// ByteBuffer.cpp // Implements the cByteBuffer class representing a ringbuffer of bytes #include "Globals.h" #include "ByteBuffer.h" #include "Endianness.h" #include "OSSupport/IsThread.h" #define NEEDBYTES(Num) if (!CanReadBytes(Num)) return false; #define PUTBYTES(Num) if (!CanWriteBytes(Num)) return false; #ifdef _DEBUG /// Simple RAII class that uses one internal unsigned long for checking if two threads are using an object simultanously class cSingleThreadAccessChecker { public: cSingleThreadAccessChecker(unsigned long * a_ThreadID) : m_ThreadID(a_ThreadID) { ASSERT((*a_ThreadID == 0) || (*a_ThreadID == cIsThread::GetCurrentID())); } ~cSingleThreadAccessChecker() { *m_ThreadID = 0; } protected: unsigned long * m_ThreadID; } ; #define CHECK_THREAD cSingleThreadAccessChecker Checker(const_cast(&m_ThreadID)) #else #define CHECK_THREAD #endif /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // cByteBuffer: cByteBuffer::cByteBuffer(int a_BufferSize) : m_Buffer(new char[a_BufferSize + 1]), m_BufferSize(a_BufferSize + 1), #ifdef _DEBUG m_ThreadID(0), #endif // _DEBUG m_DataStart(0), m_WritePos(0), m_ReadPos(0) { // Allocating one byte more than the buffer size requested, so that we can distinguish between // completely-full and completely-empty states } cByteBuffer::~cByteBuffer() { CheckValid(); delete[] m_Buffer; } bool cByteBuffer::Write(const char * a_Bytes, int a_Count) { CHECK_THREAD; CheckValid(); // Store the current free space for a check after writing: int CurFreeSpace = GetFreeSpace(); int CurReadableSpace = GetReadableSpace(); int WrittenBytes = 0; if (GetFreeSpace() < a_Count) { return false; } int TillEnd = m_BufferSize - m_WritePos; if (TillEnd <= a_Count) { // Need to wrap around the ringbuffer end if (TillEnd > 0) { memcpy(m_Buffer + m_WritePos, a_Bytes, TillEnd); a_Bytes += TillEnd; a_Count -= TillEnd; WrittenBytes = TillEnd; } m_WritePos = 0; } // We're guaranteed that we'll fit in a single write op if (a_Count > 0) { memcpy(m_Buffer + m_WritePos, a_Bytes, a_Count); m_WritePos += a_Count; WrittenBytes += a_Count; } ASSERT(GetFreeSpace() == CurFreeSpace - WrittenBytes); ASSERT(GetReadableSpace() == CurReadableSpace + WrittenBytes); return true; } int cByteBuffer::GetFreeSpace(void) const { CHECK_THREAD; CheckValid(); if (m_WritePos >= m_DataStart) { // Wrap around the buffer end: return m_BufferSize - m_WritePos + m_DataStart - 1; } // Single free space partition: return m_DataStart - m_WritePos - 1; } /// Returns the number of bytes that are currently in the ringbuffer. Note GetReadableBytes() int cByteBuffer::GetUsedSpace(void) const { CHECK_THREAD; CheckValid(); return m_BufferSize - GetFreeSpace(); } /// Returns the number of bytes that are currently available for reading (may be less than UsedSpace due to some data having been read already) int cByteBuffer::GetReadableSpace(void) const { CHECK_THREAD; CheckValid(); if (m_ReadPos > m_WritePos) { // Wrap around the buffer end: return m_BufferSize - m_ReadPos + m_WritePos; } // Single readable space partition: return m_WritePos - m_ReadPos ; } bool cByteBuffer::CanReadBytes(int a_Count) const { CHECK_THREAD; CheckValid(); return (a_Count <= GetReadableSpace()); } bool cByteBuffer::CanWriteBytes(int a_Count) const { CHECK_THREAD; CheckValid(); return (a_Count <= GetFreeSpace()); } bool cByteBuffer::ReadChar(char & a_Value) { CHECK_THREAD; CheckValid(); NEEDBYTES(1); ReadBuf(&a_Value, 1); return true; } bool cByteBuffer::ReadByte(unsigned char & a_Value) { CHECK_THREAD; CheckValid(); NEEDBYTES(1); ReadBuf(&a_Value, 1); return true; } bool cByteBuffer::ReadBEShort(short & a_Value) { CHECK_THREAD; CheckValid(); NEEDBYTES(2); ReadBuf(&a_Value, 2); a_Value = ntohs(a_Value); return true; } bool cByteBuffer::ReadBEInt(int & a_Value) { CHECK_THREAD; CheckValid(); NEEDBYTES(4); ReadBuf(&a_Value, 4); a_Value = ntohl(a_Value); return true; } bool cByteBuffer::ReadBEInt64(Int64 & a_Value) { CHECK_THREAD; CheckValid(); NEEDBYTES(8); ReadBuf(&a_Value, 8); a_Value = NetworkToHostLong8(&a_Value); return true; } bool cByteBuffer::ReadBEFloat(float & a_Value) { CHECK_THREAD; CheckValid(); NEEDBYTES(4); ReadBuf(&a_Value, 4); a_Value = NetworkToHostFloat4(&a_Value); return true; } bool cByteBuffer::ReadBEDouble(double & a_Value) { CHECK_THREAD; CheckValid(); NEEDBYTES(8); ReadBuf(&a_Value, 8); a_Value = NetworkToHostDouble8(&a_Value); return true; } bool cByteBuffer::ReadBool(bool & a_Value) { CHECK_THREAD; CheckValid(); NEEDBYTES(1); char Value = 0; ReadBuf(&Value, 1); a_Value = (Value != 0); return true; } bool cByteBuffer::ReadBEUTF16String16(AString & a_Value) { CHECK_THREAD; CheckValid(); short Length; if (!ReadBEShort(Length)) { return false; } if (Length < 0) { ASSERT(!"Negative string length? Are you sure?"); return true; } return ReadUTF16String(a_Value, Length); } bool cByteBuffer::WriteChar(char a_Value) { CHECK_THREAD; CheckValid(); PUTBYTES(1); return WriteBuf(&a_Value, 1); } bool cByteBuffer::WriteByte(unsigned char a_Value) { CHECK_THREAD; CheckValid(); PUTBYTES(1); return WriteBuf(&a_Value, 1); } bool cByteBuffer::WriteBEShort(short a_Value) { CHECK_THREAD; CheckValid(); PUTBYTES(2); short Converted = htons(a_Value); return WriteBuf(&Converted, 2); } bool cByteBuffer::WriteBEInt(int a_Value) { CHECK_THREAD; CheckValid(); PUTBYTES(4); int Converted = HostToNetwork4(&a_Value); return WriteBuf(&Converted, 4); } bool cByteBuffer::WriteBEInt64(Int64 a_Value) { CHECK_THREAD; CheckValid(); PUTBYTES(8); Int64 Converted = HostToNetwork8(&a_Value); return WriteBuf(&Converted, 8); } bool cByteBuffer::WriteBEFloat(float a_Value) { CHECK_THREAD; CheckValid(); PUTBYTES(4); int Converted = HostToNetwork4(&a_Value); return WriteBuf(&Converted, 4); } bool cByteBuffer::WriteBEDouble(double a_Value) { CHECK_THREAD; CheckValid(); PUTBYTES(8); Int64 Converted = HostToNetwork8(&a_Value); return WriteBuf(&Converted, 8); } bool cByteBuffer::WriteBool(bool a_Value) { CHECK_THREAD; CheckValid(); return WriteChar(a_Value ? 1 : 0); } bool cByteBuffer::WriteBEUTF16String16(const AString & a_Value) { CHECK_THREAD; CheckValid(); PUTBYTES(2); AString UTF16BE; UTF8ToRawBEUTF16(a_Value.data(), a_Value.size(), UTF16BE); WriteBEShort((short)(UTF16BE.size() / 2)); PUTBYTES(UTF16BE.size()); WriteBuf(UTF16BE.data(), UTF16BE.size()); return true; } bool cByteBuffer::ReadBuf(void * a_Buffer, int a_Count) { CHECK_THREAD; CheckValid(); ASSERT(a_Count >= 0); NEEDBYTES(a_Count); char * Dst = (char *)a_Buffer; // So that we can do byte math int BytesToEndOfBuffer = m_BufferSize - m_ReadPos; ASSERT(BytesToEndOfBuffer >= 0); // Sanity check if (BytesToEndOfBuffer <= a_Count) { // Reading across the ringbuffer end, read the first part and adjust parameters: if (BytesToEndOfBuffer > 0) { memcpy(Dst, m_Buffer + m_ReadPos, BytesToEndOfBuffer); Dst += BytesToEndOfBuffer; a_Count -= BytesToEndOfBuffer; } m_ReadPos = 0; } // Read the rest of the bytes in a single read (guaranteed to fit): if (a_Count > 0) { memcpy(Dst, m_Buffer + m_ReadPos, a_Count); m_ReadPos += a_Count; } return true; } bool cByteBuffer::WriteBuf(const void * a_Buffer, int a_Count) { CHECK_THREAD; CheckValid(); ASSERT(a_Count >= 0); PUTBYTES(a_Count); char * Src = (char *)a_Buffer; // So that we can do byte math int BytesToEndOfBuffer = m_BufferSize - m_WritePos; if (BytesToEndOfBuffer <= a_Count) { // Reading across the ringbuffer end, read the first part and adjust parameters: memcpy(m_Buffer + m_WritePos, Src, BytesToEndOfBuffer); Src += BytesToEndOfBuffer; a_Count -= BytesToEndOfBuffer; m_WritePos = 0; } // Read the rest of the bytes in a single read (guaranteed to fit): if (a_Count > 0) { memcpy(m_Buffer + m_WritePos, Src, a_Count); m_WritePos += a_Count; } return true; } bool cByteBuffer::ReadString(AString & a_String, int a_Count) { CHECK_THREAD; CheckValid(); ASSERT(a_Count >= 0); NEEDBYTES(a_Count); a_String.clear(); a_String.reserve(a_Count); int BytesToEndOfBuffer = m_BufferSize - m_ReadPos; ASSERT(BytesToEndOfBuffer >= 0); // Sanity check if (BytesToEndOfBuffer <= a_Count) { // Reading across the ringbuffer end, read the first part and adjust parameters: if (BytesToEndOfBuffer > 0) { a_String.assign(m_Buffer + m_ReadPos, BytesToEndOfBuffer); a_Count -= BytesToEndOfBuffer; } m_ReadPos = 0; } // Read the rest of the bytes in a single read (guaranteed to fit): if (a_Count > 0) { a_String.append(m_Buffer + m_ReadPos, a_Count); m_ReadPos += a_Count; } return true; } bool cByteBuffer::ReadUTF16String(AString & a_String, int a_NumChars) { // Reads 2 * a_NumChars bytes and interprets it as a UTF16 string, converting it into UTF8 string a_String CHECK_THREAD; CheckValid(); ASSERT(a_NumChars >= 0); AString RawData; if (!ReadString(RawData, a_NumChars * 2)) { return false; } RawBEToUTF8((short *)(RawData.data()), a_NumChars, a_String); return true; } bool cByteBuffer::SkipRead(int a_Count) { CHECK_THREAD; CheckValid(); ASSERT(a_Count >= 0); if (!CanReadBytes(a_Count)) { return false; } AdvanceReadPos(a_Count); return true; } void cByteBuffer::ReadAll(AString & a_Data) { CHECK_THREAD; CheckValid(); ReadString(a_Data, GetReadableSpace()); } void cByteBuffer::CommitRead(void) { CHECK_THREAD; CheckValid(); m_DataStart = m_ReadPos; } void cByteBuffer::ResetRead(void) { CHECK_THREAD; CheckValid(); m_ReadPos = m_DataStart; } void cByteBuffer::ReadAgain(AString & a_Out) { // Return the data between m_DataStart and m_ReadPos (the data that has been read but not committed) // Used by ProtoProxy to repeat communication twice, once for parsing and the other time for the remote party CHECK_THREAD; CheckValid(); int DataStart = m_DataStart; if (m_ReadPos < m_DataStart) { // Across the ringbuffer end, read the first part and adjust next part's start: a_Out.append(m_Buffer + m_DataStart, m_BufferSize - m_DataStart); DataStart = 0; } a_Out.append(m_Buffer + DataStart, m_ReadPos - DataStart); } void cByteBuffer::AdvanceReadPos(int a_Count) { CHECK_THREAD; CheckValid(); m_ReadPos += a_Count; if (m_ReadPos > m_BufferSize) { m_ReadPos -= m_BufferSize; } } void cByteBuffer::CheckValid(void) const { ASSERT(m_ReadPos >= 0); ASSERT(m_ReadPos < m_BufferSize); ASSERT(m_WritePos >= 0); ASSERT(m_WritePos < m_BufferSize); }