#ifndef CRYPTOPP_GF2N_H #define CRYPTOPP_GF2N_H /*! \file */ #include "cryptlib.h" #include "secblock.h" #include "misc.h" #include "algebra.h" #include <iosfwd> NAMESPACE_BEGIN(CryptoPP) //! Polynomial with Coefficients in GF(2) /*! \nosubgrouping */ class CRYPTOPP_DLL PolynomialMod2 { public: //! \name ENUMS, EXCEPTIONS, and TYPEDEFS //@{ //! divide by zero exception class DivideByZero : public Exception { public: DivideByZero() : Exception(OTHER_ERROR, "PolynomialMod2: division by zero") {} }; typedef unsigned int RandomizationParameter; //@} //! \name CREATORS //@{ //! creates the zero polynomial PolynomialMod2(); //! copy constructor PolynomialMod2(const PolynomialMod2& t); //! convert from word /*! value should be encoded with the least significant bit as coefficient to x^0 and most significant bit as coefficient to x^(WORD_BITS-1) bitLength denotes how much memory to allocate initially */ PolynomialMod2(word value, size_t bitLength=WORD_BITS); //! convert from big-endian byte array PolynomialMod2(const byte *encodedPoly, size_t byteCount) {Decode(encodedPoly, byteCount);} //! convert from big-endian form stored in a BufferedTransformation PolynomialMod2(BufferedTransformation &encodedPoly, size_t byteCount) {Decode(encodedPoly, byteCount);} //! create a random polynomial uniformly distributed over all polynomials with degree less than bitcount PolynomialMod2(RandomNumberGenerator &rng, size_t bitcount) {Randomize(rng, bitcount);} //! return x^i static PolynomialMod2 CRYPTOPP_API Monomial(size_t i); //! return x^t0 + x^t1 + x^t2 static PolynomialMod2 CRYPTOPP_API Trinomial(size_t t0, size_t t1, size_t t2); //! return x^t0 + x^t1 + x^t2 + x^t3 + x^t4 static PolynomialMod2 CRYPTOPP_API Pentanomial(size_t t0, size_t t1, size_t t2, size_t t3, size_t t4); //! return x^(n-1) + ... + x + 1 static PolynomialMod2 CRYPTOPP_API AllOnes(size_t n); //! static const PolynomialMod2 & CRYPTOPP_API Zero(); //! static const PolynomialMod2 & CRYPTOPP_API One(); //@} //! \name ENCODE/DECODE //@{ //! minimum number of bytes to encode this polynomial /*! MinEncodedSize of 0 is 1 */ unsigned int MinEncodedSize() const {return STDMAX(1U, ByteCount());} //! encode in big-endian format /*! if outputLen < MinEncodedSize, the most significant bytes will be dropped if outputLen > MinEncodedSize, the most significant bytes will be padded */ void Encode(byte *output, size_t outputLen) const; //! void Encode(BufferedTransformation &bt, size_t outputLen) const; //! void Decode(const byte *input, size_t inputLen); //! //* Precondition: bt.MaxRetrievable() >= inputLen void Decode(BufferedTransformation &bt, size_t inputLen); //! encode value as big-endian octet string void DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const; //! decode value as big-endian octet string void BERDecodeAsOctetString(BufferedTransformation &bt, size_t length); //@} //! \name ACCESSORS //@{ //! number of significant bits = Degree() + 1 unsigned int BitCount() const; //! number of significant bytes = ceiling(BitCount()/8) unsigned int ByteCount() const; //! number of significant words = ceiling(ByteCount()/sizeof(word)) unsigned int WordCount() const; //! return the n-th bit, n=0 being the least significant bit bool GetBit(size_t n) const {return GetCoefficient(n)!=0;} //! return the n-th byte byte GetByte(size_t n) const; //! the zero polynomial will return a degree of -1 signed int Degree() const {return BitCount()-1;} //! degree + 1 unsigned int CoefficientCount() const {return BitCount();} //! return coefficient for x^i int GetCoefficient(size_t i) const {return (i/WORD_BITS < reg.size()) ? int(reg[i/WORD_BITS] >> (i % WORD_BITS)) & 1 : 0;} //! return coefficient for x^i int operator[](unsigned int i) const {return GetCoefficient(i);} //! bool IsZero() const {return !*this;} //! bool Equals(const PolynomialMod2 &rhs) const; //@} //! \name MANIPULATORS //@{ //! PolynomialMod2& operator=(const PolynomialMod2& t); //! PolynomialMod2& operator&=(const PolynomialMod2& t); //! PolynomialMod2& operator^=(const PolynomialMod2& t); //! PolynomialMod2& operator+=(const PolynomialMod2& t) {return *this ^= t;} //! PolynomialMod2& operator-=(const PolynomialMod2& t) {return *this ^= t;} //! PolynomialMod2& operator*=(const PolynomialMod2& t); //! PolynomialMod2& operator/=(const PolynomialMod2& t); //! PolynomialMod2& operator%=(const PolynomialMod2& t); //! PolynomialMod2& operator<<=(unsigned int); //! PolynomialMod2& operator>>=(unsigned int); //! void Randomize(RandomNumberGenerator &rng, size_t bitcount); //! void SetBit(size_t i, int value = 1); //! set the n-th byte to value void SetByte(size_t n, byte value); //! void SetCoefficient(size_t i, int value) {SetBit(i, value);} //! void swap(PolynomialMod2 &a) {reg.swap(a.reg);} //@} //! \name UNARY OPERATORS //@{ //! bool operator!() const; //! PolynomialMod2 operator+() const {return *this;} //! PolynomialMod2 operator-() const {return *this;} //@} //! \name BINARY OPERATORS //@{ //! PolynomialMod2 And(const PolynomialMod2 &b) const; //! PolynomialMod2 Xor(const PolynomialMod2 &b) const; //! PolynomialMod2 Plus(const PolynomialMod2 &b) const {return Xor(b);} //! PolynomialMod2 Minus(const PolynomialMod2 &b) const {return Xor(b);} //! PolynomialMod2 Times(const PolynomialMod2 &b) const; //! PolynomialMod2 DividedBy(const PolynomialMod2 &b) const; //! PolynomialMod2 Modulo(const PolynomialMod2 &b) const; //! PolynomialMod2 operator>>(unsigned int n) const; //! PolynomialMod2 operator<<(unsigned int n) const; //@} //! \name OTHER ARITHMETIC FUNCTIONS //@{ //! sum modulo 2 of all coefficients unsigned int Parity() const; //! check for irreducibility bool IsIrreducible() const; //! is always zero since we're working modulo 2 PolynomialMod2 Doubled() const {return Zero();} //! PolynomialMod2 Squared() const; //! only 1 is a unit bool IsUnit() const {return Equals(One());} //! return inverse if *this is a unit, otherwise return 0 PolynomialMod2 MultiplicativeInverse() const {return IsUnit() ? One() : Zero();} //! greatest common divisor static PolynomialMod2 CRYPTOPP_API Gcd(const PolynomialMod2 &a, const PolynomialMod2 &n); //! calculate multiplicative inverse of *this mod n PolynomialMod2 InverseMod(const PolynomialMod2 &) const; //! calculate r and q such that (a == d*q + r) && (deg(r) < deg(d)) static void CRYPTOPP_API Divide(PolynomialMod2 &r, PolynomialMod2 &q, const PolynomialMod2 &a, const PolynomialMod2 &d); //@} //! \name INPUT/OUTPUT //@{ //! friend std::ostream& operator<<(std::ostream& out, const PolynomialMod2 &a); //@} private: friend class GF2NT; SecWordBlock reg; }; //! inline bool operator==(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Equals(b);} //! inline bool operator!=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return !(a==b);} //! compares degree inline bool operator> (const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Degree() > b.Degree();} //! compares degree inline bool operator>=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Degree() >= b.Degree();} //! compares degree inline bool operator< (const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Degree() < b.Degree();} //! compares degree inline bool operator<=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Degree() <= b.Degree();} //! inline CryptoPP::PolynomialMod2 operator&(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.And(b);} //! inline CryptoPP::PolynomialMod2 operator^(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Xor(b);} //! inline CryptoPP::PolynomialMod2 operator+(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Plus(b);} //! inline CryptoPP::PolynomialMod2 operator-(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Minus(b);} //! inline CryptoPP::PolynomialMod2 operator*(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Times(b);} //! inline CryptoPP::PolynomialMod2 operator/(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.DividedBy(b);} //! inline CryptoPP::PolynomialMod2 operator%(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Modulo(b);} // CodeWarrior 8 workaround: put these template instantiations after overloaded operator declarations, // but before the use of QuotientRing<EuclideanDomainOf<PolynomialMod2> > for VC .NET 2003 CRYPTOPP_DLL_TEMPLATE_CLASS AbstractGroup<PolynomialMod2>; CRYPTOPP_DLL_TEMPLATE_CLASS AbstractRing<PolynomialMod2>; CRYPTOPP_DLL_TEMPLATE_CLASS AbstractEuclideanDomain<PolynomialMod2>; CRYPTOPP_DLL_TEMPLATE_CLASS EuclideanDomainOf<PolynomialMod2>; CRYPTOPP_DLL_TEMPLATE_CLASS QuotientRing<EuclideanDomainOf<PolynomialMod2> >; //! GF(2^n) with Polynomial Basis class CRYPTOPP_DLL GF2NP : public QuotientRing<EuclideanDomainOf<PolynomialMod2> > { public: GF2NP(const PolynomialMod2 &modulus); virtual GF2NP * Clone() const {return new GF2NP(*this);} virtual void DEREncode(BufferedTransformation &bt) const {assert(false);} // no ASN.1 syntax yet for general polynomial basis void DEREncodeElement(BufferedTransformation &out, const Element &a) const; void BERDecodeElement(BufferedTransformation &in, Element &a) const; bool Equal(const Element &a, const Element &b) const {assert(a.Degree() < m_modulus.Degree() && b.Degree() < m_modulus.Degree()); return a.Equals(b);} bool IsUnit(const Element &a) const {assert(a.Degree() < m_modulus.Degree()); return !!a;} unsigned int MaxElementBitLength() const {return m;} unsigned int MaxElementByteLength() const {return (unsigned int)BitsToBytes(MaxElementBitLength());} Element SquareRoot(const Element &a) const; Element HalfTrace(const Element &a) const; // returns z such that z^2 + z == a Element SolveQuadraticEquation(const Element &a) const; protected: unsigned int m; }; //! GF(2^n) with Trinomial Basis class CRYPTOPP_DLL GF2NT : public GF2NP { public: // polynomial modulus = x^t0 + x^t1 + x^t2, t0 > t1 > t2 GF2NT(unsigned int t0, unsigned int t1, unsigned int t2); GF2NP * Clone() const {return new GF2NT(*this);} void DEREncode(BufferedTransformation &bt) const; const Element& Multiply(const Element &a, const Element &b) const; const Element& Square(const Element &a) const {return Reduced(a.Squared());} const Element& MultiplicativeInverse(const Element &a) const; private: const Element& Reduced(const Element &a) const; unsigned int t0, t1; mutable PolynomialMod2 result; }; //! GF(2^n) with Pentanomial Basis class CRYPTOPP_DLL GF2NPP : public GF2NP { public: // polynomial modulus = x^t0 + x^t1 + x^t2 + x^t3 + x^t4, t0 > t1 > t2 > t3 > t4 GF2NPP(unsigned int t0, unsigned int t1, unsigned int t2, unsigned int t3, unsigned int t4) : GF2NP(PolynomialMod2::Pentanomial(t0, t1, t2, t3, t4)), t0(t0), t1(t1), t2(t2), t3(t3) {} GF2NP * Clone() const {return new GF2NPP(*this);} void DEREncode(BufferedTransformation &bt) const; private: unsigned int t0, t1, t2, t3; }; // construct new GF2NP from the ASN.1 sequence Characteristic-two CRYPTOPP_DLL GF2NP * CRYPTOPP_API BERDecodeGF2NP(BufferedTransformation &bt); NAMESPACE_END #ifndef __BORLANDC__ NAMESPACE_BEGIN(std) template<> inline void swap(CryptoPP::PolynomialMod2 &a, CryptoPP::PolynomialMod2 &b) { a.swap(b); } NAMESPACE_END #endif #endif