// Noise.h // Declares the cNoise, cCubicNoise and cPerlinNoise classes for generating noise #pragma once // Some settings #define NOISE_DATATYPE float #ifdef _MSC_VER #define INLINE __forceinline #else #define INLINE inline #endif class cNoise { public: cNoise(unsigned int a_Seed); cNoise(const cNoise & a_Noise); // The following functions, if not marked INLINE, are about 20 % slower INLINE NOISE_DATATYPE IntNoise1D(int a_X) const; INLINE NOISE_DATATYPE IntNoise2D(int a_X, int a_Y) const; INLINE NOISE_DATATYPE IntNoise3D(int a_X, int a_Y, int a_Z) const; // Note: These functions have a mod8-irregular chance - each of the mod8 remainders has different chance of occurrence. Divide by 8 to rectify. INLINE int IntNoise1DInt(int a_X) const; INLINE int IntNoise2DInt(int a_X, int a_Y) const; INLINE int IntNoise3DInt(int a_X, int a_Y, int a_Z) const; NOISE_DATATYPE LinearNoise1D(NOISE_DATATYPE a_X) const; NOISE_DATATYPE CosineNoise1D(NOISE_DATATYPE a_X) const; NOISE_DATATYPE CubicNoise1D (NOISE_DATATYPE a_X) const; NOISE_DATATYPE SmoothNoise1D(int a_X) const; NOISE_DATATYPE CubicNoise2D (NOISE_DATATYPE a_X, NOISE_DATATYPE a_Y) const; NOISE_DATATYPE CubicNoise3D (NOISE_DATATYPE a_X, NOISE_DATATYPE a_Y, NOISE_DATATYPE a_Z) const; void SetSeed(unsigned int a_Seed) { m_Seed = a_Seed; } INLINE static NOISE_DATATYPE CubicInterpolate (NOISE_DATATYPE a_A, NOISE_DATATYPE a_B, NOISE_DATATYPE a_C, NOISE_DATATYPE a_D, NOISE_DATATYPE a_Pct); INLINE static NOISE_DATATYPE CosineInterpolate(NOISE_DATATYPE a_A, NOISE_DATATYPE a_B, NOISE_DATATYPE a_Pct); INLINE static NOISE_DATATYPE LinearInterpolate(NOISE_DATATYPE a_A, NOISE_DATATYPE a_B, NOISE_DATATYPE a_Pct); private: unsigned int m_Seed; } ; /// Linearly interpolates values in the array between the anchor points extern void IntArrayLinearInterpolate2D( int * a_Array, int a_SizeX, int a_SizeY, // Dimensions of the array int a_AnchorStepX, int a_AnchorStepY // Distances between the anchor points in each direction ); /// Linearly interpolates values in the array between the anchor points; universal data type template void ArrayLinearInterpolate2D( TYPE * a_Array, int a_SizeX, int a_SizeY, // Dimensions of the array int a_AnchorStepX, int a_AnchorStepY // Distances between the anchor points in each direction ) { // First interpolate columns where the anchor points are: int LastYCell = a_SizeY - a_AnchorStepY; for (int y = 0; y < LastYCell; y += a_AnchorStepY) { int Idx = a_SizeX * y; for (int x = 0; x < a_SizeX; x += a_AnchorStepX) { TYPE StartValue = a_Array[Idx]; TYPE EndValue = a_Array[Idx + a_SizeX * a_AnchorStepY]; TYPE Diff = EndValue - StartValue; for (int CellY = 1; CellY < a_AnchorStepY; CellY++) { a_Array[Idx + a_SizeX * CellY] = StartValue + Diff * CellY / a_AnchorStepY; } // for CellY Idx += a_AnchorStepX; } // for x } // for y // Now interpolate in rows, each row has values in the anchor columns int LastXCell = a_SizeX - a_AnchorStepX; for (int y = 0; y < a_SizeY; y++) { int Idx = a_SizeX * y; for (int x = 0; x < LastXCell; x += a_AnchorStepX) { TYPE StartValue = a_Array[Idx]; TYPE EndValue = a_Array[Idx + a_AnchorStepX]; TYPE Diff = EndValue - StartValue; for (int CellX = 1; CellX < a_AnchorStepX; CellX++) { a_Array[Idx + CellX] = StartValue + CellX * Diff / a_AnchorStepX; } // for CellY Idx += a_AnchorStepX; } } } class cCubicNoise { public: static const int MAX_SIZE = 512; ///< Maximum size of each dimension of the query arrays. cCubicNoise(int a_Seed); void Generate1D( NOISE_DATATYPE * a_Array, ///< Array to generate into int a_SizeX, ///< Count of the array NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX ///< Noise-space coords of the array ) const; void Generate2D( NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y] int a_SizeX, int a_SizeY, ///< Count of the array, in each direction NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX, ///< Noise-space coords of the array in the X direction NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY ///< Noise-space coords of the array in the Y direction ) const; void Generate3D( NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y + a_SizeX * a_SizeY * z] int a_SizeX, int a_SizeY, int a_SizeZ, ///< Count of the array, in each direction NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX, ///< Noise-space coords of the array in the X direction NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY, ///< Noise-space coords of the array in the Y direction NOISE_DATATYPE a_StartZ, NOISE_DATATYPE a_EndZ ///< Noise-space coords of the array in the Z direction ) const; protected: typedef NOISE_DATATYPE Workspace1D[4]; typedef NOISE_DATATYPE Workspace2D[4][4]; cNoise m_Noise; // Used for integral rnd values #ifdef _DEBUG // Statistics on the noise-space coords: static int m_NumSingleX; static int m_NumSingleXY; static int m_NumSingleY; static int m_NumCalls; #endif // _DEBUG /// Calculates the integral and fractional parts along one axis. void CalcFloorFrac( int a_Size, NOISE_DATATYPE a_Start, NOISE_DATATYPE a_End, int * a_Floor, NOISE_DATATYPE * a_Frac, int * a_Same, int & a_NumSame ) const; void UpdateWorkRnds2DX( Workspace2D & a_WorkRnds, Workspace1D & a_Interps, int a_LastFloorX, int a_NewFloorX, int a_FloorY, NOISE_DATATYPE a_FractionY ) const; } ; class cPerlinNoise { public: cPerlinNoise(void); cPerlinNoise(int a_Seed); void SetSeed(int a_Seed); void AddOctave(NOISE_DATATYPE a_Frequency, NOISE_DATATYPE a_Amplitude); void Generate1D( NOISE_DATATYPE * a_Array, ///< Array to generate into int a_SizeX, ///< Count of the array NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX, ///< Noise-space coords of the array NOISE_DATATYPE * a_Workspace = NULL ///< Workspace that this function can use and trash ) const; void Generate2D( NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y] int a_SizeX, int a_SizeY, ///< Count of the array, in each direction NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX, ///< Noise-space coords of the array in the X direction NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY, ///< Noise-space coords of the array in the Y direction NOISE_DATATYPE * a_Workspace = NULL ///< Workspace that this function can use and trash ) const; void Generate3D( NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y + a_SizeX * a_SizeY * z] int a_SizeX, int a_SizeY, int a_SizeZ, ///< Count of the array, in each direction NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX, ///< Noise-space coords of the array in the X direction NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY, ///< Noise-space coords of the array in the Y direction NOISE_DATATYPE a_StartZ, NOISE_DATATYPE a_EndZ, ///< Noise-space coords of the array in the Z direction NOISE_DATATYPE * a_Workspace = NULL ///< Workspace that this function can use and trash ) const; protected: class cOctave { public: cCubicNoise m_Noise; NOISE_DATATYPE m_Frequency; // Coord multiplier NOISE_DATATYPE m_Amplitude; // Value multiplier cOctave(int a_Seed, NOISE_DATATYPE a_Frequency, NOISE_DATATYPE a_Amplitude) : m_Noise(a_Seed), m_Frequency(a_Frequency), m_Amplitude(a_Amplitude) { } } ; typedef std::vector cOctaves; int m_Seed; cOctaves m_Octaves; } ; /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Inline function definitions: // These need to be in the header, otherwise linker error occur in MSVC NOISE_DATATYPE cNoise::IntNoise1D(int a_X) const { int x = ((a_X * m_Seed) << 13) ^ a_X; return (1 - (NOISE_DATATYPE)((x * (x * x * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824); // returns a float number in the range of [-1, 1] } NOISE_DATATYPE cNoise::IntNoise2D(int a_X, int a_Y) const { int n = a_X + a_Y * 57 + m_Seed * 57 * 57; n = (n << 13) ^ n; return (1 - (NOISE_DATATYPE)((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824); // returns a float number in the range of [-1, 1] } NOISE_DATATYPE cNoise::IntNoise3D(int a_X, int a_Y, int a_Z) const { int n = a_X + a_Y * 57 + a_Z * 57 * 57 + m_Seed * 57 * 57 * 57; n = (n << 13) ^ n; return ((NOISE_DATATYPE)1 - (NOISE_DATATYPE)((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0f); // returns a float number in the range of [-1, 1] } int cNoise::IntNoise1DInt(int a_X) const { int x = ((a_X * m_Seed) << 13) ^ a_X; return ((x * (x * x * 15731 + 789221) + 1376312589) & 0x7fffffff); } int cNoise::IntNoise2DInt(int a_X, int a_Y) const { int n = a_X + a_Y * 57 + m_Seed * 57 * 57; n = (n << 13) ^ n; return ((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff); } int cNoise::IntNoise3DInt(int a_X, int a_Y, int a_Z) const { int n = a_X + a_Y * 57 + a_Z * 57 * 57 + m_Seed * 57 * 57 * 57; n = (n << 13) ^ n; return ((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff); } NOISE_DATATYPE cNoise::CubicInterpolate(NOISE_DATATYPE a_A, NOISE_DATATYPE a_B, NOISE_DATATYPE a_C, NOISE_DATATYPE a_D, NOISE_DATATYPE a_Pct) { NOISE_DATATYPE P = (a_D - a_C) - (a_A - a_B); NOISE_DATATYPE Q = (a_A - a_B) - P; NOISE_DATATYPE R = a_C - a_A; NOISE_DATATYPE S = a_B; return ((P * a_Pct + Q) * a_Pct + R) * a_Pct + S; } NOISE_DATATYPE cNoise::CosineInterpolate(NOISE_DATATYPE a_A, NOISE_DATATYPE a_B, NOISE_DATATYPE a_Pct) { const NOISE_DATATYPE ft = a_Pct * (NOISE_DATATYPE)3.1415927; const NOISE_DATATYPE f = (1 - cos(ft)) * (NOISE_DATATYPE)0.5; return a_A * (1 - f) + a_B * f; } NOISE_DATATYPE cNoise::LinearInterpolate(NOISE_DATATYPE a_A, NOISE_DATATYPE a_B, NOISE_DATATYPE a_Pct) { return a_A * (1 - a_Pct) + a_B * a_Pct; }