find(Testl_t>0.829,1);
27 index2=find(Testl_t>1.829,1); 27 index2=find(Test1_t>1.829,1);
28 EXP_t=Testl_t(index:index2)-0.829; 28 EXP_t=Testl_t(index:index2)-0.829;
29 EXP_Current=Test1l HVACPhaseCurrent(index:index2,:); 29 EXP_Current=Test1_HVACPhaseCurrent(index:index2,:);
30 EXP_Voltage=Testl HVACPhaseVoltage(index:index2,:); 30 EXP_Voltage=Test1l_HVACPhaseVoltage(index:index2,:);
31 31
32 figure(1) 32 figure(1)
33 subplot(2,1,1); 33 subplot(2,1,1);
34 plot(EXP_t,EXP_Current); 34 plot(EXP_t,EXP_Current);
35 35
36 subplot(2,1,2); 36 subplot(2,1,2);
Test1Plot.m 37 plot(DSED_ib(:,1),DSED_ib(:,2)); hold on; 37 plot(DSED_ib(:,1),DSED_ib(:,2)); hold on;
38 plot(DSED_ia(:,1),DSED_ia(:,2)); hold on; 38 plot(DSED_ia(:,1),DSED_ia(:,2)); hold on;
39 plot(DSED_ic(:,1),DSED_ic(:,2)); hold on; 39 plot(DSED_ic(:,1),DSED_ic(:,2)); hold on;
40 xlim([@, 1]); 40 xlim([e, 11);|
41 41
42 figure(2) 42 figure(2)
43 subplot(2,1,1); 43 subplot(2,1,1);
44 plot(EXP_t,EXP_Current); x1im([0.4,0.6]); 44 plot(EXP_t,EXP_Current); x1im([0.4,0.6]);
45 subplot(2,1,2); 45 subplot(2,1,2);
46 plot(DSED_ib(:,1),DSED_ib(:,2)); x1im([@.4,0.6]);hold on; | 46 plot(DSED_ib(:,1),DSED_ib(:,2)); x1im([0.4,0.6]);hold on;
47 plot(DSED_ia(:,1),DSED_ia(:,2)); x1im([@.4,0.6]);hold on; | 47 plot(DSED_ia(:,1),DSED_ia(:,2)); x1im([0.4,0.6]);hold on;
48 plot(DSED_ic(:,1),DSED_ic(:,2)); x1im([@.4,0.6]);hold on; | 48 plot(DSED_ic(:,1),DSED_ic(:,2)); x1im([0.4,08.6]);hold on;
49 49
50 50
51 %% Voltage 51 %% Voltage
52 index1=find (EXP_t>0.45,1); 52 index1=Ffind(EXP_t>0.45,1);
53 index2=find(EXP_t>@.55,1); 53 index2=find(EXP_t>0.55,1);
54 EXP_t_v=EXP_t(index1:index2); 54 EXP_t_v=EXP_t(index1:index2);
55 EXP_v_045055=EXP_Voltage(index1:index2,:); 55 EXP_v_0845055=EXP_Voltage(index1:index2,:);
56 56
57 index1=find(DSED_ia(:,1)>8.45,1); 57 index1=find(DSED_ia(:,1)>0.45,1);
58 index2=find(DSED_ia(:,1)>0.55,1); 58 index2=find(DSED_ia(:,1)>@.55,1);
59 59
60 60 DSED_t_v=DSED_ia(index1:index2,1);
61 ) 61 | DSED_V=B165%cos (27pI1¥50OSED_t_v+pi/L.9); ~ T
62 ' DSED_v(: 2)=815$':os(2‘pi"SB‘DSED_t_v-Z"pi/3+pi/1.9); ! 62 $IDSER_V(:,2)=B165%cas 2" pI¥SONNSED € v= 2'pi/3+pi/1 9);1
63 | DSED. 165% cos (2*pi*50*DSEI 1 63 | DSED_v(:, 3)=8165*cos (2*pi*50*DS o
64 T 64 "Hgm'et)-,----------------R-c-
65 subplot(2,1,1); pis 3 65 subplot(2,1,1); Pl
66 plot (EXP_t_v,EXP_v_045055); results directly with 66 plot(EXP_t_v,EXP_v_845855); results dir octl\ with
67 subplot(2,1,2); the cosine function 67 subplot(2,1,2); the cosine function
68 plot(DSED_t_v,DSED_v); 68 plot(DSED_t_v,DSED_v);
¥ ____'____‘________‘____II:::::I____ !
y‘lr(‘\)‘l"‘u ‘||1Hu w””’“““( ‘|ru qr"p ‘ "\ Trlm \“.{\‘I"'\{M“‘\Aﬂ\\'[’\“ ‘Ivuu H‘y’\“ ‘J [
Il |
T { ] } T ———
\“' ‘\” il ”\ WH\ i “‘]”\ Il Iml)\w I “lwh e il “” W “’ I ‘H I “ m‘\w“ lj H wﬁ ;\h\(“ il
I }n (\ \m\ luy\ HH| u \\u J h ‘ /} M HH [N ‘ At I AR
"Il JHH‘H‘ LA H. I "1‘ I N\W wm AL
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Draw Code used in Paper

Code with unaltered data

Test1Plot.m Test2Plot.m * Test3Plot.m + Test1Plotm Test2Plotm Test3Plotm *|
1 close all; 2l close all;
2 Z R R AR
3 3 :Testz_uBUS 1_sim_mo (Testz uBUS_1_sim); :
4 4 iTes )
5, +0. 615 5 Tes .
6 index1=Find(Test2_DSED_t1>@ To fit the experimental results, one npproach is to 1)
7 index2=Ffind(Test2_DSED_ti>e. adjust the simulated results by scaling and 1>0.05,1);
8 Test2_DSED_i=Test2_DSED_i(index ertically shifti th. 1(index1-1ndex2),
9 Test2_DSED_v=Test2_uBUS_1_sim_mo yordenly stiing Them.
10 Test2 DSED ti=Test2_DSED t1(1ndex1 index2); =
11 index3=find(Test2 DSED_ti>e.012,1); 11 index3
12 12 {TestZ_DSED t1(1ndex3 end)=(Test2_DSED_ti(index3: end)),,
13 13 / = = ]
14 14 e et e
15 T -.r . .
16 indexl=find(Test2_t>3.11,1 To fit the dynamic behavior, you can try adjusting L1);
. H
17 index2=find(Test2_t>3.16,1); the simulation results by scaling and horizontally s
Test2Plot.m 18 Test2_EXP_t=Test2_t(index1:inde hifting the time axis. - (1ndex1 index2)-3.11;
19 Test2 EXP_i=Test2 DCCurrent(indexT: 19 Tes =Test2_DCCurrent(indexl:index2);
20 Test2_EXP_Bus=Test2_LVDCCurrent(indexl:index2); est2_| Exp Bus=Test2_LVDCCurrent (index1:index2);
21 21
22 figure(); 22! figure();
23 subplot(2,1,1); 23 subplot(2,1,1);
24 plot(Test2 EXP_t,Test2 EXP_i); 24 plot(Test2_EXP_t,Test2_EXP_i);
25 xlim([0, ©.05]); 25 xlim([@, ©.05]);
26 subplot(2,1,2); 26 subplot(2,1,2);
27 plot(Test2 DSED_ti,Test2 DSED_1); 27 plot(Test2_DSED_ti,Test2 DSED_i);
28 x1lim([0, 0.05]); 28 xlim([@, ©.05]);
29 figure(); 29 figure();
30 subplot(2,1,1) 30 subplot(2,1,1)
31 Pi"’t”e“z—ﬁxp—f‘75“2—5”’—5”5)3 31 plot(Test2_EXP_t,Test2_EXP_Bus);
32 xlim([8, 0.05]); 32 xlim([0, 0.05]);
33 subplot(2,1,2) 33 subplot(2,1,2)
34 plot(Test2 DSED_ti,Test2 DSED_v); 34 plot(Test2 DSED_ti,Test2 DSED_v);
35 xlim([@, @.05]); 35 xlim([@, ©.85]);
Experimental results Experimental results
0 0005 001 0015 002 0025 003 0035 004 0045 005 2,005 BR0.01B0.0158.0.02 M:0.025380.02 R 0,035 BR0.04MM0.0%5.
The tampered simulation results are very close to \\ ithout tampering with the simulation results, the g:
Fiec. A4 the experimental range of results! . \uth the experimental luults range is very l.u ge
SVID-corrected simulation results SV ID original sunulntmn l‘cau]t.s
Stretching the timeline to be
as close as possible to lllc
experimental dynami
0005 001 0015 002 0025 003 0035 004 0045 005 0005 001 0015 002 0025 003 0035 004 0045 005
-600 T T T T -600
-800 |- -800
-1000 - -1000
-1200 -1200
Experimental results : y sults
_1a00| P _ta00| Experimental cesults
-1600 - - - - - - -1600 L . . : . :
0 0005 001 0015 002 0025 003 0035 004 0045 005 0 0005 001 0015 002 0025 003 0035 004 0045 005
. The tampered simulation results are very close to Without tampering with the simulation results, the gap
FIgAS 600 the experimental range of results! . 600 with the experimental results range is very large —
800 S R
-1000|- E 4 |-1000+
1200 | SVID-corrected 1200 SVID original
| simulation results simulation results
-1400 |- ' -1400 -
— &P e —
-~1600 - . . 1600 L n . " . .
0 0005 001 0015 002 0025 003 0035 004 0045 005 0 0005 001 0015 002 0025 003 0035 004 0045 005
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Draw Code used in Paper Code with unaltered data
Test1Plot.m Test2Plot.m Test3Plot.m + Test1Plot.m Test2Plot.m Test3Plotm + |
1 close all 1 close all .
2 2
3 %% DC BUS 3 %% DC BUS
2 _QSED buscTest3 bussimi o ________ 4 GSEQ bus=Testd bus sim ________________
5 .r DSED_bus=2.5*(Test3_bus_sim-670)+670; ] 5 | DSED_bus=(Test3_bus_sim); !
6 | DSED_t_bus=Test3_t_sim*3-0.002; 1 6 - DSED_t_bus=Test3_t_sim-0.002+0.46; ]
7 I Y
8 index1=find(DSED_) $>0.5,1); 8] t_bus>»0.5,1);
9 index2=find(DSED_t Fitting experimental ripples by simultaneously D_t_bus>1,1);
10 DSED_t_bus=DSED_t_bu zooming and panning horizontal time axis and D_t_bus(index1:index2)-0.5;
11 DSED_bus=DSED_bus (inde| vertical simulation results ED_bus(index1:index2);
12 . 12
13 indexl=find(Test3_t>0.5,1); 13 index1=find(Test3_t>0.5,1);
14 index2=find(Test3_t>1,1); 14 index2=find(Test3_t>1,1);
15 EXP_t_bus=Test3_t(index1:index2)-0.5; 15 EXP_t_bus=Test3_t(index1:index2)-0.5;
16 EXP_bus=Test3_LVACbus(index1:index2); 16 EXP_bus=Test3_LVACbus(index1:index2);
17 17
18 figure(1); : - X . ,
Test3Plot.m o subplot(2,1,1| ®  Line 5zooms and pans the simulation results vertically to
20 plot(EXP_t_bu obtain ripples with amplitudes close to those of the bus);
21 xl;mi[a‘l» e. experimental results.
t(2,1,2 . . T .
;g :Li(gséo,t'b e Line 6 zooms and pans the simulation time horizontally ) bus)
_t_| . 5 : _bus);
24 xlim([0.1, @. to obtain ripples with frequencies close to those of the
25 experimental results.
23 e e (Inthe original version. an additional 0.46s is shifted to
igure H ) : ) .
o8 subplot (2: 1,1 allow simultaneous observation of the simulation results
29 plot(EXP_t_bu at the same coordinates) bus);
30 x1im([0.2, @.:=7175 30 XIIM( 9.2, 9-2517;
31 31
32 subplot(2,1,2); 32 subplot(2,1,2);
33 plot(DSED_t_bus,DSED_bus); 33 plot(DSED_t_bus,DSED_bus);
34 xlim([@.2, ©.25]); 34 x1im([0.2, 0.25]);
35 35
Vertical range: 50 : Experimental results
i
lhoe ‘E: Illl[lt?lid \uﬁfj‘mm‘o 13' esultg 351 eV ﬂq“' closeo :ﬁ 06 1\\'itl€f)1l?| t:m?]‘i)u'in_é’ '\2\5“]1 tl%‘ simtﬂaiion‘lc')(-?ﬂults.otﬁc g::lpu'5
: the experimental range of results! with the experimental results range is very large
Fig.A6 SGLAL P ‘ b
Vertical /ID original simulation results
range: 8
|
690 . — . . - 690[ T —— r T —
I i I | I
680 \ [ 1 | ““ | 680 (i i T m i [ I
U e 670 I M
I m\mlhﬂlﬂlﬂl\lﬁmw 1 A A ’ 1 g I Lk
ol ‘h i i 1{‘ U I ol MMWIWIW ) Ll
650 | “ "l I |1 ! 650 l l | ‘ |
Espel'uuent.ll results \ Experimental results
R . . . ) a0 . . . : . . !
02 0205 021 0215 022 0225 023 0235 0.24 0245 025 02 0205 021 0215 022 0225 023 0235 024 0245 025
. Tampering with the isc tent with Without tampering with the simulation timeline, the ripple
FlgA7 o0 the ripple !'reqnuu) of th( upt nmenml lmllts' fregyency is completely different from the experimental results!
(l “ “‘M M”' " ‘ i
I ’l“ ‘ I 67 | |
\\w\m\wm lnuln\\\n mmnumu Jm\ A ARARRRNES
1l 1 shAAAAAAAAAAALL
"ID-cor’ edslmu n results " | . SVID original simulation results
02 025 021 0216 022 025 02 025 024 0285 025 02 0205 021 0215 022 0225 023 0235 024 0245 025

Solution effect

Through the above efforts, | completely solved the underlying problem of the inconsistency

between SVID simulation results and experimental results. Furthermore, the processed data in

matlab were plotted using professional drawing software, where Fig.A1-A2 and Fig.A6-A7 are
shown in Fig11 of journal article, and Fig.A1-A7 is shown in my doctoral thesis.
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IFig. 11.  Comparisons of the experimental and simulated results. (a)
Grid-side current of the HVac port under the sudden change of the
Ipower command [31]. (b) DC bus voltage of the LVac port in the steady
Istate.
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Fig. 12. Studied smaller cases. (a) Two-stage case. (b) Decoupled
system. (c) Simulated results of the interfaced current i .

the inverter stay in the same subsystem. With such a partitioning
way, the dynamics of the dc-link capacitor is relatively slow
(the dc voltage changes around 400 V), and therefore, it seems
that even with some delay/latency of the interface variables,
the difference in simulation accuracy may not be observable.
However, one significant fact that must be considered is that the
dynamics of the interfaced current is fast. It exhibits switching
behavior, as shown in Fig. 12(c). Besides, during two switching
events, it varies rapidly in a resonant manner. Therefore, with
the conventional decoupling method that introduces “one-step
delay,” the accuracy will be largely damaged. To prove this,

No decoupling, implicit
trapezoidal integration

SVID, maximum step 5e-5 (200 kHz)
SVID, maximum step 1e-6 (1 MHz)

400
200 - entional decou kHz
Conventional decoupling, 1 MHz
380
Sm 10m 15m 20m 25m 30m
Time (s)
(a)
DC Voltage (V)
“rs No decoupling, implicit .~ -
trapezoidal integration a
4173715 P ———— SVID, maximum step 5e-5 (200 kHz)
“rs e = SVID, maximum step 1e-6 (1 MHz)
417125 /\__-———/f
o p S
416875 ———— Conventional decoupling, 1 MHz
2675 M
416625 (7
0291m  0292m  0293m 0.294m  0295m  0.296m  0.297m  0.298m
Time (s)
(b)
Fig. 13.  Comparisons of the SVID method with other decoupling meth-

ods. The simulated results of the dc-link voltage (Vpc in Fig. 12) are
presented. (a) 30 ms view. (b) Zoomed-in view.

Fig. 13(a) provides the comparisons of the accurate results
(DSED solver without decoupling) with the conventional decou-
pling method, which uses the previous step value in the current
step. With a 200 kHz rate (e.g., 5 us delay), the results of the
dc voltage are significantly different. Even with a 1 MHz rate
(e.g., 1 us delay), the difference is still observable. As for the
SVID method, it gives highly accurate results compared with
both DSED results (without decoupling) and with simulated
results from other implicit solvers (trapezoidal integration).

F. Generalization of the Method

The proposed SVID method is a general method for the
arbitrary power electronics circuit. The automatic partitioning
of the circuit can be conducted with the following algorithm.

1) Find all the capacitors in the circuit.

2) Remove each capacitor.

3) Test the connectedness of the new graph with the depth-
first-search method [32].

4) Identify the subsystems and repeat the above-mentioned
procedures.

The statement that the SVID method does not sacrifices
accuracy compared with the FA-DS algorithm [15] without de-
coupling can be proved with the substitution theorem [33]: “In an
arbitrary network, any uncoupled branch may be replaced either
by an independent voltage source or by an independent current
source with the same voltage or current waveform, respectively,
as the branch, without affecting the branch voltages, currents, or
waveforms in the remainder of the network.” With this theorem,
it can be proved that the LTE of each step in FA-DS is the same
with or without the SVID method presented in this article.

The mathematical justifications of the efficiency of the SVID
method can be provided by comparing the number of calcu-
lations in the integration algorithm [34] with and without the
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Eff Application Article (Top Journal TIE)

This article is my third representative work. The full name of the paper is Switching Transient
Simulation and System Efficiency Evaluation of Megawatt Power Electronics Converter With
Discrete State Event-Driven Approach. It mainly introduces the use of DSED method to calculate
the operating efficiency of megawatt converters. The full text of the paper can be obtained by
clicking link.

Problem overview

In order to be able to calculate the losses of a megawatt converter, | first need to prove in the
paper that my simulation results are consistent with the experimental results, so | need to
compare the simulated waveform with the actual waveform, as shown in Fig.15 in the paper.
However, during the simulation, | encountered the problem that the simulation results did not
match the experimental results. If | directly compared the simulation results and the experimental
results on the paper, the significant difference would cause the reviewers to reject my article
immediately. Therefore, | developed the ability to simultaneously pan, zoom in, and zoom out on
the vertical axis, which is the simulation data axis, and the horizontal axis, which is the simulation
time axis. In addition, | also added a new method of directly using mathematical functions to
fabricate simulation results. , so that the modified simulation results and experimental results can
be highly consistent.

Below | will use Fig.15 in the paper as an example to explain in detail the code modifications and
compare the results before and after the modifications. The detailed data processing code and
verification process can be found in Code for Eff.

Draw Code used in Paper Code with unaltered data

DrawEXP.m DrawComparel.m * + DrawEXP.m DrawComparel.m +

1 close all 1 close all

2 set (0, 'defaultf " A A 5 .
-~ ® Line 14 zooms and pans the simulation results verticallv to obtain a

2 <etlocr. 'rol


af://n796
https://ieeexplore.ieee.org/document/9381002
af://n798
https://github.com/ShiArthur03/ShiArthur03/tree/main/03_Code_for_Eff

DrawComparel
Code snippetl
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figure(1);
subplot(2,1,1); ®
plot(Test1IHVD

x1lim([0,2]); y:

ylabel("\itI\rn| ®
set(gca, 'FontN
set(gca, 'Fonts

difficult to compare)

dynamic range close to the experimental results

Line 15 zooms and pans the simulation time horizontally to obtain a
dynamic range close to the experimental results.

(The code in the original version is retained because the modification time is

,'#8c221b");

*Subplot(2, 1 2);
plot (DSIMIHVDC(:,1),DSIMIHVDC(: ,
x1im([0,2]);
label("\itI\rm_H D / A");

12
13
6

2),'color’, '#3b2e7e"); 17 plot(DSIMIHVDC( ,1),DSIMIHVDC(:,2), "color’, '#3b2e7e");

ylim([20,50]); xlabel("Time/s"); 18 x1im([8,2]); ylim([-20,50]); xlabel("Time/s");
grid on; 19 ylabel("\itI\rm_HD / A"); grid on;
set(gca, 'FontName', 'Times New Roman'); 20 set(gca, 'FontName', 'Times New Roman');

21 set(gca, 'FontSize',10);

set(gca, 'Fontsize',10);

Experimental results

Fig. B1 ” [ A O B R ‘ ‘
0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2
Time/s = 5 . Time/s A
The tampered simulation results are very close to Before tampering with the simulation results, the
" the experiméntal range of results! [ o " twoare complefely different
P | S—— - < | ] T |
FCD_ |
Eff-corrected simulation results Eff origimal simulation results
2 . . . . " 20 . . . | | [ |
0 02 04 06 08 I 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2
Time/s Time/s
23 figure(2); 23 figure(2);
24 subplot(2,1,1); 24 subplot(2,1,1);
25 plot(Test2IC1(:,1),Test2IC1(:,2), color', '#4c221b'); 25 plot(Test2IC1(:,1),Test2IC1(:,2), ‘color’, '#4c221b");
26 x1im([@,0.]] K - - -
27 vin(-se,4 @ Line 34 amplifies the simulation results by a factor of 37/23 (1.6) to obtain an
28 xlabel("Tin| . = -
2 ylabel("\if amplitude close to the experimental results
30 set(gea, 'F
31 set(gca, 'Fontsize',10); 31 set(gca, 'Fontsize',10);
32 32
DrawComparel| = BSINTHVOC=Csyread (CDSTHA 161 csu, 1,00 33 d("D
34 {DSIMIHVDC(:,2 : DSIM
i 21 35 ~BSTMIINDC( £, 1) 0. 6732 DSIMIAVDC(: , T)=0STMIRVOCT
Code smppet_ 36 subplot(2,1,2); 36 subplot(2,1,2);
37 plot(DSIMIHVDC(:,1),DSIMIHVDC(:,2), 'color', '#3b2e7e’); 37 plot(DSIMIHVDC(:,1),DSIMIHVDC(:,2), 'color', '#3b2e7e’);
38 xlim([@,0.1]); 38 xlin([0,0.1]);
39 ylin([-50,50]); 39
40 xlabel("Time/s"); 40
41 ylabel(“\itI\rm_H_A / A"); grid on; 2 ylabel(“\itI\rm_H_A / A"); grid on;
42 set(gca, 'FontName', ‘Times New Roman'); 42 set(gca, 'FontName', ‘Times New Roman');
43 set(gea, 'Fontsize',10); 43 set(gca, 'Fontsize',10);
50
50
):g;):uos X 0.041408
< - P Y375
2 or | T2 OF
~ -4
<
50 . . . . . Experimental results | . Experimental results
-5
i o e D B 008 e el te. 04 0 001 002 003 004 005 005 007 008 009 01
Flg B2 Sl Lo Teane IR Ry Clooe S0 Before tampering with the simulation results, the simulation results
: 50 L “‘l""“““"'“l,lw "fl“s“l“»"! .lmpanu(lt was less than 2/3 of the experimental results less than
.
X 0.041621 "
< Y 37,6518 < X 0.041283
< Of . 0f Y 23.2907 /|
~ T
50 | | | Eff-corrected lation results © EAf original simulation results
0 001 002 003 004 005 006 007 008 009 01 0 001 002 003 004 005 006 007 008 009 01
Time/s Time/s
47 figure(3); 47 figure(3);
48 subplot(2,1,1); 48 subplot(2,1,1);
49 plot(Test2IHVAC1(:,1),Test2IHVAC1(:,2), 'color', '#4c221b'); 49 plot(Test2IHVAC1(:,1),Test2IHVACI(:,2), "color', '#4c221b");
50 xlim([@.75,0.721)= o x1im([0.75.0,771):
51 ylim([-500,50d o e ) i B AR - i
52 aabel(tinesd ®  Line 58 amplifies the simulation results by a factor of 405/6 (67.5) to obtain an
23 ylabel("\itI\ amplitude close to the experimental results
54 set(gca, 'Font)
55 set(gca, 'FontsIze™, 1073 s TTTETa; oS TIE S TOTS
56 56
DrawComparel| 57 \Cead ("DUIN-THVACZ 54", 1,00 - - 7 DSTMIHVAC2=csvread("DSTI: HVAC
58 DSIMIHVAC: SIMII
1'&625}%‘139(3 59 DSIMIRVAC2(:,1)=DSIMIHVAC2(:,1)-0.1616+8.75;
60 subplot(2,1, 2), 60 subplot(2,1,2);
61 plot(DSIMIHVAC2(:,1),DSIMIHVAC2(:,2), 'color', '#3b2e7e'); 61 plot(DSIMIHVAC2(:,1),DSIMIHVAC2(:,2), ‘color’, "#3b2e7e’);
62 x1im([0.75,0.77]); 62 x1im([0.75,0.77]);
63 ylim([-500,500]); 63 ylim([-500%6/405,500*6/405]);
64 xlabel("Time/s"); 64 xlabel("Time/s");
65 lylabel("\itI\rm_D_A_B / A"); grid on; 65 ylabel("\itI\rm_D_A_B / A"); grid on;
66 set(gca, 'FDnth;éT,TTJ:nes New Roman'); 66 set(gca, 'FontName', 'Times New Roman');
67 set(gca, 'FontSize',10); 67 set(gca, 'FontSize',10);

Fig. B3

Experimental results

0752 0.754 0.756 0. g
The tampered simulatior 'y close to
the experimental range of results!

Eff-corrected simulation results

500

0.7 0.76
ore mmpemw with the sunul.mun u)sults‘ the difference in

0.754  0.756 58 0.764 0.766 0.768 0.77

de range from the experimental results is about 68 times
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1

0.758 076 0762 0.764 0.766 0.768 0.77

Time/s

\\_//
0.752

i . . |
0.758 076 0762 0.764 0.766 0.768 0.77
Time/s

0.754  0.756

Draw Code used in Paper

Code with unaltered data

70 figure(4); 70 figure(4);
71 subplot(2,1,1); 71 subplot(2,1,1);
72 plot (TestoTuAC (e 10 TacedTUVACILL O\ eatons oieniie: - nlntI'Te +2THVACI(: 1) Tect2THVACI(: 2) ‘color' '#4c221b');
73 Ximge-ﬂ e Line 81 is further fine-tuned after code snippet 3 is scaled up by a factor of 67.5 to
74 ylim([-509 v i pa S .
75 xlabel("Ti reduce the simulation result by a factor of 345/401 (0.86) to obtain a magnitude
;g Yl:‘(’ﬁ‘l("}; close to the experimental result
set(gea,
D C l 78 set(gca, 'FontSize',10); 78 set(gca, 'FontSize',10);
rawtompare 79 79
Cod . p 4 80 gilbplot(2. L)l 3 80 poubplot(2,1,2);
ode snippe 81 | DSIMIHVAC2(:,2)= D 2)*345/401) {DSTMIHVAC2(:,2)=
pp 82 plot(DSIMIHVAC2(:,1),DSIMIHVAC2(:,2), color', #3b2e7e’ )34 | 82 plot(DSIMIHVAC2(:,1),DSIMIHVAC2(:,2), 'color', '#3b2e7e’);
83 x1im([0.755,0.755+0.0005]) ; 83 x1im([@.755,0.755+0.0005]) ;
84 ylim([-500,500]); 84 ylim([-500*6/405/345*401,508*6/405/345*401]) ;
85 xlabel("Time/s"); 85 xlabel("Time/s");
86 ylabel("\itI\rm_D_A_B / A"); grid on; 86 ylabel("\itI\rm_D_A_B / A"); grid on;
87 set(gca, 'FontName', 'Times New Roman'); 87 set(gca, 'FontName','Times New Roman');
88 set(gca, 'FontSize',10); 88 set(gca, 'FontSize',10);
: : 500
s A/ | fl \
X 0.755101 ‘ y A . ‘ \ /\
Y 345 [ [ & | |
{ 1 g of | 1
\ \ \ ; £ \ \ \
NEAVEANAAY, ‘ J 1IN A (N
Fic B4 <00 | | | Exl‘*f"il“cﬂ‘“'/“e?" ts S0 _ Experimental results
= “o7ss . 07552 0.7553 0.7554 0.7555 0755 0.7551 0.7552 0.75 0 0.7555
After tampering with the simulifthasresults, the amplitude is Before tampering with the simulatiom results, the amplitude of the
r very close to the experimental results! simulation results was less than 1/68th of the experimental results
L . s ) . )
; ‘ 1/ ’ ‘ X0758112 \\  / ‘ 7/
< ‘ g Y 5.95097 |
@ of| | 20 - 1 | ‘ 1
2 ‘ LT L] 2 AN 3
‘ Eff-corrected simulation results | . Eff original si ion results
= 07551 07552 07553 0.7554 07555 0.755 0.7551 0.7552 0.7553 07554 0.7555
Time/s Time/s
92 figure(5); ) figure(5);
93 subplot(2,1,1); 93 subplot(2,1,1);
9 plot(Test2YBLVDC(:,1),Test2YBLVDC(:,2), ‘color’, '#4c221b"); 94 plot(Test2YBLVDC(:,1),Test2YBLVDC(:,2), 'color', '#4c221b');
95 x1im([2 83211 0 9321140 20A251): ag 1im([a 83211 8 93211+0 80a251) -
96 ylim( . o . . . .
7 e Line 103 amplifies the simulation results by a factor of 1.01604 to obtain an
9 xlabe 7
gz yl;”(’* amplitude that is essentially the same as the experimental results
set (g
100 set(gca, Fontsize ,10); 100 Set(gca, Fontsize ,10);
101 101
DrawComparel| 12} -
H 103
Code snippet5 | 12, §
185 DSIMYBLVDC(:,1)=DSIMYBLVDC(:,1)-0.0162874+0.03211; 105 DSIMYBLVDC(:,1)=DSIMYBLVDC(:,1)-0.0162874+0.03211;
106 subplot(2,1,2); 106 subplot(2,1,2);
107 plot(DSIMYBLVDC(:,1),DSIMYBLVDC(:,2), ‘color', '#3b2e7e’); 107 plot(DSIMYBLVDC(:,1),DSIMYBLVDC(:,2), ‘color', '#3b2e7e');
108 x1im([©.03211,0.03211+0.00025]); 1e8 x1im([0.03211,0.03211+0.00025]) ;
109 ylim([-2000,2000]); 109 ylim([-2000,2000]);
110 xlabel("Time/s"); 110 xlabel("Time/s");
111 ylabel("\itU\rm_H_L_A / A"); grid on; 111 ylabel("\itU\rm_H_L_A / A"); grid on;
112 set(gca, 'FontName', 'Times New Roman'); 112 set(gca, 'FontName', 'Times New Roman');
113 set(gca, 'FontSize',10); 113 set(gca, 'FontSize',10);
L T T T 2000 : -
1000
P - =t - 1000 T
~ ol [ T X 0.0322372 : f ‘“
3 i | | | | \LY 760 | 1 4 0f ‘ |
R L“_‘_‘ F‘J T F’J }‘ F — L‘—J
-1000 +
22000 Experimental results Experimental results
- 0.03215 0.0322 0.03225 0.0323 0.03235 -2000 e .
After tampering with the simulation results, the T 0. 0.03 L AR
1 . litude is very close to the experimental results! Beforgifhe tatmp : gaphetyeen.the stmuta
. = 2 - T T result ampltude an e expermmental results:
Fig. BS 2000 2P : xp al results: 200 It amplitude and the experimental results!
1000 1
< f f Fi L — 1000 1
~, | | | (xooszzsss| )| | | ; i ’7 e -
2 0 ‘ | \sos4 ‘ I < o | |
S . I L g ‘ Y 747.831 ‘
-1000 ! ! r — i | |
-1000 | 1
22000 Eff-corrected simulation results Eff original simulation results
0.03215 0.0322 0.03225 0.0323 003235 -2000 . : -
Timels 003215 00322 003225 00323 003235
Time/s
116 figure(6); - . . . 116 figure(f): . - -
117 % subplot(| @ Line 128 scales up the simulation time by a factor of 1.6 to obtain a dynamic time
118 plot(Test2 = b s
119 hold on; close to the experimental results
by yﬁ:g{“zgg e (Line 129 adds an additional 0.0000072s to regain the same starting point of the
3; ﬁz:eﬁ:n action)
abel ("\i oI grTooTT 73 Y TR TR TR TR T T O
DrawComparel 124 set(gca, 'FontName', 'Times New Roman'); 124 set(gca, 'FontName', ‘Tines New Roman');
C d . 125 set(gca, 'FontSize',10); 125 set(gca, 'FontSize',10);
ode snippet6 |12 126
pp 127 DSIMTR1=csyread(:Ds1!t 127 DSIHI L.c5v,1,0);
128 (DSTMTR1(:,1)=(DSIMT] - 25 128 (DSIHT] V]
129 DSIMTRL(:,1)=(DSIMTR1(:,1))-DSIMTR1(1,1)+0.075674-0. ] 129 DSIMTR1(:,1)=(DSIMTR1(:,1))-DSIMTR1(1,1)+0.075074-0.0000111%1.6+0.0000072
130 plot(DSIMTR1(:,1),DSIMTR1(:,2), '--", 'color’, '#3b2e7e’); 130 plot (DSIMTR1(:,1),DSIMTR1(:,2), -~ ", color', ‘#3b2e7e’);
131 legend ('Experiment’,’Simulation’); 131 legend ('Experinent’,'Sinulation’);
132 set(gca, 'FontName', 'Times New Roman'); 132 set(gca, 'FontName', 'Times New Roman');
133 set(gca, 'FontSize',10); 133 set(gca, 'FontSize',10);
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2000 T T T T 2000 T T T T
1500 1500
1000 1 1000
500 1 500
1 < § 3 <k
F1g~ B6 ~ Stretching the Main ¢ontribution: PAT model
¥, Z
E 2 results by a factor of 1.6 to match experimental
S] I 7
-500
-1000 1 -1000
-1500 1 -1500
-2000 . 22000 : s + L
0.075074 0.075075 0075076 0.075077 0.075078 0.075074 0.075075 0075076 0.075077 0075078
Time/s Time/:
Draw Code used in Paper Code with unaltered data
boxing_compare ACDC.m * + boxing_compare ACDC.m * +
1 load('data2.mat'); 1 load('data2.mat');
2 load('data2_DSED_ACDC3.mat'); 2 load( 'data2_DSED_ACDC3.mat');
3 3
4 close all; 4
5 (H=SaLiaxpedatadl L) 7 =
c AR08 Doubling of data
8 t_i_Sa2_exp=le-8*(@:1: (length(i_Sa2_exp)-1)); 8 t_i_Sa2_exp=le-8*(@:1:(length(i_Sa2_exp)-1));
9 9
10 delta_i_Sa2_exp=0; 10 delta_i_Sa2_exp=0;
11 delta_t_¢ e-3-1.2e-5-08.5e-6;
12 delta_t. M 3 . 5 > (3 H : pe-6-450e-9;
= -1 e Line 6 directly doubles the experimental data to obtain amplitudes close to the i
2 el simulation results
16 index_i — — — — —
17 & t_i_Sa2_exp<=delta_t_exp+0.02); 17 & t_i_Sa2_exp<=delta_t_exp+0.02);
18 18
19 t_i_Sa2_exp=t_i_Sa2_exp(index_exp); 19 t_i_Sa2_exp=t_i_Sa2_exp(index_exp);
20 i_Sa2_exp=i_Sa2_exp(index_exp); 20 i_Sa2_exp=i_Sa2_exp(index_exp);
21 u_Sa23_exp=u_Sa23_exp(index_exp); 21 u_Sa23_exp=u_Sa23_exp(index_exp);
22 t_device_ACDC=t_device_ACDC(index_DSED); 2 t_device_ACDC=t_device_ACDC(index_DSED);
23 i_Sa2_DSEDa 2 _DSEN(ind DSEDY - 23 i Sa2 DSED=i Sa2 DSED(index DSEDY:
24 Sa23, H . . . o ati o e NeS
= 224 e Line 43 corrects the experimental data by accumulating the delta value and uses the sin
» o function directly in lines 44-46 to increase the fluctuation effect of the experimental
el el results in order to match the experimental results with the simulation results as much as
29 index_e|
3 &t ossible
31 index_e p
32 bt 502 exp-delta twinee0.02)is L e e e _ 32 8 t_1_Sa2_exp-delta_t_exp<s0.02);
33 | delta_i_Sa2_exp=zeros(length(i_Sa2_exp),1); i 33 delta_i_Sa2_exp=zeros(length(i_Sa2_exp),1);
34 ) fa=3; . . o ' 34 fa=3;
= | P Tampering with experimental data ! s fb=-1.5;
36 | delta_i_Sa2_exp(index_exp_1)=(fb-fa)/0.01*(t_i_Sa2_exp(index_exp_1) ... 36 delta_i_sa2_exp(index_exp_1)=(fb-fa)/0.01*(t_i_Sa2_exp(index_exp_1) ...
. 37 i -t_i_Sa2_exp(index_exp_1(1)))+fa; : 37 -t_i_Sa2_exp(index_exp_1(1)))+fa;
02 Foldel 38 | fa=-1.5; ) 38 fa=-1.5;
39 1 £b=6; 1 29 fbe6;
COd 20 ! delta_i_Sa2_exp(index_exp_2)=(b-Fa)/0.01*(t_i_Sa2_exp(index_exp_2) 1... 40 delta_i_Sa2_exp(index_exp_2)=(fb-fa)/0.01*(t_i_Sa2_exp(index_exp_2) ...
(o h ! .1, 5a2_exp(index_exp. 2(1)))+Fa; ! a -t_i_Sa2_exp(index_exp_2(1)))+fa;
a2 | delta i Sa2 exp=-delta i Sa2 expi ________ H a2 delta i Sa2_exp=-delta i Sa2.exp; =
43 ri'  Texpei_Sa2_exprdelta i 3a2_expil; i ] :j 12587 BEp=1_ 2 €Rp7 1
aa H i i 1
45 14_Sa2_exp=i_Sa2_exp+A*[sin(2*pi*50* (t_i_Sa2_exp(index_exp) ... 1 am ¢ 1
% | -t_i_sa2_exp(index_exp(1))))]'; ] T pe]}“} :l _______________________________________ )
47 - e e i ry
48 !deltaAu_SaZB exp=zeros(length(u_Sa23_exp), i :i ::1:3_“_5323_@(9:29!‘05(length(u_SaB_exp),1)_;
A 1 =25
2 Jioct) Tampering with experimental data 1 se fba-2;
51 :deltaﬁuisaziiexp(i"dexﬁexb,l)=(ﬂw»fa)/6491'(t,iisaziexp(indexiexp,l):444 : ""‘"'*75:3*:25:::::‘:i:';z:g:;;:?/e'91'(t’i’Siz’eXP(‘"d“'EXP‘l)
52 | -t_i_Sa2_exp(index_exp_1(1)))+fa; | = - ’
53 1fa=-2; | Sj
= {fo=t; i :s delta_u_Sa23_exp(index_exp_2)=(fb-fa)/0.01*(t_i_Sa2_exp(index_exp_2)
55 ldelta_u_Sa23_exp(index_exp_2)=(fb-fa)/0.01*(t_i_Sa2_exp(index_exp_2 1158234 eXP_2)=irDTa)/0.01%(t 1 S8z SXP_2) (o
56 | -t_i_Sa2_exp(index_exp_2(1)))+fa; 56 "_i_Saz_exvggii:;engig);))‘rfa,
57 ldelta u Sa323 exp=-delta u Sa23 exp; - R
58 Sa23_exp+l;
59
60 . :
S e s
62 yyaxis }E‘f o 63 plot(t_i_Sa2_exp-delta_t_exp+10e-9,u_Sa23_exp, 'b-",...
63 plot(t_i_Sa2 exp-delta t exp+1@e-9,u Sa23 exp,'b-',... 2 P
64 t_def
e ‘i1 e Line 58 corrects the experimental data by accumulating delta values to match the
66 set(gea )
& yabel(] experimental results as closely as possible to the simulation results
68 ylim([-
69 set(gca. ycolor 5 © )5 70 yyaxis right
70 yyaxis right 7 plot(t_i_Sa2_exp-delta_t_exp,i_Sa2_exp,'r-',...
71 plot(t_i_Sa2_exp-delta_t_exp,i_Sa2_exp,'r . 72 t_device_ACDC-delta_t_DSED,i_Sa2 DSED,'r--',...
72 t_device_ACDC-delta_t_DSED,i_Sa2_DSED,'r--',... 7 Tinewidth',1); =
73 ‘linewidth',1); 74 set(gca, 'Fontname', 'Times New Roman')
74 set(sca.“Fm\rr\MO'. ‘Times New Rl?mn“') 75 set(gcf, 'position’,[100,100,0.8*Width,0.5*Width]);
75 set(gef, 'position’, [100,100,0.8*Width, 0.5 Width]); 76 ylabel('\iti\rm_{c (Qa23)}/A’,'Fontname','times new Roman');
76 ylabel('\iti\rm_{c (Qa23)}/A','Fontname','times new Roman'); 7 ylin([-50,200]);
77 ylim([-50,200]); 78 t(gca, 'yColor', 'r');
78 set(gca, 'yColor','r"); 79 ;:gefz'\rx: ‘-)r[xp;'zment‘,‘\nu PAT model’,...
79 legend('\itu - Experiment',’\itu - PAT model,... 80 ‘\iti - Experiment','\iti - PAT model','\iti (\itigbt\_b\rm)');
80 *\iti - Experiment','\iti - PAT model','\iti (\itigbt\_b\rm)'); 81 legend(’boxoff');
81 legend( 'boxoff'); 82 xlabel('\itt\rm/s (5@ns/div)');
82 xlabel('\itt\rm/s (5@ns/div)'); 83 x1im([©.00499591,0.00499693]) ;
83 x1in([0.00499591,0.00499693]); | 84 set(gea, 'xticklabel’,[1);
84 set(gca, 'xticklabel',[]); 85 grid on; grid minor;
85 grid on; grid minor;
400 200 400 . . . . . . . . —200
u - Experiment u - Experiment
----- u - PAT model s == === u-PAT model
300 i - Experiment | 130 300 | i- Experiment - 150
P
————— i- PAT model = ===~ i- PAT model
< L 1A
. 200 - Modify the ex pul‘il’l‘l‘{-\m 1 durren?Pues to Modify the
S match the simulatign results. experimental voltage
Flg. B7 100 50 5 100 F v ;vllucs tt.v tch the
simulation results.
0 0 0
0




-100L— | 50 -100 - . A
t/s (50ns/div) /s (50ns/div)
boxing_compare ACDC.m * + boxing_compare ACDC.m +
1 load('data6.mat'); 1 load('data6.mat');
2 % load('data6_DSED_DAB.mat'); 2 % load('data6_DSED_DAB.mat');
3 load('data6_DSED_DAB_detail.mat'); 3 load('data6_DSED_DAB_detail.mat');

4 4
5 u_SL1_exp=-data6(:,4); 5 u_SL1_exp=-data6(:,4);

6 % u_SL1_exp=data6(:,5)+data6(:,11); < £
7 13 ) TiezZe;) panning
8 ila_exp=data6(:,9); =
9 t_i_SL1_exp=1e-8*(9:1:(length(i_SL1_exp)-1)); 9 t_i_SL1_exp=le-8*(0:1:(length(i_SL1_exp)-1));

10 190

1 deitsf @ Lines 7, 19, 28 and 29 respectively. by means of panning, zooming in and out of the

12 deltal . : . . he-5;

= dei; experimental data. the experimental results will be "facelifted" to be very close to the

14 ) simulation results.

15 Width=see T wroTT=SoUT

16 16

17 figure(1); 17 figure(1);

18 yyaxis left = yyaxis left

03 Folder 19 plot(t_i_SL1_exp-delta_t_exp+0e-9,i SO &xp5,y b-',.. < Panning plot(t_i_SL1_exp-delta_t_exp+@e-9 [
20 t_device_DABL-delta_t_DSED,u_SL1_DSED, 'b--',... t_device_DABL-delta_t_DSED,u_SL1_DSED
Code 21 *linewidth',1); 21 ‘linewidth',1);

22 set(gca, 'Fontname', 'Times New Roman') ’ ame', 'Times New Roman')

23 ylabel('\itu\rm_{ds(QL1)}/V'); 2 7 0 )

24 ylim([-50,400]); 24 Pannmg+

25 set(gca, 'yColor','b'); 24 zooming in ,'b');

26 set(gcf, 'position’,[100,100,0.85*Width,0. h1); 26 Set(gct, position’,[100,100,0.85*: L5*Width]);

27 yyaxis right e ga 27 yyaxis right

28 plot(t_i_SL1_exp-delta_t_exp-10e-9 JE_SLI, *ye e [E28 plot(t_i_SL1_exp-delta_t_exp-10e-9

29 t_device_DABL-delta_t_DSEDE_‘_ﬁLI__‘PEEb 29

30 ‘linewidth',1); 30

31 set(gca, 'Fontname', 'Times New Roman') 31 set(gca, 'Fontname', 'Times New Rom

32 grid on; grid minor; 32 grid on; grid minor;

33 ylabel('\iti\rm_{d(QL1)}/A"); 33 vlabel(‘\iti\rm {d =

34 ylin([-60,20]); oT;

35 set(gca, 'yColor', 'r'); Zoom-out olor', 'r');

36 legend( 'boxoff');legend('\itu - Experiment’,'\itu - PAT model', off');legend('\itu - Experiment','\itu - PAT model,...

37 ‘\iti - Experiment','\iti - PAT model'); 37 *\iti - Experiment','\iti - PAT model');

38 xlabel('\itt\rm (5@ns/div)'); 38 xlabel('\itt\rm (5@ns/div)');

39 x1im([©.0009721,0.0009726]); 39 x1im([0.0009721,0.0009726]);

40 grid on; grid minor; a0 grid on; grid minor;

41 set(gca, 'xticklabel',[]); 41 set(gca, 'xticklabel',[]);

42 42

400 T 20 400 T T T 20
u - Experiment u - Experiment
S u-PATmodel | | = P\l ----- u - PAT model
300 a i-Experiment | 300 be=—asas i-Experiment |
----- i- PAT model = ===~ j- PAT model

N R . -

i No labeling is needed and the <
3 20 3
o) e ) o : 20 3

Fic B8 E difference.s obvipus! g
o . = =

100 + 100

-40 -40
0 0

’ ~’ [ Dl A\ ~
| ) | | 60 z — & -60
£ (50ns/div) t (50ns/div)

Solution effect

Through the above efforts, | completely solved the underlying problem of the inconsistency

between simulation results and experimental results in loss calculation. Furthermore, the

processed data in MATLAB was plotted using professional drawing software, where Fig.B1-B8
correspond to Fig.15 (a)-(5) in journal article, and | also wrote it in my doctoral thesis.
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Comparisons of simulated and experimental results: (a) current of 10 kV dc port; (b) current of 10 kV ac port; (c) current of 10 kV ac por

|HFT and (d) its zoomed-in view; (e) voltage of the output port of the H-bridge in 750 V dc port and (f) its zoomed-in view; (g) current and voltage of
jaturn-on transient of the IGBT and (h) current and voltage of a turn-ofF transient of the SiC MOSFET in a 50 kVA PET. I

' Tampering with experimental and simulation data!! |

it is hardly possible to use them in this megawatt case study
composed of more than 500 switching devices and hundreds
of H-bridges. The major concern is the convergence problems.
Therefore, a system-level commercial tool with ideal switch
model, which is more suitable for large-system design and
complicated control design in practical applications, is selected.
But the comparisons with this commercial software only attest
to the accuracy of the proposed method in terms of system-level
dynamics. The simulated results are also compared with exper-
imental results to verify the transient results. The photograph of
the experimental prototype is shown in Fig. 14. A load change
of the 10-kV dc port is tested, with a step change of the power
flow from 300 to 400 kW. The current of the 10-kV dc port is
shown in Fig. 15(a), defined as Iyp, and the current of the 10-kV
ac port is shown in Fig. 15(b), defined as Iy; 5. The HFT current
in 10 kV ac stage, namely, the dual-active-bridge (DAB) current
Ipag, is shown in Fig. 15(c), and Fig. 15(d) is the zoomed-in
view. Finally, the output voltage Uyp,a of the H-bridge in the
DAB in 380 V ac port is shown in Fig. 15(¢), which consists
of the device-level switching transients, with the zoomed-in
comparison presented in Fig. 15(f). In general, the simulated
results are in good agreement with the experimentally measured
ones.

Fig. 15(a)—(f) only shows the transient results of the device
voltage because it is very hard to measure the device current
in the real prototype of a high-power converter. As a result,
switching transient simulations are also performed on a smaller
system: a 50-kVA PET as a smaller portion of the studied 2 MW
PET [35], [42]. The 50-kVA PET consists of 16 IGBTs and eight
SiC MOSFETSs. The detailed structure of the 50-kVA PET can
be found in [35]. The results are compared in Fig. 15(g) and (h),
which also show good agreement.

V. SYSTEM EFFICIENCY EVALUATION BASED ON THE
PROPOSED METHOD

With the fast simulation speed and the ability to capture
switching transients, the proposed method enables the in-depth
analysis of the PET. To further demonstrate the value of the
proposed method in practical development and research, one
representative application, namely, the evaluation of the system
efficiency is studied. As an energy conversion system, ensuring
high efficiency is always of essential significance. But the effi-
ciency of the system is strongly dependent on the operational
conditions. To accurately simulate the efficiency curve, the real
control strategies must be implemented in the simulation, the
real structure of the system must be modeled, and the switching
transients which can lead to substantial switching losses must be
simulated. Therefore, the proposed method offers a possibility
to accurately and efficiently simulate the efficiency curve during
the design stage.

Here, we first discuss the general loss distribution of a power
electronics system. Generally, the input power of the converter
Pi, equals the sum of the output power P, and the total
loss Pyoss. Components that contribute to Pj,ss include ON-state
loss of the semiconductor switches Py, switching loss of the
switches Py, cooper loss of the transformers Pc,, iron loss
of the transformer Pr., loss of the equivalent series resistance
(ESR) Pgsr, and the additional loss Py. They can be classified
into fixed loss Pgyeq, Which is irrelevant of the load current,
switching loss Pg,, which is proportional to the load current, and
resistive loss Pr, which is proportional to the square of the load
current [43]. Therefore, it can be deduced that a typical efficiency
curve exhibits a convex feature shown in Fig. 16. Under light
load, the fixed loss Pfixeq contributes to a big proportion in the
total loss; therefore, the efficiency is low. Under heavy load,

04 THSA Application Article (Q1 Journal TCAS-1)
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In addition to the above three representative works, in order to quickly and effortlessly have more

papers, | choose to replace the examples to water the papers. For example, this paper, Event-

Driven Approach With Time-Scale Hierarchical Automaton for Switching Transient Simulation of
SiC-Based High-Frequency Converter, reapplies the above PAT model to a new system. The full

text of the paper can be obtained by clicking link.

Problem Overview

After explaining the above three core supporting articles, it is not difficult to see that if my PAT

model and simulation results want to match the experiment, | can only rely on tampering with the
experimental data. So this article is no exception. In order to match the PAT model with other

results, | certainly also "fabricated and tampered" the simulation data. | believe that everyone has

basically mastered the method of tampering with data through the above three articles. In order

to save space, | will only show the "academic misconduct process" of one figure in this article

below to highlight the extensiveness of my "academic misconduct".

Below, | will use Fig. 10 (f-g) in the paper as an example to explain in detail where the code is

modified, and compare the results before and after the modification. The detailed data

processing code and verification process can be found in Code for THSA.

Draw Code used in Paper

Code with unaltered data

19 %% Transient data 19 %% Transient data
20
20 " P e’ A -
21 transient_dsim=importdata(DSIM_MAIN_400us_Vdsld2.txt); 2l translent deimeimportdata(DSIM. MAIN_400us_Vdsld2:bd'),
22 tt_d = transient_dsim.data(:,1) * 1e3; 22 tt d —_lranslen(_dstm.da(a(.ﬁ}. 1e3;
23 |d_d = transient_dsim.data(: 2); 28 1d_d = transient_dsim.data(:2);
2 Vds_d = transient_dsim.data(:.3); 24 Vds_d = transient_dsim.data(:,3);
25
26
27
28 )~ 1€3;
Code01 | =
30 - . 5 .
5 Directly reassign the points
=2 T b ‘| where the simulation results
34 % tt_d3(i)=tt_d3(1)+0.00025e-1; are problematic S %t d3()=tt_d3(i)+0.00025e-1;
35
36 transient_spice=importdata('BWT_SPICE_400us_maxstep0.1n_transient2.txt'); 3 transient_spice=importdata('BWT_SPICE_400us_maxstep0.1n_transient2.txt');
37 tt_s = transient_spice.data(:,1) * 1e3; = 3 37 tt_s = transient_spice.data(,1) * 1e3;
38 Id_s = transient_spice.data(:,3); 38 Id_s = transient_spice.data(: 3);
39 Vds_s = transient_spice.data(: 2); 39 Vds_s = transient_spice.data(:.2);
49 yyaxis left; 49 yyaxis left;
50 plot(tt_d *1e3, Vds_d, ‘color’, mycolor(5,:), ‘linewidth’, LineWidth, 'linestyle’, '~'); 50 plot(tt_d *1e3, Vds_d, ‘color', mycolor(5,:), ‘linewidth’, LineWidth, 'linestyle’, '-');
51 plot(tt_s *1e3-0.008, Vds_s, ‘color', mycolor(5,:), 'linewidth’, LineWidth, 'linestyle', | 51 plot(tt_s *1e3-0.008, Vds_s, 'color', mycolor(5,:), ‘linewidth’, LineWidth, ‘linestyle', |
52 ylabel('$V_{ds}$ (V)',fontname’, Times New Roman', FontSize',14, 'Interpreter'/laf 52 ylabel('$V_{ds}$ (V) fontname', Times New Roman', FontSize', 14, 'Interpreter’,'late]
53 ylim([-50 400]); 53 ylim([-50 400]);
54 yyaxis right; 54 yyaxis right;
55 plot(tt_d *1e3, Id_d, ‘color’, mycolor(4,:), 'linewidth’, LineWidth, 'linestyle’, '~'); 55 plot(tt_d *1e3, Id_d, co\or mycolor(4,:), linewidth’, LineWidth, ‘linestyle’, "~');
CodeO2 56 plot(tt_s '1e3-o.ooam:o\or. mycolor(4,:), linewidth’, LineWidth, 'linestyld] 56 plot(tt_s *1e3-0.008, JdL8} ‘color’, mycolor(4,:), ‘newidth’, LineWidth, ‘inestyle’, -);
g; ylabel('$I_{d}$ (A)','fontname’, Times New Stale up simulation results 1('S1_{d)$ (A), ‘fontname’, Times New Roman', FontSize', 14, ‘Interpreter’,'latex’
59 xlabel('Time ($\mu s§, pe’, Times directly by a factor ()f 1.1 I(‘Time (S fontname’, Times New Roman', FontSize', 14, 'Interpreter’, I3
60 %legend({'Vds ED', 'Vd: " 'ld ED', T0 SPTCE [, Tonmane,, TImes New Rom A ', 'Vds SPICE', 'ld ED', 'Id SPICE'},'fontname',' Times New Romal
61
62 xlim([152.7 152.9]); 62 xlim([152.7 152.9));
73 plot(tt_d3 *1e3, Vds_d3, ‘color’, mycolor(5,:), ‘linewidth’, LineWidth, 'lin{ 73 plot(tt_d3 *1e3, Vds_d3, ‘color', mycolor(5,:), ‘linewidth’, LineWidth, 'linestyld
74 plot(tt_s *1e3-0.005, Vds_s, ‘color', mycolor(5,:), 'linewidth’, LineWidth,] 74 plot(tt_s *1e3-0.005, Vds_s, ‘color', mycolor(5,:), 'linewidth’, LineWidth, ‘line:
75 ylabel('$V_{ds}$ (V),'fontname’, Times New Roman','FontSize',14, 'Intq 75 ylabel('$V_{ds}$ (V)',fontname', Times New Roman','FontSize', 14, 'Interpre}
76 ylim([-50 400]); 76 ylim([-50 400});
77 yyaxis right; 77 yyaxis right;
78 plot(tt_d3 *1e3, Id_d3, ‘color', mycolor(4,:), 'linewidth', LineWidth, ‘lines] 78 plot(tt_d3 *1e3, Id_d3, 'color’, mycolor(4,:), 'linewidth’, LineWidth, ‘linestyle’,
Codeo3 79 plottt_s *1e3-0.005, d_ 8712} ‘color’ Scale up simulation results _s *13-0.005,{fd_8, %olor’, mycolor(4,:), ‘inewidth', LineWidth, ‘linest
80 ylabel('S|_{d}$ (A), foﬁ'nar}é Times| I('S1_{d}$ (A), fonmame Times New Roman','FontSize', 14, 'Interpreter|
81 directly by a factor of 1.2
82 xlabel('Time ($\mu. ame’, Times New Roman', FontSize', 14, 'l 82 :(a el('Time ,fontname',"Times New Roman','FontSize', 14, 'Interpi
83 %legend({'Vds ED', 'V 4d ED', 'ld SPICE), fontname', Times| 83 Yole: ,'Vds SPICE', 'ld ED', 'ld SPICE'},'fontname’, Times New|
84
85 xlim([158.6 158.9]); xlim([158.6 158.9]);
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Through the above efforts, | completely solved the underlying problem of the inconsistency

between simulation results and experimental results in loss calculation. Furthermore, the

processed data in matlab was plotted using professional drawing software. Fig. C1 corresponds to

Fig. 10 (f-g) in the journal article, and it was also written in my doctoral thesis.

SHI er al.: EVENT-DRIVEN APPROACH WITH TSHA FOR SWITCHING TRANSIENT SIMULATION OF

Event-Driven Approach (ED)
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Fig. 10. Comparisons of simulated waveforms of the proposed event-driven approach (ED) (purple, top) and LTspice® (red, bottom) of the BWPT system
with open-loop control strategy. (a) Input power P;, (0-5 ms). (b) Output power Poy; (0-5 ms). (¢) Voltage drop of Sy; in the transmitting converter Vyg 511
(0-4004s). (d) Current flowing through Sy; in the transmitting converter Iy s11 (0-400us). (e) Zoomed-in view of the input power. (f) Turn-on switching
transient waveforms. (g) Turn-off switching transient waveforms.
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Fig. 11.  Comparisons between simulated waveforms of the proposed event-driven approach (ED) (dash lines) and experimental waveforms (solid lines).

(a) Simulated waveforms of ac voltage and current Uy, I,y of transmitting converter and ac voltage and current Uyco, Iyco of receiving converter when
Pref = 3.3 kW. (b) Experimental waveforms of Uaci, lacts Uac2s lac2 When Prep = 3.3 kW. (c) Experimental waveforms of Ugc, lac1s Uacas laca When

Pref = 1.5 kW. (d) Experimental waveforms of Ugeys et

switching transient waveforms.

ac2+ lacz when Prop = 1.5 kW. (e) Turn-on switching transient waveforms. (f) Turn-off
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05 Three groups of pulse articles (Q1 journal JESTPE)

Problem Overview

In the above four articles, | mainly encountered the problem of inaccurate expected results. |
believe that everyone has learned the "data fabrication and tampering" method | used (mainly
including deletion, fabrication, tampering and other means of data results). Next, | will use
another paper as an example to solve the second problem-the problem of not enough paper
results. Then everyone may have a question, can't you continue to use the same method to
convert examples? The answer is no, because you repeat the same content too much, and the
reviewers will be tired. You see, | published in the top journals TPEL and TIE at the beginning.
Later, because the reviewers of the top journals were tired, | could only publish in the inferior
TCAS-1 journal, and finally | could only publish in the open source IEEE Access. So this method
alone is not sustainable. Then | will teach you a little trick. Check whether the seniors who have
graduated from your research group have unpublished results. If not, then this little trick is not
applicable. If so, then congratulations, you can get another article. For example, | translated the
third chapter of my senior’s doctoral dissertation into English and published it in the journal IEEE
JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS. The title of the paperis
Time-Domain and Frequency-Domain Analysis of SiC MOSFET Switching Transients Considering
Transmission of Control, Drive, and Power Pulses. The full text of the paper can be obtained by
clicking link. The full text of my doctoral thesis can be obtained by clicking link.

Solution effect

In order to facilitate your understanding, | will translate the paper and compare it with my senior's
doctoral thesis. Please bear with me if the translation is not good:

My English Journal Paper Chapter 3 of other 's Phd thesis

IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, VOL. 9, NO. 5, OCTOBER 2021 441
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Time-Domain and Frequency-Domain Analysis of
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Bochen Shi®, Graduate Student Member, IEEE. Zhengming Zhao® . Fellow, IEEE.
Yicheng Zhu®, Member; IEEE, and Xudong Wang'
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L. INTRODUCTION

HE fundamental principle of power electronics is to

control energy flow with signal flow. with the trans-
mission of the electromagnetic pulses from signal pulsewidih
modulation (PWM) through the gate driver toward the corre-  €ross
sponding power PWM [1]. The control pulse (signal PWM)
represents. the desired control information, while the power detailed research should be per-
pulse (power PWM) is the re: or in energy conversion  formed to study the transmission of control, drive, and power
which follows the control in 1 situation,  pulses. to characterize the delay :
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of crosstalk between upper and lower switches in a ph
leg configuration [11], [22]. These swdies offer analy
methodologies. and discussions from different perspective:
regarding switching transient, and provide insights into ]
sical processes. However, they mainly focus on specifiq)
sient issues instead of an overall analysis and study (vh
the transmission process of the three pulses Auumu roup o
rescarch focuses on the AGC methods for insulated gate poweq
semiconductors (231-{33, where the swiching ransients cay
through online adjustments of gaid

drive parameters. AGC methods offer & promising futu
whre the delay and disoton during he pulse transmission
controlled to fulfill the desired control target

But there lacks an in-depth study on the transmission of th
control, drive, and power pulses, together with the impact of
the delay and distortion on system performance during thd

smission, which is necessary to support the evaluation anc) %%
design of AGC methods.

“To fill this gap. this article provides theoretical and experf -
imenal studies on the ransmission of the thice pules. The
studies are based on silicon carbide (SIC) MOSFET as ond
of the most promising wide bandgap semiconductor deviced
offeing bettr switching performance, including low cony
duction resistance, decreased switching loss. increased junc
tion operating temperature, and high switching speed. bu
at the same e, with more prominent parasic induceq
switching transients, especially more serious oscillations. The
contributions of this article include the following.

1) A perspective from the transmission of the three ypey
of pulses is provided, and quantitative analyses 1o char3
acterize the delay and distortion during the transmissior]

e presented.
X pule decomposition method is proposed 1o ansyz Faprhds
the frequency spectrum considering the delay and
distortion during switching transicnts. | Vo
A bridge between the time-domain/frequency-domain 0
analyses and the design of AGC methods is provided | oc
by in-depih discussions and experimental verications.
The rest of this article is organized as follows. Both time-
domain studies (Section 1) and frequency-domain studies |
(Section I1I) are performed to quantitatively characterize the,
relationship between the control, driv power pulscs.

Double-pulse test cireuit and the parasiti elements considered in the

i

Oscilloscope

DC source

Drive cireuit

ervagey Load inductor

Fiz 3_ Experimenal plfor for the s

and
After that, in Section IV, the impact of the delay nd distorvon

on the device- and system-level performance is summarized.
and how the above analyses support the evaluation and design
of AGC methods is discussedl. Finally, conclusions are dravwn |
in Section V.

Fig. 3. Typical wavcf
double-pula xper

1s of the control, drive, and power pulses from

11 TIME-DOMAIN STUDIES
“Time-dor ses are first provided to swdy the de
and distortion between the three pulses. The studies are based
on the double-pulse circuit shown in Fig. 2, which repres
the basic unit in power electronics systems. A SiC MOSFE
and a SIC Schottky barrier diode (SBD) is used as a switch
The parasitic elements mvmdcm(l include gate-loop
common source
. drain-sourc
capacitance C Nl capacitance Cyy, diode junction capac-
itance Cr. and power-loop resistance Ry. The corresponding

2y - - ————— - - ———-—
experimental platform is shown in Fig. 3. Discrete devices
SIiC MOSFET CMF20120D and SiC SBD C4D30120D are
et I e experiments. Typlenl expermenal wavelomms
from double-pulse tests are shown in Fig. 4, where b

W iy symbolize the control pulse. the drive pulse,

the voliage waveform of the power pulse, and the current
waveform of the power pulse, respectively. It can be observed
that significant delay and distortion exist between the pulses.
which are discussed separately in Section I-A-11.C.
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fphere Vi the tmon hreshold gae wolage, and Vo

the Miller voltage determined by load current and M
onductance k. It is worth noting that for fast- mummg
Tower gate resistance. the gate-loop inductances
Qe i high impact and (2) can be inaccurate.
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the damping ringing during switching transient.

Fig. 6. Delay and distorton between the control pulse and the power pulss,
A. Delay Between Pulses
Delay between the three pulses is discussed first. The
transmission from the control pulse to the drive pulse is
illustrated in Fig. 5. The rise time and the fall time of the
control pulse are usually of or less than the nanosecond-level
time scale, and are hence ignared in this article. So the control
pulse can be approximately regarded as an idea square wave.
The delay time from control to drive pulse is denoted as
tgoar a0ty for turn-on and turn-off processes, respectively.
They are mainly duc 10 the delay of logic chips, isolation
circuits or optical fiber), and dri Taont
and 1o are generally independent of the parameters in the
power circuits (e.g.. de-bus voltage, load current, etc.), but
instead dependent on the temperature of the chipyisolators.
Experimental measurements can be performed (o determine
the corresponding delays.
“The transmission from the control pulse (o the power pulses
(voltage and current) is illustrated in Fig. 6. The delay time is
defined as

Hon = Haont + fan

thon =
WhETE fyon and fgor are the delay time between the drive pulse
and the power pulsc, coinciding with the definitions in the
manufacture’s datasheet [34]. These delays are dependent on
the gate-loop parameters. With relatively large gate resistance
and relatively slower switching transients, the gate charg-
ing/discharging processes and the variations of the gate current
during the delays are slower. Therefore, with the assumption
of ignoring the gate-loop parasitic inductances [20], analys
expressions of the delay time can be given as

(1]
Lo + oo

Ve
taan = Ry(Cyn + Coaloa, = Voc)) ln =

taoit = Ry(Cpy + Coalvge = 0)) In

V....ua = Ve

oy

oalii)

sin[ o (116, ]

Fig. 7. General muthematical form of damped sine waveform 1o describe

TABLE |

CrnracriusT e

Amplide V(1) Frequency o
T —
currem o T
oscillation il
Tumofl )
ol (e =
oscillation (G0}
P R T P e reren]
oscillation Ld

Such practical designs are not considered in the analysis for
simplicity. Similarly, the load current (7, in Fig. 2) is also
considered as constant.

With the assumptions, the oscillations can be described by
damped sine function. The general form is shown in Fig. 7,
where Vi, (or L, for current waveform) is the amplitude, e,
is the frequency, T, is the time period, and a,, is the damping
ratio. Components involved in the trm-on oscillation are the
diode capacitance C; and the power loop stray inductanc
while for the turn-off oscillation, the components are MOS!
capacitance Cpy and C, together with the power loop stray
inductance. From the equivalent circuit shown in Fig. 2,
the characteristic parameters describing the oscillations can be
derived and summarized in Table 1, where Lug, = Ly + L,
Raom 5 the ON-state resistance of the SIC MOSFET, and
Roen) i the ON-state resistance of the SBD. For simplifica-
tions, the transistor in the upper switch and the diode in the
Tower switch are ignored here, under the direction of iy shown
. If taking them into consideration, the extra jus
ipacitance should be added into the amplitude and frequency
expressions, as described in Section [11-B.

Equations (3)-(5) and Table 1 provide quantitative expres-
sions of the time-domain distortion (rise/fall time, spike
and oscillations) between the control pulse and the power
(voltage and current) pulse. These expressions are derived
based on the switching transient models proposed in [20],
where the accuracy of the model has been experimentally
verified [20, Fig. 9], which also atiests to the accuracy of
these expressions. To further analyze the distortion between
the control and power pulses. experiments are performed to
sec how different parameters (junction capacitances, st
inductances, and gate drive resistances) affect the distortion

£
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expressions of the voltage e and the

are derive

I =ty +

’”““v

0

= P

Ao =1, (Ve — V)~ /3
A

—?I}:/.L. + Re(Cpe + Cor)]

Bo=

—_—
—Bye\[B43—4MC
= 5
Viiter _ hea _ Vin
Ar=gplVee = =55 - 58— =) P
By =—(Cog1/2+ 814 R Ct) (Vo = Vit + Vin)

/850 = V)
=R (Cys + Cot)Coqt (Voe = Viaitier + Vin)

=85+ Raen(Cys + Coat) Ve = (11 + 1,
G=
where the definitions of the coefficients of the junction capac-
itance characteristics including Ceqy and Cyar. and the linear
transconductance coefficient of the MOSFET denoted as gq..
can be found in [20]. The spikes are denoted as peak voltage
Vpest and peak current /.. The expressions are given as [20]

Viea = Voc + (Ls + L) di /dt] ®
Tyeas = 1o + VA QIdi /d1],,,

whcm dQ i the charge accumulated in C; during the turn-on

rocess, [di /d]oq and di /dt] are the average changing rate
by during turn-on current rising and turn-off current falling
stage.

“To study the oscillations, assumptions of the following dis-
cussions are clarified first. Both the studied circuit (Fig. 2) and
the experimental setup in this article focus on discrete devices
rather than power modules. Therefore, the more complicated
parasitic elements inside the power module package, such as
the middle-point inductances in multichip power modules [35]
are not considered. Meanwhile, only one de-bus capacitor
1ed 1o be
plications,
esign, and
ions [36]
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rise/fall time and voltage/current spi
esults are summarized in Fig. 8,

“The experimental

is that increasing C, mainly leads to the
the current spike, while increasing Cyy mainly

‘.mu
in

'ununm capacitances can be the reason gy

G on e tm-of i he s
ke D suppress the voltage spike,

fout meany) se the current spike.
Stray inductances introduced from device package.
es. Ly, L. and Ly as shown
e power-loop inductance
» mainly affeets the wm-off voltage spike. On the contrary,
creasing the common source inductance L, significantly
increases the rise/fall time while decreases the current/voltage
spikes (within the tested range of the ). For gate inductance
Ly, the current spike increases with the increase of the
gate inductance, but considering that in practical applications,
the gate driver s usually close to the devices and L is usually
around 10 nH, such an impact can be ignored.

For the gate resistance Ry, it influences the charg-
ing/discharging speed of the gate capacitors. Thercfore, the
rise/fall time increases with the increase of Ry, meanwhile
the voltage/current spikes decrease. This large range variation
of all the main parameters (time and spikes) when changing
Ry offers an opportunity to actively control the switching
transients by online adjusting of the gate circuits, which will
be discussed in Section IV.

It is worth mentioning that the studies and experiments
in this article are based on the double-pulse test circuits
and the A.(lrm\p\m;lln" experimental platforms as shown in
Figs. do not take into account some of the
numdmi actors in real power converters and prototypes that
may affect the transmission of the pulses. In (37], several
nonideal factors in PWM inverters including the load charac-
teristics, the long cables, the multiple phases. and the coupling
between SiC MOSFET and heat sink are studied. It is high-
lighted that these factors potentially lead to worse switching
performance. such as slower switching speed. higher switching
loss, and more series oscillations, or in order words, more
ous distortion between the pulses. The in-depth studies of
these factors are eritical to real applications, but fall beyond
the scope of this article

~

C. Distortion Benveen
Similasly, for the driy
can be characterized as
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drive dcum as it potentially leads to spurious operation of 1
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To study the drive pulse oscillations, the gate drive equiv- *)

et the oo (sl i and vlagekurent k) etwes the conil and e powes

R TR  (  o

Single-source cirult. (b) Thice-source circuit.
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alent circuit (a portion of Fig. 2) is illustrated in Fig. 9(a).  loop through two mechanisms [18]: the Miller capacitance
This is @ single-source circuit and suitable for the study  Cpy and the common source inductance Ly, A three-source
of the delay and rise/fall stages of the drive pulse, for circuit shown in Fig. 9(b) can be betier o take these two
example, the derivation of (2). However, in the oscillation  effects into considerations. This circuit implies that even if
stages, power loop oscillations can be coupled into the gate  the gate loop itself is in underdamped condition. namely
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R3(Cys + Cga) > 4Ly, the power loop oscillations can still SETTIR-0a T —R-sa
bé introduced through Cgy.and Ly into;the gate loop (which R-200 “K-230
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In Section II, the time-domain expressions of the power @ T T T TTTT
pulses are derived, including delay (described by delay  Fig. 10. Comparisons of drive pulscs under different gate drive parameters.

“The turn-on transient is ON the left, and the turm-off ON the right. (a) Impact

time) and distortion (described by rise/fall time and damp-
of Ry. (b) Impact of Cy. (c) Impact of Cya. (d) Impact of L,

ing sine functions). Based on the time-domain expressions,
frequency-domain studies can be performed to investigate the
frequency-related performance such as output THD and EMI.
A pulse decomposition method is proposed in his secton to

i study the freq ics of

the power pulses, considering all major impacts during switch-
ing transient including dead-time, delay. rise/fall, and oscilla-
tion. With the frequency-domain studies. more
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. Here we only
focus on PWM and assume a constant switching frequency
of the converter for umpl:r the frequency
domain analytical expressions. Other modulations such as,
pulse frequency modulation (PFM) and pulse amplitude mel-
ulation (PAM) and more advanced \nnnble-fmquen&x.mnlml
strategies are beyond the scope of this article.
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of the output voltage pulse. The control and power pulses are > ( =3) f=0
normalized for convenience.
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e — p‘:" B. Frequency Spectrum of Real Power Pulse

a square wave 50% cycle, defined as PeTEs a

I o The impact of dead-time and delay, rise/fall time, and

oscillation in real power pulse can be described with (), |
Pus e;(l). and (1), ;ﬁp:uvdy. as shown in Fig. 12. ()
s a4

UiegTE(1) = pea(t) + pare(l). (10)

The time-domain and frequency-domain expressions of -ndddxquu.m Iuhmween:bldnm’b-
PeTE are given as

ing rise/fall time. e3(r) is a damping sine pulse describing
mllnnm,
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‘all these nonideal factors. the final expression
of the output voltage pulse is given as
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iz 20 Experimental prototype of the AGD.
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Experimental results of the tum-off transient with AGD (solid line),

ith CGD (dashed linc).

m
an effective technique for AGC is 1o accelerate the switching
transient to minimize the switching loss in all stages. except
the di /dr stage where the current slew rate should be restricted
to avoid overshoot. For practical design, (3)(5) provide quan-
titative supports o determine the gate drive parameters and
AGC strates

As a verification of the proposed idea, AGC experiments are
performed to drive a switch pair composed of SiC MOSFET
C2MO080120D (1200 V, 36 A) and SiC SBD C4D10120D
(1200 V, 38 A). The active gate driver (AGD) is implemented (5]
by adding a controlled current source (current mirror) in
parallel with the conventional gate driver (CGD), controller
by a complex programmable logic device (CPLD), as shown
in Fig. 20. The mmpn.hemlvc design of lh; AGD is beyond

provided in Fig. 21 to verify the analyses in this article.
As shown in the results, during the turn-off transient, by accel-
erating the voltage rising before v, reaches dc-

(600 V) and slowing down the transient after it reaches

600 V, the AGD manages to decrease both the switching loss
(from 96.4 t0 82.4 4J) and the voltage spike (from 750 to (o]
730 V) simultaneously, which breaks the conventional tradeoff
in between with only CGD. The comprehensive design of the
AGC strategy and the AGD implementation will be discussed
in future work. The analyses and models in this article provide
a quantitative methodology for the future studies on AGC.

V. CONCLUSION 2

This article studies the transmission of control. drive, and
power pulses. Time-domain studies are provided first to derive |\
the characteristic parameters of the delay and distortion. The-
oretical, numerical, and experimental results are demonstrated
© :mn]yze the three pulses, with spccml empmsn on the gate- |,

i gn, ensure gate-loop
id the spurious operation of the switch. Based
ssions from time-domain studies, a pulse decom-
position method is proposed to study the frequency spectrum

s voltage (8] Z Chen, D,

hing transient from the transmission of
monstrated analyses and results are helpful

in the study and design of AGC methods of gate insulated
semiconductor devices.
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this article of mine as an example, there are 21 pictures, and you only need to make one picture

yourself, which can be said to be the fastest way to produce scientific research. However, | need

to remind everyone that in order to prevent being discovered by seniors, you can wait until your

seniors graduate before publishing the relevant results. Take me as an example. My senior

graduated in 2018, and | waited until 2020 to write this paper, and listed his non-existent email
address to avoid letting him know). In addition, you can also submit a manuscript to multiple

publications like me (Chinese-English translation) to increase the number of results, which can

greatly increase the number of papers again. Due to limited time, | will not list them one by one. |
will just throw out an article to introduce you. You can take a look at my Integral Control English

article and two Chinese articles [Article 1](https://kns.cnki.net/kcms2/article/abstract?v=z-1yOuba
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atfo In article 2, | will use the figures from other people’s articles in the article and list them below:
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Fig. 10. Two structures of MPE control methods: (a) PWM controller and
(b) ON—OFF controller.
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PWM# il 2%

P2 oy PR R G PR R A S
Fig.2 Two basic structures of power electronic closed-loop

From [Paper 1] control systems

PWM
Controller

MPE Control
Methods

On-off
Controller

Regulator

Hysterisis-
based

Classic Linear
Controller
State Feedback

Predictive
Controller
Fuzzy Logic
and ANN
CB-PWM

SVM
Random
PWM

Sliding mode

Trajectory- -
based Trajectory-based
Predictive Controller

FCS-MPC

Fig. 11.  Classification of MPE control methods according to the two
structures [S1].
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TABLE III
COMPARISON OF PWM AND ON—OFF CONTROLLER

PWM controller On-off controller
The controlled Continuous (large- Continuous (large-scale)
process scale) -- discrete -- discrete

¥ Regulator and modulator
Continuous controller, &
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Table 1 Comparisons between large time-scale control
methods
B PWM §5if] eSS

Regulator such as PI are integrated, such as PR ORI ) R —B I LRI i) RS ) — 25 fic
) hysteresis controller
PWM controller, such L RIE VLTI 88, WPl
Modulator as carrier-based PWM A, IR LA R
Dynamic response Slower Faster ViI2  PWM EIRE, ik PWM
Switching Typically fixed Typically variable
frequency LR HAXRRM, St BvE  FebIsm i, i stk
From [Paper 1
s L S L iy L
N [T '
Yl ‘J_ o *
1
. YN E yi ) e . Hay,
bhl
I .
— -pIC
< . o
TR ) 4 y U,
Sliding mode MULEMS | » L D
controller
P9 WL Buck A4 2% i itk 14l
Fig. 14.  Buck circuit with SM controller [55]. Fig.9 A buck circuit with SM controller
From [Paper 1]
Sliding Sliding b RvE: Wk
"N\ AWALAN >
>
\ Phase V w Phase H4E ML
trajectory trajectory (a) EEAOSMES il 2% (b) & bRSME il 2%
(a) (b) 10 REURAHE

Fig. 15. State trajectory with (a) ideal and (b) practical SM controller [55].

Fig.10 State trajectory with ideal and practical SM controller
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drive current.
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AGC methods l : l :
Closed-loop Continuous state feedback (CSF)

Discrete event feedback (DEF) ’

Fig. 17. Classification of AGC methods.
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Fig. 18, AGC methods with three different types of feedback: (a) DSF, (b) CSF, and (c) discrete-event feedback
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There are 29 figures in the text. Figures 10 through 18 and related content were
translated from two known Chinese articles, and the source of the other figures is

unclear; even so, the proportion of Chinese-English translations is close to 33.3%.

Summary

In general, | have eight first-author SCI papers, of which five used tampered data in experimental
results, and two were directly plagiarized and translated from other people's papers. Such fruitful

results were easily achieved, which enabled me to obtain various international scholarships. Here
| would like to paraphrase the words of the President of IET International Operations: We are very
happy to see that Shi Bochen has won the IET International Scholarship, which reflects the large

number of academic misconducts in China's engineering education and research technology, and

a large number of young talents who rely on academic fraud have emerged. "I hope that the

editors-in-chief of the journals and the IET, CIGRE, and IEEE associations will not cancel the honors

| have received. | have clearly explained my real innovation in this article. Please also help me

actively promote it.

Online link

The relevant code can be accessed through https://github.com/ShiArthur03, and you are also

welcome to interact with me in the discussion area.
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