#include "Globals.h" #include #include #include "cFluidSimulator.h" #include "cWorld.h" #include "Vector3i.h" #include "BlockID.h" #include "Defines.h" #include "cItem.h" #include "blocks/Block.h" //#define DEBUG_FLUID #ifdef DEBUG_FLUID #define LOG_FLUID(...) LOGWARN( __VA_ARGS__ ) #else #define LOG_FLUID(...) #endif class cFluidSimulator::FluidData { public: FluidData( cWorld* a_World, cFluidSimulator *a_Simulator ) : m_ActiveFluid( new std::set < Vector3i >() ) , m_Simulator (a_Simulator) , m_Buffer( new std::set< Vector3i >() ) , m_World( a_World ) {} ~FluidData() { delete m_Buffer; delete m_ActiveFluid; } void UpdateWave(Vector3i a_LeftCorner, Vector3i a_CurBlock) { Vector3i LevelPoints [] = { Vector3i( a_CurBlock.x-1, a_CurBlock.y, a_CurBlock.z ), Vector3i( a_CurBlock.x+1, a_CurBlock.y, a_CurBlock.z ), Vector3i( a_CurBlock.x, a_CurBlock.y, a_CurBlock.z-1 ), Vector3i( a_CurBlock.x, a_CurBlock.y, a_CurBlock.z+1 ), }; for(int i=0; i<4; i++) { Vector3i cur = LevelPoints[i]; switch(m_Relief[cur.x][cur.z]) { case E_HOLE: { m_StartSide[cur.x][cur.z] = m_StartSide[a_CurBlock.x][a_CurBlock.z]; m_CurResult|=m_StartSide[cur.x][cur.z]; m_NearestHole = m_WayLength[a_CurBlock.x][a_CurBlock.z] + 1; LOG_FLUID("Hole found: %d \t curResult: %d", int(m_StartSide[cur.x][cur.z]), int(m_CurResult) ); LOG_FLUID("Coordinates: (%d, %d)", cur.x, cur.z); }break; case E_BLOCK: {}break; case E_PLAIN: { if (m_WayLength[cur.x][cur.z] > m_WayLength[a_CurBlock.x][a_CurBlock.z] + 1) { m_WayLength[cur.x][cur.z] = m_WayLength[a_CurBlock.x][a_CurBlock.z] + 1; m_StartSide[cur.x][cur.z] = m_StartSide[a_CurBlock.x][a_CurBlock.z]; m_WaveQueue.push(cur); } else if(m_WayLength[cur.x][cur.z] == m_WayLength[a_CurBlock.x][a_CurBlock.z] + 1) { m_StartSide[cur.x][cur.z] |= m_StartSide[a_CurBlock.x][a_CurBlock.z]; } LOG_FLUID("Plain step: (%d, %d) from %d", cur.x, cur.z, m_StartSide[cur.x][cur.z]); } } } } std::vector< Vector3i > GetLowestPoints( int a_X, int a_Y, int a_Z ) { std::vector< Vector3i > Points; //result Vector3i CornerGlobal(a_X - AREA_WIDTH/2, a_Y, a_Z - AREA_WIDTH/2); //TODO: rewrite without relief, get blocks directly in algorithm for(int x=0; xGetBlock( CornerGlobal.x + x, CornerGlobal.y, CornerGlobal.z + z ); char DownBlock = m_World->GetBlock( CornerGlobal.x + x, CornerGlobal.y-1, CornerGlobal.z + z ); if(m_Simulator->IsSolidBlock(UpperBlock)||(m_Simulator->IsStationaryBlock(UpperBlock))) { m_Relief[x][z] = E_BLOCK; } else if(m_Simulator->IsSolidBlock(DownBlock)) { m_Relief[x][z] = E_PLAIN; } else { m_Relief[x][z] = E_HOLE; } m_WayLength[x][z] = 255; m_StartSide[x][z] = E_SIDE_NONE; } LOG_FLUID("%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t", m_Relief[x][0], m_Relief[x][1], m_Relief[x][2], m_Relief[x][3], m_Relief[x][4], m_Relief[x][5], m_Relief[x][6], m_Relief[x][7], m_Relief[x][8], m_Relief[x][9], m_Relief[x][10]); } m_NearestHole = 5; m_CurResult = 0; while(!m_WaveQueue.empty()) m_WaveQueue.pop(); int left = AREA_WIDTH/2 - 1; int right = AREA_WIDTH/2 + 1; int center = AREA_WIDTH/2; Vector3i r(right, 0, center); //right block Vector3i l(left, 0, center); //left block Vector3i f(center, 0, right); //front block Vector3i b(center, 0, left); //back block Vector3i c(center, 0, center); //center block m_WayLength[c.x][c.z] = 0; Vector3i Nearest[] = {r, l, f, b}; unsigned char Sides[] = {E_SIDE_RIGHT, E_SIDE_LEFT, E_SIDE_FRONT, E_SIDE_BACK}; for(int i=0; i<4; i++) { Vector3i cur = Nearest[i]; switch(m_Relief[cur.x][cur.z]) { case E_HOLE: { m_StartSide[cur.x][cur.z] = Sides[i]; m_CurResult |= m_StartSide[cur.x][cur.z]; m_NearestHole = 1; LOG_FLUID("Hole found: %d \t curResult: %d", int(Sides[i]), int(m_CurResult) ); }break; case E_BLOCK: {}break; case E_PLAIN: { m_WaveQueue.push(cur); m_StartSide[cur.x][cur.z] = Sides[i]; m_WayLength[cur.x][cur.z] = 1; LOG_FLUID("Plain found: %d", int(Sides[i])); } } } Vector3i curBlock; bool bContinue = !m_WaveQueue.empty(); if(!m_WaveQueue.empty()) { curBlock = m_WaveQueue.front(); bContinue = (m_WayLength[curBlock.x][curBlock.z] < m_NearestHole); } while(bContinue) { LOG_FLUID("while iteration" ); curBlock = m_WaveQueue.front(); UpdateWave(CornerGlobal, curBlock); m_WaveQueue.pop(); bContinue = ( (!m_WaveQueue.empty()) && (m_WayLength[m_WaveQueue.front().x][m_WaveQueue.front().z] < m_NearestHole) ); } if(m_CurResult & E_SIDE_LEFT) Points.push_back(Vector3i( a_X-1, a_Y, a_Z )); if(m_CurResult & E_SIDE_RIGHT) Points.push_back(Vector3i( a_X+1, a_Y, a_Z )); if(m_CurResult & E_SIDE_FRONT) Points.push_back(Vector3i( a_X, a_Y, a_Z+1 )); if(m_CurResult & E_SIDE_BACK) Points.push_back(Vector3i( a_X, a_Y, a_Z-1 )); if(Points.empty()) { Vector3i LevelPoints [] = { Vector3i( a_X-1, a_Y, a_Z ), Vector3i( a_X+1, a_Y, a_Z ), Vector3i( a_X, a_Y, a_Z-1 ), Vector3i( a_X, a_Y, a_Z+1 ), }; for( int i = 0; i < 4; ++i ) { char Block = m_World->GetBlock( LevelPoints[i].x, a_Y, LevelPoints[i].z ); if( m_Simulator->IsPassableForFluid(Block) ) Points.push_back( LevelPoints[i] ); } } return Points; } std::set< Vector3i >* m_ActiveFluid; std::set< Vector3i >* m_Buffer; cWorld* m_World; cFluidSimulator *m_Simulator; const static int AREA_WIDTH = 11; const static unsigned char E_SIDE_RIGHT = 0x10; const static unsigned char E_SIDE_LEFT = 0x20; const static unsigned char E_SIDE_FRONT = 0x40; const static unsigned char E_SIDE_BACK = 0x80; const static unsigned char E_SIDE_NONE = 0x00; enum eRelief {E_HOLE = 0, E_PLAIN = 1, E_BLOCK = 2}; eRelief m_Relief[AREA_WIDTH][AREA_WIDTH]; unsigned char m_WayLength[AREA_WIDTH][AREA_WIDTH]; unsigned char m_StartSide[AREA_WIDTH][AREA_WIDTH]; std::queue m_WaveQueue; int m_NearestHole; unsigned char m_CurResult; }; cFluidSimulator::cFluidSimulator( cWorld* a_World ) : cSimulator(a_World) , m_Data(0) { m_Data = new FluidData(a_World, this); } cFluidSimulator::~cFluidSimulator() { delete m_Data; } void cFluidSimulator::AddBlock( int a_X, int a_Y, int a_Z ) { char BlockType = m_World->GetBlock(a_X, a_Y, a_Z); if (!IsAllowedBlock(BlockType)) //This should save very much time because it doesn´t have to iterate through all blocks { return; } std::set< Vector3i > & ActiveFluid = *m_Data->m_ActiveFluid; ActiveFluid.insert( Vector3i( a_X, a_Y, a_Z ) ); } char cFluidSimulator::GetHighestLevelAround( int a_X, int a_Y, int a_Z ) { char Max = m_MaxHeight + m_FlowReduction; #define __HIGHLEVEL_CHECK__( x, y, z ) \ if( IsAllowedBlock( m_World->GetBlock( x, y, z ) ) ) \ { \ char Meta; \ if( (Meta = m_World->GetBlockMeta( x, y, z ) ) < Max ) Max = Meta; \ else if( Meta == m_MaxHeight + m_FlowReduction ) Max = 0; \ if( Max == 0 ) return 0; \ } __HIGHLEVEL_CHECK__( a_X-1, a_Y, a_Z ); __HIGHLEVEL_CHECK__( a_X+1, a_Y, a_Z ); __HIGHLEVEL_CHECK__( a_X, a_Y, a_Z-1 ); __HIGHLEVEL_CHECK__( a_X, a_Y, a_Z+1 ); return Max; } void cFluidSimulator::Simulate( float a_Dt ) { m_Timer += a_Dt; if (m_Data->m_ActiveFluid->empty()) //Nothing to do if there is no active fluid ;) saves very little time ;D { return; } std::swap( m_Data->m_ActiveFluid, m_Data->m_Buffer ); // Swap so blocks can be added to empty ActiveFluid array m_Data->m_ActiveFluid->clear(); std::set< Vector3i > & FluidBlocks = *m_Data->m_Buffer; for( std::set< Vector3i >::iterator itr = FluidBlocks.begin(); itr != FluidBlocks.end(); ++itr ) { const Vector3i & pos = *itr; if(UniqueSituation(pos)) { continue; } char BlockID = m_World->GetBlock( pos.x, pos.y, pos.z ); if( IsAllowedBlock( BlockID ) ) // only care about own fluid { bool bIsFed = false; char Meta = m_World->GetBlockMeta( pos.x, pos.y, pos.z ); char Feed = Meta; if( BlockID == m_StationaryFluidBlock) Meta = 0; if( Meta == 8 ) // Falling fluid { if( IsAllowedBlock( m_World->GetBlock(pos.x, pos.y+1, pos.z) ) ) // Block above is fluid { bIsFed = true; Meta = 0; // Make it a full block } } else if( Meta < m_FlowReduction ) // It's a full block, so it's always fed { bIsFed = true; } else { if( (Feed = GetHighestLevelAround( pos.x, pos.y, pos.z )) < Meta ) bIsFed = true; } if( bIsFed ) { char DownID = m_World->GetBlock( pos.x, pos.y-1, pos.z ); bool bWashedAwayItem = CanWashAway( DownID ); if( (IsPassableForFluid(DownID) || bWashedAwayItem) && !IsStationaryBlock(DownID) ) // free for fluid { if( bWashedAwayItem ) { cBlockHandler * Handler = BlockHandler(DownID); if(Handler->DropOnUnsuitable()) { Handler->DropBlock(m_World, pos.x, pos.y - 1, pos.z); } } if (pos.y > 0) { m_World->FastSetBlock( pos.x, pos.y-1, pos.z, m_FluidBlock, 8 ); // falling AddBlock( pos.x, pos.y-1, pos.z ); ApplyUniqueToNearest(pos - Vector3i(0, 1, 0)); } } if(IsSolidBlock(DownID)||( BlockID == m_StationaryFluidBlock)) // Not falling { if( Feed + m_FlowReduction < Meta ) { m_World->FastSetBlock( pos.x, pos.y, pos.z, m_FluidBlock, Feed + m_FlowReduction ); AddBlock( pos.x, pos.y, pos.z ); ApplyUniqueToNearest(pos); } else if(( Meta < m_MaxHeight )||( BlockID == m_StationaryFluidBlock)) // max is the lowest, so it cannot spread { std::vector< Vector3i > Points = m_Data->GetLowestPoints( pos.x, pos.y, pos.z ); for( std::vector< Vector3i >::iterator itr = Points.begin(); itr != Points.end(); ++itr ) { Vector3i & p = *itr; char BlockID = m_World->GetBlock( p.x, p.y, p.z ); bool bWashedAwayItem = CanWashAway( BlockID ); if (!IsPassableForFluid(BlockID)) continue; if (!IsAllowedBlock(BlockID)) { if (bWashedAwayItem) { cBlockHandler * Handler = BlockHandler(DownID); if(Handler->DropOnUnsuitable()) { Handler->DropBlock(m_World, p.x, p.y, p.z); } } if( p.y == pos.y ) { m_World->FastSetBlock(p.x, p.y, p.z, m_FluidBlock, Meta + m_FlowReduction); } else { m_World->FastSetBlock(p.x, p.y, p.z, m_FluidBlock, 8); } AddBlock( p.x, p.y, p.z ); ApplyUniqueToNearest(p); } else // it's fluid { char PointMeta = m_World->GetBlockMeta( p.x, p.y, p.z ); if( PointMeta > Meta + m_FlowReduction ) { AddBlock( p.x, p.y, p.z ); ApplyUniqueToNearest(p); } } } } } } else// not fed { m_World->FastSetBlock( pos.x, pos.y, pos.z, E_BLOCK_AIR, 0 ); WakeUp( pos.x, pos.y, pos.z ); } } } } bool cFluidSimulator::IsPassableForFluid(char a_BlockID) { return a_BlockID == E_BLOCK_AIR || a_BlockID == E_BLOCK_FIRE || IsAllowedBlock(a_BlockID) || CanWashAway(a_BlockID); } bool cFluidSimulator::IsStationaryBlock (char a_BlockID) { return a_BlockID == m_StationaryFluidBlock; } bool cFluidSimulator::CanWashAway( char a_BlockID ) { switch( a_BlockID ) { case E_BLOCK_YELLOW_FLOWER: case E_BLOCK_RED_ROSE: case E_BLOCK_RED_MUSHROOM: case E_BLOCK_BROWN_MUSHROOM: case E_BLOCK_CACTUS: return true; default: return false; }; } bool cFluidSimulator::IsSolidBlock( char a_BlockID ) { return !(a_BlockID == E_BLOCK_AIR || a_BlockID == E_BLOCK_FIRE || IsBlockLava(a_BlockID) || IsBlockWater(a_BlockID) || CanWashAway(a_BlockID)); } //TODO Not working very well yet :s Direction cFluidSimulator::GetFlowingDirection(int a_X, int a_Y, int a_Z, bool a_Over) { char BlockID = m_World->GetBlock(a_X, a_Y, a_Z); if(!IsAllowedBlock(BlockID)) //No Fluid -> No Flowing direction :D return NONE; /* Disabled because of causing problems and beeing useless atm char BlockBelow = m_World->GetBlock(a_X, a_Y - 1, a_Z); //If there is nothing or fluid below it -> dominating flow is down :D if(BlockBelow == E_BLOCK_AIR || IsAllowedBlock(BlockBelow)) return Y_MINUS; */ char LowestPoint = m_World->GetBlockMeta(a_X, a_Y, a_Z); //Current Block Meta so only lower points will be counted int X = 0, Y = 0, Z = 0; //Lowest Pos will be stored here if(IsAllowedBlock(m_World->GetBlock(a_X, a_Y + 1, a_Z)) && a_Over) //check for upper block to flow because this also affects the flowing direction { return GetFlowingDirection(a_X, a_Y + 1, a_Z, false); } std::vector< Vector3i * > Points; Points.reserve(4); //Already allocate 4 places :D //add blocks around the checking pos Points.push_back(new Vector3i(a_X - 1, a_Y, a_Z)); Points.push_back(new Vector3i(a_X + 1, a_Y, a_Z)); Points.push_back(new Vector3i(a_X, a_Y, a_Z + 1)); Points.push_back(new Vector3i(a_X, a_Y, a_Z - 1)); for(std::vector::iterator it = Points.begin(); it < Points.end(); it++) { Vector3i *Pos = (*it); char BlockID = m_World->GetBlock(Pos->x, Pos->y, Pos->z); if(IsAllowedBlock(BlockID)) { char Meta = m_World->GetBlockMeta(Pos->x, Pos->y, Pos->z); if(Meta > LowestPoint) { LowestPoint = Meta; X = Pos->x; Y = Pos->y; Z = Pos->z; } }else if(BlockID == E_BLOCK_AIR) { LowestPoint = 9; //This always dominates X = Pos->x; Y = Pos->y; Z = Pos->z; } delete Pos; } if(LowestPoint == m_World->GetBlockMeta(a_X, a_Y, a_Z)) return NONE; if(a_X - X > 0) { return X_MINUS; } if(a_X - X < 0) { return X_PLUS; } if(a_Z - Z > 0) { return Z_MINUS; } if(a_Z - Z < 0) { return Z_PLUS; } return NONE; } bool cFluidSimulator::UniqueSituation(Vector3i a_Pos) { bool result = false; char BlockId = m_World->GetBlock( a_Pos.x, a_Pos.y, a_Pos.z ); char Meta = m_World->GetBlockMeta( a_Pos.x, a_Pos.y, a_Pos.z ); if(IsBlockWater(BlockId)) { char UpperBlock = m_World->GetBlock( a_Pos.x, a_Pos.y + 1, a_Pos.z ); if(IsBlockLava(UpperBlock)) { m_World->SetBlock(a_Pos.x, a_Pos.y, a_Pos.z, E_BLOCK_STONE, 0); } if(BlockId != E_BLOCK_STATIONARY_WATER) { char DownBlockId = m_World->GetBlock( a_Pos.x, a_Pos.y-1, a_Pos.z ); if(IsSolidBlock(DownBlockId)) { Vector3i LevelPoints [] = { Vector3i( a_Pos.x-1, a_Pos.y, a_Pos.z ), Vector3i( a_Pos.x+1, a_Pos.y, a_Pos.z ), Vector3i( a_Pos.x, a_Pos.y, a_Pos.z-1 ), Vector3i( a_Pos.x, a_Pos.y, a_Pos.z+1 ), }; int SourceBlocksCount = 0; for(int i=0; i<4; i++) { if (m_World->GetBlock(LevelPoints[i].x, LevelPoints[i].y, LevelPoints[i].z)==E_BLOCK_STATIONARY_WATER) { SourceBlocksCount++; } } if(SourceBlocksCount>=2) { m_World->SetBlock(a_Pos.x, a_Pos.y, a_Pos.z, E_BLOCK_STATIONARY_WATER, 0); } } } } if(IsBlockLava(BlockId)) { bool bWater = false; char UpperBlock = m_World->GetBlock( a_Pos.x, a_Pos.y + 1, a_Pos.z ); if (IsBlockWater(UpperBlock)) { bWater = true; } else { Vector3i LevelPoints [] = { Vector3i( a_Pos.x-1, a_Pos.y, a_Pos.z ), Vector3i( a_Pos.x+1, a_Pos.y, a_Pos.z ), Vector3i( a_Pos.x, a_Pos.y, a_Pos.z-1 ), Vector3i( a_Pos.x, a_Pos.y, a_Pos.z+1 ), }; for(int i=0; i<4; i++) { if (IsBlockWater(m_World->GetBlock(LevelPoints[i].x, LevelPoints[i].y, LevelPoints[i].z))) { bWater = true; } } } if(bWater) { if(BlockId == E_BLOCK_STATIONARY_LAVA) { m_World->SetBlock(a_Pos.x, a_Pos.y, a_Pos.z, E_BLOCK_OBSIDIAN, 0); } else if (MetaSetBlock(a_Pos.x, a_Pos.y, a_Pos.z, E_BLOCK_COBBLESTONE, 0); } } } return result; } void cFluidSimulator::ApplyUniqueToNearest(Vector3i a_Pos) { Vector3i NearPoints [] = { Vector3i( a_Pos.x-1, a_Pos.y, a_Pos.z ), Vector3i( a_Pos.x+1, a_Pos.y, a_Pos.z ), Vector3i( a_Pos.x, a_Pos.y, a_Pos.z-1 ), Vector3i( a_Pos.x, a_Pos.y, a_Pos.z+1 ), Vector3i( a_Pos.x, a_Pos.y-1, a_Pos.z ) }; for(int i=0; i<5; i++) { UniqueSituation(NearPoints[i]); } }