#include "Globals.h" // NOTE: MSVC stupidness requires this to be the same across all modules #include "Tracer.h" #include "World.h" #include "Entities/Entity.h" #ifndef _WIN32 #include #endif const float FLOAT_EPSILON = 0.0001f; // TODO: Stash this in some header where it can be reused const std::array& cTracer::m_NormalTable(void) { static std::array* table = new std::array { { Vector3f(-1, 0, 0), // 1: -x Vector3f( 0, 0, -1), // 2: -z Vector3f( 1, 0, 0), // 3: +x Vector3f( 0, 0, 1), // 4: +z Vector3f( 0, 1, 0), // 5: +y Vector3f( 0, -1, 0) // 6: -y } }; return *table; }; cTracer::cTracer(cWorld * a_World): m_World(a_World) { } cTracer::~cTracer() { } int cTracer::SigNum(float a_Num) { if (a_Num < 0.f) { return -1; } if (a_Num > 0.f) { return 1; } return 0; } void cTracer::SetValues(const Vector3f & a_Start, const Vector3f & a_Direction) { // Since this method should only be called by Trace, zero length vectors should already have been taken care of ASSERT(a_Direction.HasNonZeroLength()); // calculate the direction of the ray (linear algebra) m_Dir = a_Direction; // decide which direction to start walking in m_Step.x = SigNum(m_Dir.x); m_Step.y = SigNum(m_Dir.y); m_Step.z = SigNum(m_Dir.z); // normalize the direction vector m_Dir.Normalize(); // how far we must move in the ray direction before // we encounter a new voxel in x-direction // same but y-direction if (m_Dir.x != 0.f) { m_tDelta.x = 1 / std::abs(m_Dir.x); } else { m_tDelta.x = 0; } if (m_Dir.y != 0.f) { m_tDelta.y = 1 / std::abs(m_Dir.y); } else { m_tDelta.y = 0; } if (m_Dir.z != 0.f) { m_tDelta.z = 1 / std::abs(m_Dir.z); } else { m_tDelta.z = 0; } // start voxel coordinates m_Pos.x = static_cast(floorf(a_Start.x)); m_Pos.y = static_cast(floorf(a_Start.y)); m_Pos.z = static_cast(floorf(a_Start.z)); // calculate distance to first intersection in the voxel we start from if (m_Dir.x < 0) { m_tMax.x = (static_cast(m_Pos.x) - a_Start.x) / m_Dir.x; } else { m_tMax.x = (static_cast(m_Pos.x + 1) - a_Start.x) / m_Dir.x; // TODO: Possible division by zero } if (m_Dir.y < 0) { m_tMax.y = (static_cast(m_Pos.y) - a_Start.y) / m_Dir.y; } else { m_tMax.y = (static_cast(m_Pos.y + 1) - a_Start.y) / m_Dir.y; // TODO: Possible division by zero } if (m_Dir.z < 0) { m_tMax.z = (static_cast(m_Pos.z) - a_Start.z) / m_Dir.z; } else { m_tMax.z = (static_cast(m_Pos.z + 1) - a_Start.z) / m_Dir.z; // TODO: Possible division by zero } } bool cTracer::Trace(const Vector3f & a_Start, const Vector3f & a_Direction, int a_Distance, bool a_LineOfSight) { if (!a_Direction.HasNonZeroLength()) { return false; } if ((a_Start.y < 0) || (a_Start.y >= cChunkDef::Height)) { LOGD("%s: Start Y is outside the world (%.2f), not tracing.", __FUNCTION__, a_Start.y); return false; } SetValues(a_Start, a_Direction); Vector3f End = a_Start + (m_Dir * static_cast(a_Distance)); if (End.y < 0) { float dist = -a_Start.y / m_Dir.y; // No division by 0 possible End = a_Start + (m_Dir * dist); } // end voxel coordinates m_End1.x = static_cast(floorf(End.x)); m_End1.y = static_cast(floorf(End.y)); m_End1.z = static_cast(floorf(End.z)); // check if first is occupied if (m_Pos.Equals(m_End1)) { return false; } bool reachedX = false, reachedY = false, reachedZ = false; int Iterations = 0; while (Iterations < a_Distance) { Iterations++; if ((m_tMax.x < m_tMax.y) && (m_tMax.x < m_tMax.z)) { m_tMax.x += m_tDelta.x; m_Pos.x += m_Step.x; } else if (m_tMax.y < m_tMax.z) { m_tMax.y += m_tDelta.y; m_Pos.y += m_Step.y; } else { m_tMax.z += m_tDelta.z; m_Pos.z += m_Step.z; } if (m_Step.x > 0.0f) { if (m_Pos.x >= m_End1.x) { reachedX = true; } } else if (m_Pos.x <= m_End1.x) { reachedX = true; } if (m_Step.y > 0.0f) { if (m_Pos.y >= m_End1.y) { reachedY = true; } } else if (m_Pos.y <= m_End1.y) { reachedY = true; } if (m_Step.z > 0.0f) { if (m_Pos.z >= m_End1.z) { reachedZ = true; } } else if (m_Pos.z <= m_End1.z) { reachedZ = true; } if (reachedX && reachedY && reachedZ) { return false; } if ((m_Pos.y < 0) || (m_Pos.y >= cChunkDef::Height)) { return false; } BLOCKTYPE BlockID = m_World->GetBlock(m_Pos); // Block is counted as a collision if we are not doing a line of sight and it is solid, // or if the block is not air and not water. That way mobs can still see underwater. if ((!a_LineOfSight && cBlockInfo::IsSolid(BlockID)) || (a_LineOfSight && (BlockID != E_BLOCK_AIR) && !IsBlockWater(BlockID))) { BlockHitPosition = m_Pos; int Normal = GetHitNormal(a_Start, End, m_Pos); if (Normal > 0) { HitNormal = m_NormalTable()[static_cast(Normal - 1)]; } return true; } } return false; } // return 1 = hit, other is not hit static int LinesCross(float x0, float y0, float x1, float y1, float x2, float y2, float x3, float y3) { // float linx, liny; float d = (x1 - x0) * (y3 - y2) - (y1 - y0) * (x3 - x2); if (std::abs(d) < 0.001) { return 0; } float AB = ((y0 - y2) * (x3 - x2) - (x0 - x2) * (y3 - y2)) / d; if ((AB >= 0.0) && (AB <= 1.0)) { float CD = ((y0 - y2) * (x1 - x0) - (x0 - x2) * (y1 - y0)) / d; if ((CD >= 0.0) && (CD <= 1.0)) { // linx = x0 + AB * (x1 - x0); // liny = y0 + AB * (y1 - y0); return 1; } } return 0; } // intersect3D_SegmentPlane(): intersect a segment and a plane // Input: a_Ray = a segment, and a_Plane = a plane = {Point V0; Vector n;} // Output: *I0 = the intersect point (when it exists) // Return: 0 = disjoint (no intersection) // 1 = intersection in the unique point *I0 // 2 = the segment lies in the plane int cTracer::intersect3D_SegmentPlane(const Vector3f & a_Origin, const Vector3f & a_End, const Vector3f & a_PlanePos, const Vector3f & a_PlaneNormal) { Vector3f u = a_End - a_Origin; // a_Ray.P1 - S.P0; Vector3f w = a_Origin - a_PlanePos; // S.P0 - Pn.V0; float D = a_PlaneNormal.Dot(u); // dot(Pn.n, u); float N = -(a_PlaneNormal.Dot(w)); // -dot(a_Plane.n, w); if (std::abs(D) < FLOAT_EPSILON) { // segment is parallel to plane if (N == 0.0) { // segment lies in plane return 2; } return 0; // no intersection } // they are not parallel // compute intersect param float sI = N / D; if ((sI < 0) || (sI > 1)) { return 0; // no intersection } // Vector3f I (a_Ray->GetOrigin() + sI * u);// S.P0 + sI * u; // compute segment intersect point RealHit = a_Origin + u * sI; return 1; } int cTracer::GetHitNormal(const Vector3f & a_Start, const Vector3f & a_End, const Vector3i & a_BlockPos) { Vector3i SmallBlockPos = a_BlockPos; BLOCKTYPE BlockID = static_cast(m_World->GetBlock(a_BlockPos.x, a_BlockPos.y, a_BlockPos.z)); if ((BlockID == E_BLOCK_AIR) || IsBlockWater(BlockID)) { return 0; } Vector3f BlockPos; BlockPos = Vector3f(SmallBlockPos); Vector3f Look = (a_End - a_Start); Look.Normalize(); float dot = Look.Dot(Vector3f(-1, 0, 0)); // first face normal is x -1 if (dot < 0) { int Lines = LinesCross(a_Start.x, a_Start.y, a_End.x, a_End.y, BlockPos.x, BlockPos.y, BlockPos.x, BlockPos.y + 1); if (Lines == 1) { Lines = LinesCross(a_Start.x, a_Start.z, a_End.x, a_End.z, BlockPos.x, BlockPos.z, BlockPos.x, BlockPos.z + 1); if (Lines == 1) { intersect3D_SegmentPlane(a_Start, a_End, BlockPos, Vector3f(-1, 0, 0)); return 1; } } } dot = Look.Dot(Vector3f(0, 0, -1)); // second face normal is z -1 if (dot < 0) { int Lines = LinesCross(a_Start.z, a_Start.y, a_End.z, a_End.y, BlockPos.z, BlockPos.y, BlockPos.z, BlockPos.y + 1); if (Lines == 1) { Lines = LinesCross(a_Start.z, a_Start.x, a_End.z, a_End.x, BlockPos.z, BlockPos.x, BlockPos.z, BlockPos.x + 1); if (Lines == 1) { intersect3D_SegmentPlane(a_Start, a_End, BlockPos, Vector3f(0, 0, -1)); return 2; } } } dot = Look.Dot(Vector3f(1, 0, 0)); // third face normal is x 1 if (dot < 0) { int Lines = LinesCross(a_Start.x, a_Start.y, a_End.x, a_End.y, BlockPos.x + 1, BlockPos.y, BlockPos.x + 1, BlockPos.y + 1); if (Lines == 1) { Lines = LinesCross(a_Start.x, a_Start.z, a_End.x, a_End.z, BlockPos.x + 1, BlockPos.z, BlockPos.x + 1, BlockPos.z + 1); if (Lines == 1) { intersect3D_SegmentPlane(a_Start, a_End, BlockPos + Vector3f(1, 0, 0), Vector3f(1, 0, 0)); return 3; } } } dot = Look.Dot(Vector3f(0, 0, 1)); // fourth face normal is z 1 if (dot < 0) { int Lines = LinesCross(a_Start.z, a_Start.y, a_End.z, a_End.y, BlockPos.z + 1, BlockPos.y, BlockPos.z + 1, BlockPos.y + 1); if (Lines == 1) { Lines = LinesCross(a_Start.z, a_Start.x, a_End.z, a_End.x, BlockPos.z + 1, BlockPos.x, BlockPos.z + 1, BlockPos.x + 1); if (Lines == 1) { intersect3D_SegmentPlane(a_Start, a_End, BlockPos + Vector3f(0, 0, 1), Vector3f(0, 0, 1)); return 4; } } } dot = Look.Dot(Vector3f(0, 1, 0)); // fifth face normal is y 1 if (dot < 0) { int Lines = LinesCross(a_Start.y, a_Start.x, a_End.y, a_End.x, BlockPos.y + 1, BlockPos.x, BlockPos.y + 1, BlockPos.x + 1); if (Lines == 1) { Lines = LinesCross(a_Start.y, a_Start.z, a_End.y, a_End.z, BlockPos.y + 1, BlockPos.z, BlockPos.y + 1, BlockPos.z + 1); if (Lines == 1) { intersect3D_SegmentPlane(a_Start, a_End, BlockPos + Vector3f(0, 1, 0), Vector3f(0, 1, 0)); return 5; } } } dot = Look.Dot(Vector3f(0, -1, 0)); // sixth face normal is y -1 if (dot < 0) { int Lines = LinesCross(a_Start.y, a_Start.x, a_End.y, a_End.x, BlockPos.y, BlockPos.x, BlockPos.y, BlockPos.x + 1); if (Lines == 1) { Lines = LinesCross(a_Start.y, a_Start.z, a_End.y, a_End.z, BlockPos.y, BlockPos.z, BlockPos.y, BlockPos.z + 1); if (Lines == 1) { intersect3D_SegmentPlane(a_Start, a_End, BlockPos, Vector3f(0, -1, 0)); return 6; } } } return 0; }