// BlockArea.cpp // Implements the cBlockArea object representing an area of block data that can be queried from cWorld and then accessed again without further queries // The object also supports writing the blockdata back into cWorld, even into other coords #include "Globals.h" #include "BlockArea.h" #include "OSSupport/GZipFile.h" #include "Blocks/BlockHandler.h" #include "Cuboid.h" #include "ChunkData.h" // Disable MSVC warnings: "conditional expression is constant" #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable:4127) #endif typedef void (CombinatorFunc)(BLOCKTYPE & a_DstType, BLOCKTYPE a_SrcType, NIBBLETYPE & a_DstMeta, NIBBLETYPE a_SrcMeta); /** Merges two blocktypes and blockmetas of the specified sizes and offsets using the specified combinator function This wild construct allows us to pass a function argument and still have it inlined by the compiler. */ template void InternalMergeBlocks( BLOCKTYPE * a_DstTypes, const BLOCKTYPE * a_SrcTypes, NIBBLETYPE * a_DstMetas, const NIBBLETYPE * a_SrcMetas, int a_SizeX, int a_SizeY, int a_SizeZ, int a_SrcOffX, int a_SrcOffY, int a_SrcOffZ, int a_DstOffX, int a_DstOffY, int a_DstOffZ, int a_SrcSizeX, int a_SrcSizeY, int a_SrcSizeZ, int a_DstSizeX, int a_DstSizeY, int a_DstSizeZ ) { UNUSED(a_SrcSizeY); UNUSED(a_DstSizeY); for (int y = 0; y < a_SizeY; y++) { int SrcBaseY = (y + a_SrcOffY) * a_SrcSizeX * a_SrcSizeZ; int DstBaseY = (y + a_DstOffY) * a_DstSizeX * a_DstSizeZ; for (int z = 0; z < a_SizeZ; z++) { int SrcBaseZ = SrcBaseY + (z + a_SrcOffZ) * a_SrcSizeX; int DstBaseZ = DstBaseY + (z + a_DstOffZ) * a_DstSizeX; int SrcIdx = SrcBaseZ + a_SrcOffX; int DstIdx = DstBaseZ + a_DstOffX; for (int x = 0; x < a_SizeX; x++) { if (MetasValid) { Combinator(a_DstTypes[DstIdx], a_SrcTypes[SrcIdx], a_DstMetas[DstIdx], a_SrcMetas[SrcIdx]); } else { NIBBLETYPE FakeDestMeta = 0; Combinator(a_DstTypes[DstIdx], a_SrcTypes[SrcIdx], FakeDestMeta, static_cast(0)); } ++DstIdx; ++SrcIdx; } // for x } // for z } // for y } /** Combinator used for cBlockArea::msOverwrite merging */ template void MergeCombinatorOverwrite(BLOCKTYPE & a_DstType, BLOCKTYPE a_SrcType, NIBBLETYPE & a_DstMeta, NIBBLETYPE a_SrcMeta) { a_DstType = a_SrcType; if (MetaValid) { a_DstMeta = a_SrcMeta; } } /** Combinator used for cBlockArea::msFillAir merging */ template void MergeCombinatorFillAir(BLOCKTYPE & a_DstType, BLOCKTYPE a_SrcType, NIBBLETYPE & a_DstMeta, NIBBLETYPE a_SrcMeta) { if (a_DstType == E_BLOCK_AIR) { a_DstType = a_SrcType; if (MetaValid) { a_DstMeta = a_SrcMeta; } } // "else" is the default, already in place } /** Combinator used for cBlockArea::msImprint merging */ template void MergeCombinatorImprint(BLOCKTYPE & a_DstType, BLOCKTYPE a_SrcType, NIBBLETYPE & a_DstMeta, NIBBLETYPE a_SrcMeta) { if (a_SrcType != E_BLOCK_AIR) { a_DstType = a_SrcType; if (MetaValid) { a_DstMeta = a_SrcMeta; } } // "else" is the default, already in place } /** Combinator used for cBlockArea::msLake merging */ template void MergeCombinatorLake(BLOCKTYPE & a_DstType, BLOCKTYPE a_SrcType, NIBBLETYPE & a_DstMeta, NIBBLETYPE a_SrcMeta) { // Sponge is the NOP block if (a_SrcType == E_BLOCK_SPONGE) { return; } // Air is always hollowed out if (a_SrcType == E_BLOCK_AIR) { a_DstType = E_BLOCK_AIR; if (MetaValid) { a_DstMeta = 0; } return; } // Water and lava are never overwritten switch (a_DstType) { case E_BLOCK_WATER: case E_BLOCK_STATIONARY_WATER: case E_BLOCK_LAVA: case E_BLOCK_STATIONARY_LAVA: { return; } } // Water and lava always overwrite switch (a_SrcType) { case E_BLOCK_WATER: case E_BLOCK_STATIONARY_WATER: case E_BLOCK_LAVA: case E_BLOCK_STATIONARY_LAVA: { a_DstType = a_SrcType; if (MetaValid) { a_DstMeta = a_SrcMeta; } return; } } if (a_SrcType == E_BLOCK_STONE) { switch (a_DstType) { case E_BLOCK_DIRT: case E_BLOCK_GRASS: case E_BLOCK_MYCELIUM: { a_DstType = E_BLOCK_STONE; if (MetaValid) { a_DstMeta = 0; } return; } } } // Everything else is left as it is } /** Combinator used for cBlockArea::msSpongePrint merging */ template void MergeCombinatorSpongePrint(BLOCKTYPE & a_DstType, BLOCKTYPE a_SrcType, NIBBLETYPE & a_DstMeta, NIBBLETYPE a_SrcMeta) { // Sponge overwrites nothing, everything else overwrites anything if (a_SrcType != E_BLOCK_SPONGE) { a_DstType = a_SrcType; if (MetaValid) { a_DstMeta = a_SrcMeta; } } } /** Combinator used for cBlockArea::msDifference merging */ template void MergeCombinatorDifference(BLOCKTYPE & a_DstType, BLOCKTYPE a_SrcType, NIBBLETYPE & a_DstMeta, NIBBLETYPE a_SrcMeta) { if ((a_DstType == a_SrcType) && (!MetaValid || (a_DstMeta == a_SrcMeta))) { a_DstType = E_BLOCK_AIR; if (MetaValid) { a_DstMeta = 0; } } else { a_DstType = a_SrcType; if (MetaValid) { a_DstMeta = a_SrcMeta; } } } /** Combinator used for cBlockArea::msSimpleCompare merging */ template void MergeCombinatorSimpleCompare(BLOCKTYPE & a_DstType, BLOCKTYPE a_SrcType, NIBBLETYPE & a_DstMeta, NIBBLETYPE a_SrcMeta) { if ((a_DstType == a_SrcType) && (!MetaValid || (a_DstMeta == a_SrcMeta))) { // The blocktypes are the same, and the blockmetas are not present or are the same a_DstType = E_BLOCK_AIR; } else { // The blocktypes or blockmetas differ a_DstType = E_BLOCK_STONE; } } /** Combinator used for cBlockArea::msMask merging */ template void MergeCombinatorMask(BLOCKTYPE & a_DstType, BLOCKTYPE a_SrcType, NIBBLETYPE & a_DstMeta, NIBBLETYPE a_SrcMeta) { // If the blocks are the same, keep the dest; otherwise replace with air if ((a_SrcType != a_DstType) || !MetaValid || (a_SrcMeta != a_DstMeta)) { a_DstType = E_BLOCK_AIR; if (MetaValid) { a_DstMeta = 0; } } } // Re-enable previously disabled MSVC warnings #ifdef _MSC_VER #pragma warning(pop) #endif //////////////////////////////////////////////////////////////////////////////// // cBlockArea: cBlockArea::cBlockArea(void) : m_BlockTypes(nullptr), m_BlockMetas(nullptr), m_BlockLight(nullptr), m_BlockSkyLight(nullptr) { } cBlockArea::~cBlockArea() { Clear(); } void cBlockArea::Clear(void) { delete[] m_BlockTypes; m_BlockTypes = nullptr; delete[] m_BlockMetas; m_BlockMetas = nullptr; delete[] m_BlockLight; m_BlockLight = nullptr; delete[] m_BlockSkyLight; m_BlockSkyLight = nullptr; m_Origin.Set(0, 0, 0); m_Size.Set(0, 0, 0); } void cBlockArea::Create(int a_SizeX, int a_SizeY, int a_SizeZ, int a_DataTypes) { if ((a_SizeX < 0) || (a_SizeY < 0) || (a_SizeZ < 0)) { LOGWARNING("Creating a cBlockArea with a negative size! Call to Create ignored. (%d, %d, %d)", a_SizeX, a_SizeY, a_SizeZ ); return; } // Warn if the height is too much, but proceed with the creation: if (a_SizeY > cChunkDef::Height) { LOGWARNING("Creating a cBlockArea with height larger than world height (%d). Continuing, but the area may misbehave.", a_SizeY); } Clear(); int BlockCount = a_SizeX * a_SizeY * a_SizeZ; if ((a_DataTypes & baTypes) != 0) { m_BlockTypes = new BLOCKTYPE[BlockCount]; for (int i = 0; i < BlockCount; i++) { m_BlockTypes[i] = E_BLOCK_AIR; } } if ((a_DataTypes & baMetas) != 0) { m_BlockMetas = new NIBBLETYPE[BlockCount]; for (int i = 0; i < BlockCount; i++) { m_BlockMetas[i] = 0; } } if ((a_DataTypes & baLight) != 0) { m_BlockLight = new NIBBLETYPE[BlockCount]; for (int i = 0; i < BlockCount; i++) { m_BlockLight[i] = 0; } } if ((a_DataTypes & baSkyLight) != 0) { m_BlockSkyLight = new NIBBLETYPE[BlockCount]; for (int i = 0; i < BlockCount; i++) { m_BlockSkyLight[i] = 0x0f; } } m_Size.Set(a_SizeX, a_SizeY, a_SizeZ); m_Origin.Set(0, 0, 0); } void cBlockArea::Create(const Vector3i & a_Size, int a_DataTypes) { Create(a_Size.x, a_Size.y, a_Size.z, a_DataTypes); } void cBlockArea::SetWEOffset(int a_OffsetX, int a_OffsetY, int a_OffsetZ) { m_WEOffset.Set(a_OffsetX, a_OffsetY, a_OffsetZ); } void cBlockArea::SetWEOffset(const Vector3i & a_Offset) { m_WEOffset.Set(a_Offset.x, a_Offset.y, a_Offset.z); } void cBlockArea::SetOrigin(int a_OriginX, int a_OriginY, int a_OriginZ) { m_Origin.Set(a_OriginX, a_OriginY, a_OriginZ); } void cBlockArea::SetOrigin(const Vector3i & a_Origin) { m_Origin.Set(a_Origin.x, a_Origin.y, a_Origin.z); } bool cBlockArea::Read(cForEachChunkProvider * a_ForEachChunkProvider, int a_MinBlockX, int a_MaxBlockX, int a_MinBlockY, int a_MaxBlockY, int a_MinBlockZ, int a_MaxBlockZ, int a_DataTypes) { // Normalize the coords: if (a_MinBlockX > a_MaxBlockX) { std::swap(a_MinBlockX, a_MaxBlockX); } if (a_MinBlockY > a_MaxBlockY) { std::swap(a_MinBlockY, a_MaxBlockY); } if (a_MinBlockZ > a_MaxBlockZ) { std::swap(a_MinBlockZ, a_MaxBlockZ); } // Include the Max coords: a_MaxBlockX += 1; a_MaxBlockY += 1; a_MaxBlockZ += 1; // Check coords validity: if (a_MinBlockY < 0) { LOGWARNING("%s: MinBlockY less than zero, adjusting to zero. Coords: {%d, %d, %d} - {%d, %d, %d}", __FUNCTION__, a_MinBlockX, a_MinBlockY, a_MinBlockZ, a_MaxBlockX, a_MaxBlockY, a_MaxBlockZ ); a_MinBlockY = 0; } else if (a_MinBlockY >= cChunkDef::Height) { LOGWARNING("%s: MinBlockY more than chunk height, adjusting to chunk height. Coords: {%d, %d, %d} - {%d, %d, %d}", __FUNCTION__, a_MinBlockX, a_MinBlockY, a_MinBlockZ, a_MaxBlockX, a_MaxBlockY, a_MaxBlockZ ); a_MinBlockY = cChunkDef::Height - 1; } if (a_MaxBlockY < 0) { LOGWARNING("%s: MaxBlockY less than zero, adjusting to zero. Coords: {%d, %d, %d} - {%d, %d, %d}", __FUNCTION__, a_MinBlockX, a_MinBlockY, a_MinBlockZ, a_MaxBlockX, a_MaxBlockY, a_MaxBlockZ ); a_MaxBlockY = 0; } else if (a_MaxBlockY > cChunkDef::Height) { LOGWARNING("%s: MaxBlockY more than chunk height, adjusting to chunk height. Coords: {%d, %d, %d} - {%d, %d, %d}", __FUNCTION__, a_MinBlockX, a_MinBlockY, a_MinBlockZ, a_MaxBlockX, a_MaxBlockY, a_MaxBlockZ ); a_MaxBlockY = cChunkDef::Height; } // Allocate the needed memory: Clear(); if (!SetSize(a_MaxBlockX - a_MinBlockX, a_MaxBlockY - a_MinBlockY, a_MaxBlockZ - a_MinBlockZ, a_DataTypes)) { return false; } m_Origin.Set(a_MinBlockX, a_MinBlockY, a_MinBlockZ); cChunkReader Reader(*this); // Convert block coords to chunks coords: int MinChunkX, MaxChunkX; int MinChunkZ, MaxChunkZ; cChunkDef::AbsoluteToRelative(a_MinBlockX, a_MinBlockY, a_MinBlockZ, MinChunkX, MinChunkZ); cChunkDef::AbsoluteToRelative(a_MaxBlockX, a_MaxBlockY, a_MaxBlockZ, MaxChunkX, MaxChunkZ); // Query block data: if (!a_ForEachChunkProvider->ForEachChunkInRect(MinChunkX, MaxChunkX, MinChunkZ, MaxChunkZ, Reader)) { Clear(); return false; } return true; } bool cBlockArea::Read(cForEachChunkProvider * a_ForEachChunkProvider, const cCuboid & a_Bounds, int a_DataTypes) { return Read( a_ForEachChunkProvider, a_Bounds.p1.x, a_Bounds.p2.x, a_Bounds.p1.y, a_Bounds.p2.y, a_Bounds.p1.z, a_Bounds.p2.z, a_DataTypes ); } bool cBlockArea::Read(cForEachChunkProvider * a_ForEachChunkProvider, const Vector3i & a_Point1, const Vector3i & a_Point2, int a_DataTypes) { return Read( a_ForEachChunkProvider, a_Point1.x, a_Point2.x, a_Point1.y, a_Point2.y, a_Point1.z, a_Point2.z, a_DataTypes ); } bool cBlockArea::Write(cForEachChunkProvider * a_ForEachChunkProvider, int a_MinBlockX, int a_MinBlockY, int a_MinBlockZ, int a_DataTypes) { ASSERT((a_DataTypes & GetDataTypes()) == a_DataTypes); // Are you requesting only the data that I have? a_DataTypes = a_DataTypes & GetDataTypes(); // For release builds, silently cut off the datatypes that I don't have // Check coords validity: if (a_MinBlockY < 0) { LOGWARNING("%s: MinBlockY less than zero, adjusting to zero", __FUNCTION__); a_MinBlockY = 0; } else if (a_MinBlockY > cChunkDef::Height - m_Size.y) { LOGWARNING("%s: MinBlockY + m_SizeY more than chunk height, adjusting to chunk height", __FUNCTION__); a_MinBlockY = std::max(cChunkDef::Height - m_Size.y, 0); } return a_ForEachChunkProvider->WriteBlockArea(*this, a_MinBlockX, a_MinBlockY, a_MinBlockZ, a_DataTypes); } bool cBlockArea::Write(cForEachChunkProvider * a_ForEachChunkProvider, const Vector3i & a_MinCoords, int a_DataTypes) { return Write( a_ForEachChunkProvider, a_MinCoords.x, a_MinCoords.y, a_MinCoords.z, a_DataTypes ); } void cBlockArea::CopyTo(cBlockArea & a_Into) const { if (&a_Into == this) { LOGWARNING("Trying to copy a cBlockArea into self, ignoring."); return; } a_Into.Clear(); a_Into.SetSize(m_Size.x, m_Size.y, m_Size.z, GetDataTypes()); a_Into.m_Origin = m_Origin; size_t BlockCount = GetBlockCount(); if (HasBlockTypes()) { memcpy(a_Into.m_BlockTypes, m_BlockTypes, BlockCount * sizeof(BLOCKTYPE)); } if (HasBlockMetas()) { memcpy(a_Into.m_BlockMetas, m_BlockMetas, BlockCount * sizeof(NIBBLETYPE)); } if (HasBlockLights()) { memcpy(a_Into.m_BlockLight, m_BlockLight, BlockCount * sizeof(NIBBLETYPE)); } if (HasBlockSkyLights()) { memcpy(a_Into.m_BlockSkyLight, m_BlockSkyLight, BlockCount * sizeof(NIBBLETYPE)); } } void cBlockArea::CopyFrom(const cBlockArea & a_From) { a_From.CopyTo(*this); } void cBlockArea::DumpToRawFile(const AString & a_FileName) { cFile f; if (!f.Open(a_FileName, cFile::fmWrite)) { LOGWARNING("cBlockArea: Cannot open file \"%s\" for raw dump", a_FileName.c_str()); return; } UInt32 SizeX = ntohl(m_Size.x); UInt32 SizeY = ntohl(m_Size.y); UInt32 SizeZ = ntohl(m_Size.z); f.Write(&SizeX, 4); f.Write(&SizeY, 4); f.Write(&SizeZ, 4); unsigned char DataTypes = static_cast(GetDataTypes()); f.Write(&DataTypes, 1); size_t NumBlocks = GetBlockCount(); if (HasBlockTypes()) { f.Write(m_BlockTypes, NumBlocks * sizeof(BLOCKTYPE)); } if (HasBlockMetas()) { f.Write(m_BlockMetas, NumBlocks); } if (HasBlockLights()) { f.Write(m_BlockLight, NumBlocks); } if (HasBlockSkyLights()) { f.Write(m_BlockSkyLight, NumBlocks); } } void cBlockArea::Crop(int a_AddMinX, int a_SubMaxX, int a_AddMinY, int a_SubMaxY, int a_AddMinZ, int a_SubMaxZ) { if ( (a_AddMinX + a_SubMaxX >= m_Size.x) || (a_AddMinY + a_SubMaxY >= m_Size.y) || (a_AddMinZ + a_SubMaxZ >= m_Size.z) ) { LOGWARNING("cBlockArea:Crop called with more croping than the dimensions: %d x %d x %d with cropping %d, %d and %d", m_Size.x, m_Size.y, m_Size.z, a_AddMinX + a_SubMaxX, a_AddMinY + a_SubMaxY, a_AddMinZ + a_SubMaxZ ); return; } if (HasBlockTypes()) { CropBlockTypes(a_AddMinX, a_SubMaxX, a_AddMinY, a_SubMaxY, a_AddMinZ, a_SubMaxZ); } if (HasBlockMetas()) { CropNibbles(m_BlockMetas, a_AddMinX, a_SubMaxX, a_AddMinY, a_SubMaxY, a_AddMinZ, a_SubMaxZ); } if (HasBlockLights()) { CropNibbles(m_BlockLight, a_AddMinX, a_SubMaxX, a_AddMinY, a_SubMaxY, a_AddMinZ, a_SubMaxZ); } if (HasBlockSkyLights()) { CropNibbles(m_BlockSkyLight, a_AddMinX, a_SubMaxX, a_AddMinY, a_SubMaxY, a_AddMinZ, a_SubMaxZ); } m_Origin.Move(a_AddMinX, a_AddMinY, a_AddMinZ); m_Size.x -= a_AddMinX + a_SubMaxX; m_Size.y -= a_AddMinY + a_SubMaxY; m_Size.z -= a_AddMinZ + a_SubMaxZ; } void cBlockArea::Expand(int a_SubMinX, int a_AddMaxX, int a_SubMinY, int a_AddMaxY, int a_SubMinZ, int a_AddMaxZ) { if (HasBlockTypes()) { ExpandBlockTypes(a_SubMinX, a_AddMaxX, a_SubMinY, a_AddMaxY, a_SubMinZ, a_AddMaxZ); } if (HasBlockMetas()) { ExpandNibbles(m_BlockMetas, a_SubMinX, a_AddMaxX, a_SubMinY, a_AddMaxY, a_SubMinZ, a_AddMaxZ); } if (HasBlockLights()) { ExpandNibbles(m_BlockLight, a_SubMinX, a_AddMaxX, a_SubMinY, a_AddMaxY, a_SubMinZ, a_AddMaxZ); } if (HasBlockSkyLights()) { ExpandNibbles(m_BlockSkyLight, a_SubMinX, a_AddMaxX, a_SubMinY, a_AddMaxY, a_SubMinZ, a_AddMaxZ); } m_Origin.Move(-a_SubMinX, -a_SubMinY, -a_SubMinZ); m_Size.x += a_SubMinX + a_AddMaxX; m_Size.y += a_SubMinY + a_AddMaxY; m_Size.z += a_SubMinZ + a_AddMaxZ; } void cBlockArea::Merge(const cBlockArea & a_Src, int a_RelX, int a_RelY, int a_RelZ, eMergeStrategy a_Strategy) { const NIBBLETYPE * SrcMetas = a_Src.GetBlockMetas(); NIBBLETYPE * DstMetas = m_BlockMetas; bool IsDummyMetas = ((SrcMetas == nullptr) || (DstMetas == nullptr)); if (IsDummyMetas) { MergeByStrategy(a_Src, a_RelX, a_RelY, a_RelZ, a_Strategy, SrcMetas, DstMetas); } else { MergeByStrategy(a_Src, a_RelX, a_RelY, a_RelZ, a_Strategy, SrcMetas, DstMetas); } } void cBlockArea::Merge(const cBlockArea & a_Src, const Vector3i & a_RelMinCoords, eMergeStrategy a_Strategy) { Merge(a_Src, a_RelMinCoords.x, a_RelMinCoords.y, a_RelMinCoords.z, a_Strategy); } void cBlockArea::Fill(int a_DataTypes, BLOCKTYPE a_BlockType, NIBBLETYPE a_BlockMeta, NIBBLETYPE a_BlockLight, NIBBLETYPE a_BlockSkyLight) { if ((a_DataTypes & GetDataTypes()) != a_DataTypes) { LOGWARNING("%s: requested datatypes that are not present in the BlockArea object, trimming those away (req 0x%x, stor 0x%x)", __FUNCTION__, a_DataTypes, GetDataTypes() ); a_DataTypes = a_DataTypes & GetDataTypes(); } size_t BlockCount = GetBlockCount(); if ((a_DataTypes & baTypes) != 0) { for (size_t i = 0; i < BlockCount; i++) { m_BlockTypes[i] = a_BlockType; } } if ((a_DataTypes & baMetas) != 0) { for (size_t i = 0; i < BlockCount; i++) { m_BlockMetas[i] = a_BlockMeta; } } if ((a_DataTypes & baLight) != 0) { for (size_t i = 0; i < BlockCount; i++) { m_BlockLight[i] = a_BlockLight; } } if ((a_DataTypes & baSkyLight) != 0) { for (size_t i = 0; i < BlockCount; i++) { m_BlockSkyLight[i] = a_BlockSkyLight; } } } void cBlockArea::FillRelCuboid(int a_MinRelX, int a_MaxRelX, int a_MinRelY, int a_MaxRelY, int a_MinRelZ, int a_MaxRelZ, int a_DataTypes, BLOCKTYPE a_BlockType, NIBBLETYPE a_BlockMeta, NIBBLETYPE a_BlockLight, NIBBLETYPE a_BlockSkyLight ) { if ((a_DataTypes & GetDataTypes()) != a_DataTypes) { LOGWARNING("%s: requested datatypes that are not present in the BlockArea object, trimming those away (req 0x%x, stor 0x%x)", __FUNCTION__, a_DataTypes, GetDataTypes() ); a_DataTypes = a_DataTypes & GetDataTypes(); } if ((a_DataTypes & baTypes) != 0) { for (int y = a_MinRelY; y <= a_MaxRelY; y++) for (int z = a_MinRelZ; z <= a_MaxRelZ; z++) for (int x = a_MinRelX; x <= a_MaxRelX; x++) { m_BlockTypes[MakeIndex(x, y, z)] = a_BlockType; } // for x, z, y } if ((a_DataTypes & baMetas) != 0) { for (int y = a_MinRelY; y <= a_MaxRelY; y++) for (int z = a_MinRelZ; z <= a_MaxRelZ; z++) for (int x = a_MinRelX; x <= a_MaxRelX; x++) { m_BlockMetas[MakeIndex(x, y, z)] = a_BlockMeta; } // for x, z, y } if ((a_DataTypes & baLight) != 0) { for (int y = a_MinRelY; y <= a_MaxRelY; y++) for (int z = a_MinRelZ; z <= a_MaxRelZ; z++) for (int x = a_MinRelX; x <= a_MaxRelX; x++) { m_BlockLight[MakeIndex(x, y, z)] = a_BlockLight; } // for x, z, y } if ((a_DataTypes & baSkyLight) != 0) { for (int y = a_MinRelY; y <= a_MaxRelY; y++) for (int z = a_MinRelZ; z <= a_MaxRelZ; z++) for (int x = a_MinRelX; x <= a_MaxRelX; x++) { m_BlockSkyLight[MakeIndex(x, y, z)] = a_BlockSkyLight; } // for x, z, y } } void cBlockArea::FillRelCuboid(const cCuboid & a_RelCuboid, int a_DataTypes, BLOCKTYPE a_BlockType, NIBBLETYPE a_BlockMeta, NIBBLETYPE a_BlockLight, NIBBLETYPE a_BlockSkyLight ) { FillRelCuboid( a_RelCuboid.p1.x, a_RelCuboid.p2.x, a_RelCuboid.p1.y, a_RelCuboid.p2.y, a_RelCuboid.p1.z, a_RelCuboid.p2.z, a_DataTypes, a_BlockType, a_BlockMeta, a_BlockLight, a_BlockSkyLight ); } void cBlockArea::RelLine(int a_RelX1, int a_RelY1, int a_RelZ1, int a_RelX2, int a_RelY2, int a_RelZ2, int a_DataTypes, BLOCKTYPE a_BlockType, NIBBLETYPE a_BlockMeta, NIBBLETYPE a_BlockLight, NIBBLETYPE a_BlockSkyLight ) { // Bresenham-3D algorithm for drawing lines: int dx = abs(a_RelX2 - a_RelX1); int dy = abs(a_RelY2 - a_RelY1); int dz = abs(a_RelZ2 - a_RelZ1); int sx = (a_RelX1 < a_RelX2) ? 1 : -1; int sy = (a_RelY1 < a_RelY2) ? 1 : -1; int sz = (a_RelZ1 < a_RelZ2) ? 1 : -1; if (dx >= std::max(dy, dz)) // x dominant { int yd = dy - dx / 2; int zd = dz - dx / 2; for (;;) { RelSetData(a_RelX1, a_RelY1, a_RelZ1, a_DataTypes, a_BlockType, a_BlockMeta, a_BlockLight, a_BlockSkyLight); if (a_RelX1 == a_RelX2) { break; } if (yd >= 0) // move along y { a_RelY1 += sy; yd -= dx; } if (zd >= 0) // move along z { a_RelZ1 += sz; zd -= dx; } // move along x a_RelX1 += sx; yd += dy; zd += dz; } } else if (dy >= std::max(dx, dz)) // y dominant { int xd = dx - dy / 2; int zd = dz - dy / 2; for (;;) { RelSetData(a_RelX1, a_RelY1, a_RelZ1, a_DataTypes, a_BlockType, a_BlockMeta, a_BlockLight, a_BlockSkyLight); if (a_RelY1 == a_RelY2) { break; } if (xd >= 0) // move along x { a_RelX1 += sx; xd -= dy; } if (zd >= 0) // move along z { a_RelZ1 += sz; zd -= dy; } // move along y a_RelY1 += sy; xd += dx; zd += dz; } } else { // z dominant ASSERT(dz >= std::max(dx, dy)); int xd = dx - dz / 2; int yd = dy - dz / 2; for (;;) { RelSetData(a_RelX1, a_RelY1, a_RelZ1, a_DataTypes, a_BlockType, a_BlockMeta, a_BlockLight, a_BlockSkyLight); if (a_RelZ1 == a_RelZ2) { break; } if (xd >= 0) // move along x { a_RelX1 += sx; xd -= dz; } if (yd >= 0) // move along y { a_RelY1 += sy; yd -= dz; } // move along z a_RelZ1 += sz; xd += dx; yd += dy; } } // if (which dimension is dominant) } void cBlockArea::RelLine(const Vector3i & a_Point1, const Vector3i & a_Point2, int a_DataTypes, BLOCKTYPE a_BlockType, NIBBLETYPE a_BlockMeta, NIBBLETYPE a_BlockLight, NIBBLETYPE a_BlockSkyLight ) { RelLine( a_Point1.x, a_Point1.y, a_Point1.z, a_Point2.x, a_Point2.y, a_Point2.z, a_DataTypes, a_BlockType, a_BlockMeta, a_BlockLight, a_BlockSkyLight ); } void cBlockArea::RotateCCW(void) { if (!HasBlockTypes()) { LOGWARNING("cBlockArea: Cannot rotate blockmeta without blocktypes!"); return; } if (!HasBlockMetas()) { // There are no blockmetas to rotate, just use the NoMeta function RotateCCWNoMeta(); return; } // We are guaranteed that both blocktypes and blockmetas exist; rotate both at the same time: BLOCKTYPE * NewTypes = new BLOCKTYPE[GetBlockCount()]; NIBBLETYPE * NewMetas = new NIBBLETYPE[GetBlockCount()]; for (int x = 0; x < m_Size.x; x++) { int NewZ = m_Size.x - x - 1; for (int z = 0; z < m_Size.z; z++) { int NewX = z; for (int y = 0; y < m_Size.y; y++) { int NewIdx = NewX + NewZ * m_Size.z + y * m_Size.x * m_Size.z; int OldIdx = MakeIndex(x, y, z); NewTypes[NewIdx] = m_BlockTypes[OldIdx]; NewMetas[NewIdx] = BlockHandler(m_BlockTypes[OldIdx])->MetaRotateCCW(m_BlockMetas[OldIdx]); } // for y } // for z } // for x std::swap(m_BlockTypes, NewTypes); std::swap(m_BlockMetas, NewMetas); delete[] NewTypes; NewTypes = nullptr; delete[] NewMetas; NewMetas = nullptr; std::swap(m_Size.x, m_Size.z); } void cBlockArea::RotateCW(void) { if (!HasBlockTypes()) { LOGWARNING("cBlockArea: Cannot rotate blockmeta without blocktypes!"); return; } if (!HasBlockMetas()) { // There are no blockmetas to rotate, just use the NoMeta function RotateCWNoMeta(); return; } // We are guaranteed that both blocktypes and blockmetas exist; rotate both at the same time: BLOCKTYPE * NewTypes = new BLOCKTYPE[GetBlockCount()]; NIBBLETYPE * NewMetas = new NIBBLETYPE[GetBlockCount()]; for (int x = 0; x < m_Size.x; x++) { int NewZ = x; for (int z = 0; z < m_Size.z; z++) { int NewX = m_Size.z - z - 1; for (int y = 0; y < m_Size.y; y++) { int NewIdx = NewX + NewZ * m_Size.z + y * m_Size.x * m_Size.z; int OldIdx = MakeIndex(x, y, z); NewTypes[NewIdx] = m_BlockTypes[OldIdx]; NewMetas[NewIdx] = BlockHandler(m_BlockTypes[OldIdx])->MetaRotateCW(m_BlockMetas[OldIdx]); } // for y } // for z } // for x std::swap(m_BlockTypes, NewTypes); std::swap(m_BlockMetas, NewMetas); delete[] NewTypes; NewTypes = nullptr; delete[] NewMetas; NewMetas = nullptr; std::swap(m_Size.x, m_Size.z); } void cBlockArea::MirrorXY(void) { if (!HasBlockTypes()) { LOGWARNING("cBlockArea: Cannot mirror meta without blocktypes!"); return; } if (!HasBlockMetas()) { // There are no blockmetas to mirror, just use the NoMeta function MirrorXYNoMeta(); return; } // We are guaranteed that both blocktypes and blockmetas exist; mirror both at the same time: int HalfZ = m_Size.z / 2; int MaxZ = m_Size.z - 1; for (int y = 0; y < m_Size.y; y++) { for (int z = 0; z < HalfZ; z++) { for (int x = 0; x < m_Size.x; x++) { int Idx1 = MakeIndex(x, y, z); int Idx2 = MakeIndex(x, y, MaxZ - z); std::swap(m_BlockTypes[Idx1], m_BlockTypes[Idx2]); NIBBLETYPE Meta1 = BlockHandler(m_BlockTypes[Idx2])->MetaMirrorXY(m_BlockMetas[Idx1]); NIBBLETYPE Meta2 = BlockHandler(m_BlockTypes[Idx1])->MetaMirrorXY(m_BlockMetas[Idx2]); m_BlockMetas[Idx1] = Meta2; m_BlockMetas[Idx2] = Meta1; } // for x } // for z } // for y } void cBlockArea::MirrorXZ(void) { if (!HasBlockTypes()) { LOGWARNING("cBlockArea: Cannot mirror meta without blocktypes!"); return; } if (!HasBlockMetas()) { // There are no blockmetas to mirror, just use the NoMeta function MirrorXZNoMeta(); return; } // We are guaranteed that both blocktypes and blockmetas exist; mirror both at the same time: int HalfY = m_Size.y / 2; int MaxY = m_Size.y - 1; for (int y = 0; y < HalfY; y++) { for (int z = 0; z < m_Size.z; z++) { for (int x = 0; x < m_Size.x; x++) { int Idx1 = MakeIndex(x, y, z); int Idx2 = MakeIndex(x, MaxY - y, z); std::swap(m_BlockTypes[Idx1], m_BlockTypes[Idx2]); NIBBLETYPE Meta1 = BlockHandler(m_BlockTypes[Idx2])->MetaMirrorXZ(m_BlockMetas[Idx1]); NIBBLETYPE Meta2 = BlockHandler(m_BlockTypes[Idx1])->MetaMirrorXZ(m_BlockMetas[Idx2]); m_BlockMetas[Idx1] = Meta2; m_BlockMetas[Idx2] = Meta1; } // for x } // for z } // for y } void cBlockArea::MirrorYZ(void) { if (!HasBlockTypes()) { LOGWARNING("cBlockArea: Cannot mirror meta without blocktypes!"); return; } if (!HasBlockMetas()) { // There are no blockmetas to mirror, just use the NoMeta function MirrorYZNoMeta(); return; } // We are guaranteed that both blocktypes and blockmetas exist; mirror both at the same time: int HalfX = m_Size.x / 2; int MaxX = m_Size.x - 1; for (int y = 0; y < m_Size.y; y++) { for (int z = 0; z < m_Size.z; z++) { for (int x = 0; x < HalfX; x++) { int Idx1 = MakeIndex(x, y, z); int Idx2 = MakeIndex(MaxX - x, y, z); std::swap(m_BlockTypes[Idx1], m_BlockTypes[Idx2]); NIBBLETYPE Meta1 = BlockHandler(m_BlockTypes[Idx2])->MetaMirrorYZ(m_BlockMetas[Idx1]); NIBBLETYPE Meta2 = BlockHandler(m_BlockTypes[Idx1])->MetaMirrorYZ(m_BlockMetas[Idx2]); m_BlockMetas[Idx1] = Meta2; m_BlockMetas[Idx2] = Meta1; } // for x } // for z } // for y } void cBlockArea::RotateCCWNoMeta(void) { if (HasBlockTypes()) { BLOCKTYPE * NewTypes = new BLOCKTYPE[GetBlockCount()]; for (int x = 0; x < m_Size.x; x++) { int NewZ = m_Size.x - x - 1; for (int z = 0; z < m_Size.z; z++) { int NewX = z; for (int y = 0; y < m_Size.y; y++) { NewTypes[NewX + NewZ * m_Size.z + y * m_Size.x * m_Size.z] = m_BlockTypes[MakeIndex(x, y, z)]; } // for y } // for z } // for x std::swap(m_BlockTypes, NewTypes); delete[] NewTypes; NewTypes = nullptr; } if (HasBlockMetas()) { NIBBLETYPE * NewMetas = new NIBBLETYPE[GetBlockCount()]; for (int x = 0; x < m_Size.x; x++) { int NewZ = m_Size.x - x - 1; for (int z = 0; z < m_Size.z; z++) { int NewX = z; for (int y = 0; y < m_Size.y; y++) { NewMetas[NewX + NewZ * m_Size.z + y * m_Size.x * m_Size.z] = m_BlockMetas[MakeIndex(x, y, z)]; } // for y } // for z } // for x std::swap(m_BlockMetas, NewMetas); delete[] NewMetas; NewMetas = nullptr; } std::swap(m_Size.x, m_Size.z); } void cBlockArea::RotateCWNoMeta(void) { if (HasBlockTypes()) { BLOCKTYPE * NewTypes = new BLOCKTYPE[GetBlockCount()]; for (int z = 0; z < m_Size.z; z++) { int NewX = m_Size.z - z - 1; for (int x = 0; x < m_Size.x; x++) { int NewZ = x; for (int y = 0; y < m_Size.y; y++) { NewTypes[NewX + NewZ * m_Size.z + y * m_Size.x * m_Size.z] = m_BlockTypes[MakeIndex(x, y, z)]; } // for y } // for x } // for z std::swap(m_BlockTypes, NewTypes); delete[] NewTypes; NewTypes = nullptr; } if (HasBlockMetas()) { NIBBLETYPE * NewMetas = new NIBBLETYPE[GetBlockCount()]; for (int z = 0; z < m_Size.z; z++) { int NewX = m_Size.z - z - 1; for (int x = 0; x < m_Size.x; x++) { int NewZ = x; for (int y = 0; y < m_Size.y; y++) { NewMetas[NewX + NewZ * m_Size.z + y * m_Size.x * m_Size.z] = m_BlockMetas[MakeIndex(x, y, z)]; } // for y } // for x } // for z std::swap(m_BlockMetas, NewMetas); delete[] NewMetas; NewMetas = nullptr; } std::swap(m_Size.x, m_Size.z); } void cBlockArea::MirrorXYNoMeta(void) { int HalfZ = m_Size.z / 2; int MaxZ = m_Size.z - 1; if (HasBlockTypes()) { for (int y = 0; y < m_Size.y; y++) { for (int z = 0; z < HalfZ; z++) { for (int x = 0; x < m_Size.x; x++) { std::swap(m_BlockTypes[MakeIndex(x, y, z)], m_BlockTypes[MakeIndex(x, y, MaxZ - z)]); } // for x } // for z } // for y } // if (HasBlockTypes) if (HasBlockMetas()) { for (int y = 0; y < m_Size.y; y++) { for (int z = 0; z < HalfZ; z++) { for (int x = 0; x < m_Size.x; x++) { std::swap(m_BlockMetas[MakeIndex(x, y, z)], m_BlockMetas[MakeIndex(x, y, MaxZ - z)]); } // for x } // for z } // for y } // if (HasBlockMetas) } void cBlockArea::MirrorXZNoMeta(void) { int HalfY = m_Size.y / 2; int MaxY = m_Size.y - 1; if (HasBlockTypes()) { for (int y = 0; y < HalfY; y++) { for (int z = 0; z < m_Size.z; z++) { for (int x = 0; x < m_Size.x; x++) { std::swap(m_BlockTypes[MakeIndex(x, y, z)], m_BlockTypes[MakeIndex(x, MaxY - y, z)]); } // for x } // for z } // for y } // if (HasBlockTypes) if (HasBlockMetas()) { for (int y = 0; y < HalfY; y++) { for (int z = 0; z < m_Size.z; z++) { for (int x = 0; x < m_Size.x; x++) { std::swap(m_BlockMetas[MakeIndex(x, y, z)], m_BlockMetas[MakeIndex(x, MaxY - y, z)]); } // for x } // for z } // for y } // if (HasBlockMetas) } void cBlockArea::MirrorYZNoMeta(void) { int HalfX = m_Size.x / 2; int MaxX = m_Size.x - 1; if (HasBlockTypes()) { for (int y = 0; y < m_Size.y; y++) { for (int z = 0; z < m_Size.z; z++) { for (int x = 0; x < HalfX; x++) { std::swap(m_BlockTypes[MakeIndex(x, y, z)], m_BlockTypes[MakeIndex(MaxX - x, y, z)]); } // for x } // for z } // for y } // if (HasBlockTypes) if (HasBlockMetas()) { for (int y = 0; y < m_Size.y; y++) { for (int z = 0; z < m_Size.z; z++) { for (int x = 0; x < HalfX; x++) { std::swap(m_BlockMetas[MakeIndex(x, y, z)], m_BlockMetas[MakeIndex(MaxX - x, y, z)]); } // for x } // for z } // for y } // if (HasBlockMetas) } void cBlockArea::SetRelBlockType(int a_RelX, int a_RelY, int a_RelZ, BLOCKTYPE a_BlockType) { if (m_BlockTypes == nullptr) { LOGWARNING("cBlockArea: BlockTypes have not been read!"); return; } m_BlockTypes[MakeIndex(a_RelX, a_RelY, a_RelZ)] = a_BlockType; } void cBlockArea::SetBlockType(int a_BlockX, int a_BlockY, int a_BlockZ, BLOCKTYPE a_BlockType) { SetRelBlockType(a_BlockX - m_Origin.x, a_BlockY - m_Origin.y, a_BlockZ - m_Origin.z, a_BlockType); } void cBlockArea::SetRelBlockMeta(int a_RelX, int a_RelY, int a_RelZ, NIBBLETYPE a_BlockMeta) { SetRelNibble(a_RelX, a_RelY, a_RelZ, a_BlockMeta, m_BlockMetas); } void cBlockArea::SetBlockMeta(int a_BlockX, int a_BlockY, int a_BlockZ, NIBBLETYPE a_BlockMeta) { SetNibble(a_BlockX, a_BlockY, a_BlockZ, a_BlockMeta, m_BlockMetas); } void cBlockArea::SetRelBlockLight(int a_RelX, int a_RelY, int a_RelZ, NIBBLETYPE a_BlockLight) { SetRelNibble(a_RelX, a_RelY, a_RelZ, a_BlockLight, m_BlockLight); } void cBlockArea::SetBlockLight(int a_BlockX, int a_BlockY, int a_BlockZ, NIBBLETYPE a_BlockLight) { SetNibble(a_BlockX, a_BlockY, a_BlockZ, a_BlockLight, m_BlockLight); } void cBlockArea::SetRelBlockSkyLight(int a_RelX, int a_RelY, int a_RelZ, NIBBLETYPE a_BlockSkyLight) { SetRelNibble(a_RelX, a_RelY, a_RelZ, a_BlockSkyLight, m_BlockSkyLight); } void cBlockArea::SetBlockSkyLight(int a_BlockX, int a_BlockY, int a_BlockZ, NIBBLETYPE a_BlockSkyLight) { SetNibble(a_BlockX, a_BlockY, a_BlockZ, a_BlockSkyLight, m_BlockSkyLight); } BLOCKTYPE cBlockArea::GetRelBlockType(int a_RelX, int a_RelY, int a_RelZ) const { if (m_BlockTypes == nullptr) { LOGWARNING("cBlockArea: BlockTypes have not been read!"); return E_BLOCK_AIR; } return m_BlockTypes[MakeIndex(a_RelX, a_RelY, a_RelZ)]; } BLOCKTYPE cBlockArea::GetBlockType(int a_BlockX, int a_BlockY, int a_BlockZ) const { return GetRelBlockType(a_BlockX - m_Origin.x, a_BlockY - m_Origin.y, a_BlockZ - m_Origin.z); } NIBBLETYPE cBlockArea::GetRelBlockMeta(int a_RelX, int a_RelY, int a_RelZ) const { return GetRelNibble(a_RelX, a_RelY, a_RelZ, m_BlockMetas); } NIBBLETYPE cBlockArea::GetBlockMeta(int a_BlockX, int a_BlockY, int a_BlockZ) const { return GetNibble(a_BlockX, a_BlockY, a_BlockZ, m_BlockMetas); } NIBBLETYPE cBlockArea::GetRelBlockLight(int a_RelX, int a_RelY, int a_RelZ) const { return GetRelNibble(a_RelX, a_RelY, a_RelZ, m_BlockLight); } NIBBLETYPE cBlockArea::GetBlockLight(int a_BlockX, int a_BlockY, int a_BlockZ) const { return GetNibble(a_BlockX, a_BlockY, a_BlockZ, m_BlockLight); } NIBBLETYPE cBlockArea::GetRelBlockSkyLight(int a_RelX, int a_RelY, int a_RelZ) const { return GetRelNibble(a_RelX, a_RelY, a_RelZ, m_BlockSkyLight); } NIBBLETYPE cBlockArea::GetBlockSkyLight(int a_BlockX, int a_BlockY, int a_BlockZ) const { return GetNibble(a_BlockX, a_BlockY, a_BlockZ, m_BlockSkyLight); } void cBlockArea::SetBlockTypeMeta(int a_BlockX, int a_BlockY, int a_BlockZ, BLOCKTYPE a_BlockType, NIBBLETYPE a_BlockMeta) { SetRelBlockTypeMeta(a_BlockX - m_Origin.x, a_BlockY - m_Origin.y, a_BlockZ - m_Origin.z, a_BlockType, a_BlockMeta); } void cBlockArea::SetRelBlockTypeMeta(int a_RelX, int a_RelY, int a_RelZ, BLOCKTYPE a_BlockType, NIBBLETYPE a_BlockMeta) { int idx = MakeIndex(a_RelX, a_RelY, a_RelZ); if (m_BlockTypes == nullptr) { LOGWARNING("%s: BlockTypes not available but requested to be written to.", __FUNCTION__); } else { m_BlockTypes[idx] = a_BlockType; } if (m_BlockMetas == nullptr) { LOGWARNING("%s: BlockMetas not available but requested to be written to.", __FUNCTION__); } else { m_BlockMetas[idx] = a_BlockMeta; } } void cBlockArea::GetBlockTypeMeta(int a_BlockX, int a_BlockY, int a_BlockZ, BLOCKTYPE & a_BlockType, NIBBLETYPE & a_BlockMeta) const { return GetRelBlockTypeMeta(a_BlockX - m_Origin.x, a_BlockY - m_Origin.y, a_BlockZ - m_Origin.z, a_BlockType, a_BlockMeta); } void cBlockArea::GetRelBlockTypeMeta(int a_RelX, int a_RelY, int a_RelZ, BLOCKTYPE & a_BlockType, NIBBLETYPE & a_BlockMeta) const { int idx = MakeIndex(a_RelX, a_RelY, a_RelZ); if (m_BlockTypes == nullptr) { LOGWARNING("cBlockArea: BlockTypes have not been read!"); a_BlockType = E_BLOCK_AIR; } else { a_BlockType = m_BlockTypes[idx]; } if (m_BlockMetas == nullptr) { LOGWARNING("cBlockArea: BlockMetas have not been read!"); a_BlockMeta = 0; } else { a_BlockMeta = m_BlockMetas[idx]; } } size_t cBlockArea::CountNonAirBlocks(void) const { // Check if blocktypes are valid: if (m_BlockTypes == nullptr) { LOGWARNING("%s: BlockTypes have not been read!", __FUNCTION__); return 0; } // Count the blocks: size_t res = 0; for (int y = 0; y < m_Size.y; y++) { for (int z = 0; z < m_Size.z; z++) { for (int x = 0; x < m_Size.x; x++) { if (m_BlockTypes[MakeIndex(x, y, z)] != E_BLOCK_AIR) { ++res; } } // for x } // for z } // for y return res; } size_t cBlockArea::CountSpecificBlocks(BLOCKTYPE a_BlockType) const { // If blocktypes are not valid, log a warning and return zero occurences: if (m_BlockTypes == nullptr) { LOGWARNING("%s: BlockTypes not available!", __FUNCTION__); return 0; } // Count the blocks: size_t num = GetBlockCount(); size_t res = 0; for (size_t i = 0; i < num; i++) { if (m_BlockTypes[i] == a_BlockType) { res++; } } return res; } size_t cBlockArea::CountSpecificBlocks(BLOCKTYPE a_BlockType, NIBBLETYPE a_BlockMeta) const { // If blocktypes are not valid, log a warning and return zero occurences: if (m_BlockTypes == nullptr) { LOGWARNING("%s: BlockTypes not available!", __FUNCTION__); return 0; } // If blockmetas are not valid, log a warning and count only blocktypes: if (m_BlockMetas == nullptr) { LOGWARNING("%s: BlockMetas not available, comparing blocktypes only!", __FUNCTION__); return CountSpecificBlocks(a_BlockType); } // Count the blocks: size_t num = GetBlockCount(); size_t res = 0; for (size_t i = 0; i < num; i++) { if ((m_BlockTypes[i] == a_BlockType) && (m_BlockMetas[i] == a_BlockMeta)) { res++; } } return res; } void cBlockArea::GetNonAirCropRelCoords(int & a_MinRelX, int & a_MinRelY, int & a_MinRelZ, int & a_MaxRelX, int & a_MaxRelY, int & a_MaxRelZ, BLOCKTYPE a_IgnoreBlockType) { // Check if blocktypes are valid: if (m_BlockTypes == nullptr) { LOGWARNING("%s: BlockTypes have not been read!", __FUNCTION__); a_MinRelX = 1; a_MaxRelX = 0; return; } // Walk all the blocks and find the min and max coords for the non-ignored ones: int MaxX = 0, MinX = m_Size.x - 1; int MaxY = 0, MinY = m_Size.y - 1; int MaxZ = 0, MinZ = m_Size.z - 1; for (int y = 0; y < m_Size.y; y++) { for (int z = 0; z < m_Size.z; z++) { for (int x = 0; x < m_Size.x; x++) { if (m_BlockTypes[MakeIndex(x, y, z)] == a_IgnoreBlockType) { continue; } // The block is not ignored, update any coords that need updating: if (x < MinX) { MinX = x; } if (x > MaxX) { MaxX = x; } if (y < MinY) { MinY = y; } if (y > MaxY) { MaxY = y; } if (z < MinZ) { MinZ = z; } if (z > MaxZ) { MaxZ = z; } } // for x } // for z } // for y // Assign to the output: a_MinRelX = MinX; a_MinRelY = MinY; a_MinRelZ = MinZ; a_MaxRelX = MaxX; a_MaxRelY = MaxY; a_MaxRelZ = MaxZ; } int cBlockArea::GetDataTypes(void) const { int res = 0; if (m_BlockTypes != nullptr) { res |= baTypes; } if (m_BlockMetas != nullptr) { res |= baMetas; } if (m_BlockLight != nullptr) { res |= baLight; } if (m_BlockSkyLight != nullptr) { res |= baSkyLight; } return res; } bool cBlockArea::SetSize(int a_SizeX, int a_SizeY, int a_SizeZ, int a_DataTypes) { ASSERT(m_BlockTypes == nullptr); // Has been cleared if (a_DataTypes & baTypes) { m_BlockTypes = new BLOCKTYPE[a_SizeX * a_SizeY * a_SizeZ]; if (m_BlockTypes == nullptr) { return false; } } if (a_DataTypes & baMetas) { m_BlockMetas = new NIBBLETYPE[a_SizeX * a_SizeY * a_SizeZ]; if (m_BlockMetas == nullptr) { delete[] m_BlockTypes; m_BlockTypes = nullptr; return false; } } if (a_DataTypes & baLight) { m_BlockLight = new NIBBLETYPE[a_SizeX * a_SizeY * a_SizeZ]; if (m_BlockLight == nullptr) { delete[] m_BlockMetas; m_BlockMetas = nullptr; delete[] m_BlockTypes; m_BlockTypes = nullptr; return false; } } if (a_DataTypes & baSkyLight) { m_BlockSkyLight = new NIBBLETYPE[a_SizeX * a_SizeY * a_SizeZ]; if (m_BlockSkyLight == nullptr) { delete[] m_BlockLight; m_BlockLight = nullptr; delete[] m_BlockMetas; m_BlockMetas = nullptr; delete[] m_BlockTypes; m_BlockTypes = nullptr; return false; } } m_Size.Set(a_SizeX, a_SizeY, a_SizeZ); return true; } int cBlockArea::MakeIndex(int a_RelX, int a_RelY, int a_RelZ) const { ASSERT(a_RelX >= 0); ASSERT(a_RelX < m_Size.x); ASSERT(a_RelY >= 0); ASSERT(a_RelY < m_Size.y); ASSERT(a_RelZ >= 0); ASSERT(a_RelZ < m_Size.z); return a_RelX + a_RelZ * m_Size.x + a_RelY * m_Size.x * m_Size.z; } void cBlockArea::SetRelNibble(int a_RelX, int a_RelY, int a_RelZ, NIBBLETYPE a_Value, NIBBLETYPE * a_Array) { if (a_Array == nullptr) { LOGWARNING("cBlockArea: datatype has not been read!"); return; } a_Array[MakeIndex(a_RelX, a_RelY, a_RelZ)] = a_Value; } void cBlockArea::SetNibble(int a_BlockX, int a_BlockY, int a_BlockZ, NIBBLETYPE a_Value, NIBBLETYPE * a_Array) { SetRelNibble(a_BlockX - m_Origin.x, a_BlockY - m_Origin.y, a_BlockZ - m_Origin.z, a_Value, a_Array); } NIBBLETYPE cBlockArea::GetRelNibble(int a_RelX, int a_RelY, int a_RelZ, NIBBLETYPE * a_Array) const { if (a_Array == nullptr) { LOGWARNING("cBlockArea: datatype has not been read!"); return 16; } return a_Array[MakeIndex(a_RelX, a_RelY, a_RelZ)]; } NIBBLETYPE cBlockArea::GetNibble(int a_BlockX, int a_BlockY, int a_BlockZ, NIBBLETYPE * a_Array) const { return GetRelNibble(a_BlockX - m_Origin.x, a_BlockY - m_Origin.y, a_BlockZ - m_Origin.z, a_Array); } //////////////////////////////////////////////////////////////////////////////// // cBlockArea::cChunkReader: cBlockArea::cChunkReader::cChunkReader(cBlockArea & a_Area) : m_Area(a_Area), m_Origin(a_Area.m_Origin.x, a_Area.m_Origin.y, a_Area.m_Origin.z), m_CurrentChunkX(0), m_CurrentChunkZ(0) { } void cBlockArea::cChunkReader::CopyNibbles(NIBBLETYPE * a_AreaDst, const NIBBLETYPE * a_ChunkSrc) { int SizeY = m_Area.m_Size.y; int MinY = m_Origin.y; // SizeX, SizeZ are the dmensions of the block data to copy from the current chunk (size of the geometric union) // OffX, OffZ are the offsets of the current chunk data from the area origin // BaseX, BaseZ are the offsets of the area data within the current chunk from the chunk borders int SizeX = cChunkDef::Width; int SizeZ = cChunkDef::Width; int OffX, OffZ; int BaseX, BaseZ; OffX = m_CurrentChunkX * cChunkDef::Width - m_Origin.x; if (OffX < 0) { BaseX = -OffX; SizeX += OffX; // SizeX is decreased, OffX is negative OffX = 0; } else { BaseX = 0; } OffZ = m_CurrentChunkZ * cChunkDef::Width - m_Origin.z; if (OffZ < 0) { BaseZ = -OffZ; SizeZ += OffZ; // SizeZ is decreased, OffZ is negative OffZ = 0; } else { BaseZ = 0; } // If the chunk extends beyond the area in the X or Z axis, cut off the Size: if ((m_CurrentChunkX + 1) * cChunkDef::Width > m_Origin.x + m_Area.m_Size.x) { SizeX -= (m_CurrentChunkX + 1) * cChunkDef::Width - (m_Origin.x + m_Area.m_Size.x); } if ((m_CurrentChunkZ + 1) * cChunkDef::Width > m_Origin.z + m_Area.m_Size.z) { SizeZ -= (m_CurrentChunkZ + 1) * cChunkDef::Width - (m_Origin.z + m_Area.m_Size.z); } for (int y = 0; y < SizeY; y++) { int ChunkY = MinY + y; int AreaY = y; for (int z = 0; z < SizeZ; z++) { int ChunkZ = BaseZ + z; int AreaZ = OffZ + z; for (int x = 0; x < SizeX; x++) { int ChunkX = BaseX + x; int AreaX = OffX + x; a_AreaDst[m_Area.MakeIndex(AreaX, AreaY, AreaZ)] = cChunkDef::GetNibble(a_ChunkSrc, ChunkX, ChunkY, ChunkZ); } // for x } // for z } // for y } bool cBlockArea::cChunkReader::Coords(int a_ChunkX, int a_ChunkZ) { m_CurrentChunkX = a_ChunkX; m_CurrentChunkZ = a_ChunkZ; return true; } void cBlockArea::cChunkReader::ChunkData(const cChunkData & a_BlockBuffer) { int SizeY = m_Area.m_Size.y; int MinY = m_Origin.y; // SizeX, SizeZ are the dimensions of the block data to copy from the current chunk (size of the geometric union) // OffX, OffZ are the offsets of the current chunk data from the area origin // BaseX, BaseZ are the offsets of the area data within the current chunk from the chunk borders int SizeX = cChunkDef::Width; int SizeZ = cChunkDef::Width; int OffX, OffZ; int BaseX, BaseZ; OffX = m_CurrentChunkX * cChunkDef::Width - m_Origin.x; if (OffX < 0) { BaseX = -OffX; SizeX += OffX; // SizeX is decreased, OffX is negative OffX = 0; } else { BaseX = 0; } OffZ = m_CurrentChunkZ * cChunkDef::Width - m_Origin.z; if (OffZ < 0) { BaseZ = -OffZ; SizeZ += OffZ; // SizeZ is decreased, OffZ is negative OffZ = 0; } else { BaseZ = 0; } // If the chunk extends beyond the area in the X or Z axis, cut off the Size: if ((m_CurrentChunkX + 1) * cChunkDef::Width > m_Origin.x + m_Area.m_Size.x) { SizeX -= (m_CurrentChunkX + 1) * cChunkDef::Width - (m_Origin.x + m_Area.m_Size.x); } if ((m_CurrentChunkZ + 1) * cChunkDef::Width > m_Origin.z + m_Area.m_Size.z) { SizeZ -= (m_CurrentChunkZ + 1) * cChunkDef::Width - (m_Origin.z + m_Area.m_Size.z); } // Copy the blocktypes: if (m_Area.m_BlockTypes != nullptr) { for (int y = 0; y < SizeY; y++) { int InChunkY = MinY + y; int AreaY = y; for (int z = 0; z < SizeZ; z++) { int InChunkZ = BaseZ + z; int AreaZ = OffZ + z; for (int x = 0; x < SizeX; x++) { int InChunkX = BaseX + x; int AreaX = OffX + x; m_Area.m_BlockTypes[m_Area.MakeIndex(AreaX, AreaY, AreaZ)] = a_BlockBuffer.GetBlock(InChunkX, InChunkY, InChunkZ); } // for x } // for z } // for y } // Copy the block metas: if (m_Area.m_BlockMetas != nullptr) { for (int y = 0; y < SizeY; y++) { int InChunkY = MinY + y; int AreaY = y; for (int z = 0; z < SizeZ; z++) { int InChunkZ = BaseZ + z; int AreaZ = OffZ + z; for (int x = 0; x < SizeX; x++) { int InChunkX = BaseX + x; int AreaX = OffX + x; m_Area.m_BlockMetas[m_Area.MakeIndex(AreaX, AreaY, AreaZ)] = a_BlockBuffer.GetMeta(InChunkX, InChunkY, InChunkZ); } // for x } // for z } // for y } // Copy the blocklight: if (m_Area.m_BlockLight != nullptr) { for (int y = 0; y < SizeY; y++) { int InChunkY = MinY + y; int AreaY = y; for (int z = 0; z < SizeZ; z++) { int InChunkZ = BaseZ + z; int AreaZ = OffZ + z; for (int x = 0; x < SizeX; x++) { int InChunkX = BaseX + x; int AreaX = OffX + x; m_Area.m_BlockLight[m_Area.MakeIndex(AreaX, AreaY, AreaZ)] = a_BlockBuffer.GetBlockLight(InChunkX, InChunkY, InChunkZ); } // for x } // for z } // for y } // Copy the skylight: if (m_Area.m_BlockSkyLight != nullptr) { for (int y = 0; y < SizeY; y++) { int InChunkY = MinY + y; int AreaY = y; for (int z = 0; z < SizeZ; z++) { int InChunkZ = BaseZ + z; int AreaZ = OffZ + z; for (int x = 0; x < SizeX; x++) { int InChunkX = BaseX + x; int AreaX = OffX + x; m_Area.m_BlockSkyLight[m_Area.MakeIndex(AreaX, AreaY, AreaZ)] = a_BlockBuffer.GetSkyLight(InChunkX, InChunkY, InChunkZ); } // for x } // for z } // for y } } void cBlockArea::CropBlockTypes(int a_AddMinX, int a_SubMaxX, int a_AddMinY, int a_SubMaxY, int a_AddMinZ, int a_SubMaxZ) { int NewSizeX = GetSizeX() - a_AddMinX - a_SubMaxX; int NewSizeY = GetSizeY() - a_AddMinY - a_SubMaxY; int NewSizeZ = GetSizeZ() - a_AddMinZ - a_SubMaxZ; BLOCKTYPE * NewBlockTypes = new BLOCKTYPE[NewSizeX * NewSizeY * NewSizeZ]; int idx = 0; for (int y = 0; y < NewSizeY; y++) { for (int z = 0; z < NewSizeZ; z++) { for (int x = 0; x < NewSizeX; x++) { int OldIndex = MakeIndex(x + a_AddMinX, y + a_AddMinY, z + a_AddMinZ); NewBlockTypes[idx++] = m_BlockTypes[OldIndex]; } // for x } // for z } // for y delete m_BlockTypes; m_BlockTypes = NewBlockTypes; } void cBlockArea::CropNibbles(NIBBLEARRAY & a_Array, int a_AddMinX, int a_SubMaxX, int a_AddMinY, int a_SubMaxY, int a_AddMinZ, int a_SubMaxZ) { int NewSizeX = GetSizeX() - a_AddMinX - a_SubMaxX; int NewSizeY = GetSizeY() - a_AddMinY - a_SubMaxY; int NewSizeZ = GetSizeZ() - a_AddMinZ - a_SubMaxZ; NIBBLETYPE * NewNibbles = new NIBBLETYPE[NewSizeX * NewSizeY * NewSizeZ]; int idx = 0; for (int y = 0; y < NewSizeY; y++) { for (int z = 0; z < NewSizeZ; z++) { for (int x = 0; x < NewSizeX; x++) { NewNibbles[idx++] = a_Array[MakeIndex(x + a_AddMinX, y + a_AddMinY, z + a_AddMinZ)]; } // for x } // for z } // for y delete a_Array; a_Array = NewNibbles; } void cBlockArea::ExpandBlockTypes(int a_SubMinX, int a_AddMaxX, int a_SubMinY, int a_AddMaxY, int a_SubMinZ, int a_AddMaxZ) { int NewSizeX = m_Size.x + a_SubMinX + a_AddMaxX; int NewSizeY = m_Size.y + a_SubMinY + a_AddMaxY; int NewSizeZ = m_Size.z + a_SubMinZ + a_AddMaxZ; size_t BlockCount = static_cast(NewSizeX * NewSizeY * NewSizeZ); BLOCKTYPE * NewBlockTypes = new BLOCKTYPE[BlockCount]; memset(NewBlockTypes, 0, BlockCount * sizeof(BLOCKTYPE)); int OldIndex = 0; for (int y = 0; y < m_Size.y; y++) { int IndexBaseY = (y + a_SubMinY) * m_Size.x * m_Size.z; for (int z = 0; z < m_Size.z; z++) { int IndexBaseZ = IndexBaseY + (z + a_SubMinZ) * m_Size.x; int idx = IndexBaseZ + a_SubMinX; for (int x = 0; x < m_Size.x; x++) { NewBlockTypes[idx++] = m_BlockTypes[OldIndex++]; } // for x } // for z } // for y delete m_BlockTypes; m_BlockTypes = NewBlockTypes; } void cBlockArea::ExpandNibbles(NIBBLEARRAY & a_Array, int a_SubMinX, int a_AddMaxX, int a_SubMinY, int a_AddMaxY, int a_SubMinZ, int a_AddMaxZ) { int NewSizeX = m_Size.x + a_SubMinX + a_AddMaxX; int NewSizeY = m_Size.y + a_SubMinY + a_AddMaxY; int NewSizeZ = m_Size.z + a_SubMinZ + a_AddMaxZ; size_t BlockCount = static_cast(NewSizeX * NewSizeY * NewSizeZ); NIBBLETYPE * NewNibbles = new NIBBLETYPE[BlockCount]; memset(NewNibbles, 0, BlockCount * sizeof(NIBBLETYPE)); int OldIndex = 0; for (int y = 0; y < m_Size.y; y++) { int IndexBaseY = (y + a_SubMinY) * m_Size.x * m_Size.z; for (int z = 0; z < m_Size.z; z++) { int IndexBaseZ = IndexBaseY + (z + a_SubMinZ) * m_Size.x; int idx = IndexBaseZ + a_SubMinX; for (int x = 0; x < m_Size.x; x++) { NewNibbles[idx++] = a_Array[OldIndex++]; } // for x } // for z } // for y delete a_Array; a_Array = NewNibbles; } void cBlockArea::RelSetData( int a_RelX, int a_RelY, int a_RelZ, int a_DataTypes, BLOCKTYPE a_BlockType, NIBBLETYPE a_BlockMeta, NIBBLETYPE a_BlockLight, NIBBLETYPE a_BlockSkyLight ) { int Index = MakeIndex(a_RelX, a_RelY, a_RelZ); if ((a_DataTypes & baTypes) != 0) { m_BlockTypes[Index] = a_BlockType; } if ((a_DataTypes & baMetas) != 0) { m_BlockMetas[Index] = a_BlockMeta; } if ((a_DataTypes & baLight) != 0) { m_BlockLight[Index] = a_BlockLight; } if ((a_DataTypes & baSkyLight) != 0) { m_BlockSkyLight[Index] = a_BlockSkyLight; } } template void cBlockArea::MergeByStrategy(const cBlockArea & a_Src, int a_RelX, int a_RelY, int a_RelZ, eMergeStrategy a_Strategy, const NIBBLETYPE * SrcMetas, NIBBLETYPE * DstMetas) { // Block types are compulsory, block metas are optional if (!HasBlockTypes() || !a_Src.HasBlockTypes()) { LOGWARNING("%s: cannot merge because one of the areas doesn't have blocktypes.", __FUNCTION__); return; } // Dst is *this, Src is a_Src int SrcOffX = std::max(0, -a_RelX); // Offset in Src where to start reading int DstOffX = std::max(0, a_RelX); // Offset in Dst where to start writing int SizeX = std::min(a_Src.GetSizeX() - SrcOffX, GetSizeX() - DstOffX); // How many blocks to copy int SrcOffY = std::max(0, -a_RelY); // Offset in Src where to start reading int DstOffY = std::max(0, a_RelY); // Offset in Dst where to start writing int SizeY = std::min(a_Src.GetSizeY() - SrcOffY, GetSizeY() - DstOffY); // How many blocks to copy int SrcOffZ = std::max(0, -a_RelZ); // Offset in Src where to start reading int DstOffZ = std::max(0, a_RelZ); // Offset in Dst where to start writing int SizeZ = std::min(a_Src.GetSizeZ() - SrcOffZ, GetSizeZ() - DstOffZ); // How many blocks to copy switch (a_Strategy) { case cBlockArea::msOverwrite: { InternalMergeBlocks >( m_BlockTypes, a_Src.GetBlockTypes(), DstMetas, SrcMetas, SizeX, SizeY, SizeZ, SrcOffX, SrcOffY, SrcOffZ, DstOffX, DstOffY, DstOffZ, a_Src.GetSizeX(), a_Src.GetSizeY(), a_Src.GetSizeZ(), m_Size.x, m_Size.y, m_Size.z ); return; } // case msOverwrite case cBlockArea::msFillAir: { InternalMergeBlocks >( m_BlockTypes, a_Src.GetBlockTypes(), DstMetas, SrcMetas, SizeX, SizeY, SizeZ, SrcOffX, SrcOffY, SrcOffZ, DstOffX, DstOffY, DstOffZ, a_Src.GetSizeX(), a_Src.GetSizeY(), a_Src.GetSizeZ(), m_Size.x, m_Size.y, m_Size.z ); return; } // case msFillAir case cBlockArea::msImprint: { InternalMergeBlocks >( m_BlockTypes, a_Src.GetBlockTypes(), DstMetas, SrcMetas, SizeX, SizeY, SizeZ, SrcOffX, SrcOffY, SrcOffZ, DstOffX, DstOffY, DstOffZ, a_Src.GetSizeX(), a_Src.GetSizeY(), a_Src.GetSizeZ(), m_Size.x, m_Size.y, m_Size.z ); return; } // case msImprint case cBlockArea::msLake: { InternalMergeBlocks >( m_BlockTypes, a_Src.GetBlockTypes(), DstMetas, SrcMetas, SizeX, SizeY, SizeZ, SrcOffX, SrcOffY, SrcOffZ, DstOffX, DstOffY, DstOffZ, a_Src.GetSizeX(), a_Src.GetSizeY(), a_Src.GetSizeZ(), m_Size.x, m_Size.y, m_Size.z ); return; } // case msLake case cBlockArea::msSpongePrint: { InternalMergeBlocks >( m_BlockTypes, a_Src.GetBlockTypes(), DstMetas, SrcMetas, SizeX, SizeY, SizeZ, SrcOffX, SrcOffY, SrcOffZ, DstOffX, DstOffY, DstOffZ, a_Src.GetSizeX(), a_Src.GetSizeY(), a_Src.GetSizeZ(), m_Size.x, m_Size.y, m_Size.z ); return; } // case msSpongePrint case cBlockArea::msDifference: { InternalMergeBlocks >( m_BlockTypes, a_Src.GetBlockTypes(), DstMetas, SrcMetas, SizeX, SizeY, SizeZ, SrcOffX, SrcOffY, SrcOffZ, DstOffX, DstOffY, DstOffZ, a_Src.GetSizeX(), a_Src.GetSizeY(), a_Src.GetSizeZ(), m_Size.x, m_Size.y, m_Size.z ); return; } // case msDifference case cBlockArea::msSimpleCompare: { InternalMergeBlocks >( m_BlockTypes, a_Src.GetBlockTypes(), DstMetas, SrcMetas, SizeX, SizeY, SizeZ, SrcOffX, SrcOffY, SrcOffZ, DstOffX, DstOffY, DstOffZ, a_Src.GetSizeX(), a_Src.GetSizeY(), a_Src.GetSizeZ(), m_Size.x, m_Size.y, m_Size.z ); return; } // case msSimpleCompare case cBlockArea::msMask: { InternalMergeBlocks >( m_BlockTypes, a_Src.GetBlockTypes(), DstMetas, SrcMetas, SizeX, SizeY, SizeZ, SrcOffX, SrcOffY, SrcOffZ, DstOffX, DstOffY, DstOffZ, a_Src.GetSizeX(), a_Src.GetSizeY(), a_Src.GetSizeZ(), m_Size.x, m_Size.y, m_Size.z ); return; } // case msMask } // switch (a_Strategy) LOGWARNING("Unknown block area merge strategy: %d", a_Strategy); ASSERT(!"Unknown block area merge strategy"); return; }