// Zapper.cpp // Implements the cZapper class representing the processor that actually zaps blocks and entities #include "Globals.h" #include "WorldStorage/FastNBT.h" #include "StringCompression.h" #include "zlib/zlib.h" #include "Zapper.h" /** The maximum size of an inflated chunk; raw chunk data is 192 KiB, allow 64 KiB more of entities */ #define CHUNK_INFLATE_MAX 256 KiB cZapper::cZapper(const AString & a_MCAFolder) : m_MCAFolder(a_MCAFolder) { } void cZapper::ZapRegions(const cRegionVector & a_Regions) { for (cRegionVector::const_iterator itr = a_Regions.begin(), end = a_Regions.end(); itr != end; ++itr) { int MinAnvX, MinAnvZ; int MaxAnvX, MaxAnvZ; BlockToMCA(itr->m_MinX, itr->m_MinZ, MinAnvX, MinAnvZ); BlockToMCA(itr->m_MaxX, itr->m_MaxZ, MaxAnvX, MaxAnvZ); for (int x = MinAnvX; x <= MaxAnvX; x++) { for (int z = MinAnvZ; z <= MaxAnvZ; z++) { ZapRegionInMCAFile(*itr, x, z); } } } // for itr - a_Regions } void cZapper::BlockToMCA(int a_BlockX, int a_BlockZ, int & a_MCAX, int & a_MCAZ) { // These need to be arithmetic shifts, consult your compiler documentation to see if it's so // MSVC and GCC both use arithmetic shifts a_MCAX = a_BlockX >> 10; a_MCAZ = a_BlockZ >> 10; } void cZapper::BlockToChunk(int a_BlockX, int a_BlockZ, int & a_ChunkX, int & a_ChunkZ) { // These need to be arithmetic shifts, consult your compiler documentation to see if it's so // MSVC and GCC both use arithmetic shifts a_ChunkX = a_BlockX >> 4; a_ChunkZ = a_BlockZ >> 4; } void cZapper::ZapRegionInMCAFile(const cRegion & a_Region, int a_MCAX, int a_MCAZ) { cFile fIn; AString FileNameIn = Printf("%s/r.%d.%d.mca", m_MCAFolder.c_str(), a_MCAX, a_MCAZ); if (!fIn.Open(FileNameIn, cFile::fmRead)) { return; } cFile fOut; AString FileNameOut = Printf("%s/r.%d.%d.zap", m_MCAFolder.c_str(), a_MCAX, a_MCAZ); if (!fOut.Open(FileNameOut, cFile::fmWrite)) { fprintf(stderr, "Cannot open temporary file \"%s\" for writing, skipping file \"%s\".", FileNameOut.c_str(), FileNameIn.c_str()); return; } AString DataOut; DataOut.reserve(fIn.GetSize()); int HeaderIn[2048]; if (fIn.Read(HeaderIn, sizeof(HeaderIn)) != sizeof(HeaderIn)) { fprintf(stderr, "Cannot read header from file \"%s\", skipping file.", FileNameIn.c_str()); } int HeaderOut[2048]; for (int i = 0; i < 1024; i++) { if (HeaderIn[i] == 0) { // Chunk not present HeaderOut[i] = 0; continue; } AString ChunkData; int ChunkX = a_MCAX * ChunksPerMCAX + (i % ChunksPerMCAX); int ChunkZ = a_MCAZ * ChunksPerMCAZ + (i / ChunksPerMCAX); LoadChunkData(fIn, HeaderIn[i], ChunkData, ChunkX, ChunkZ); if (a_Region.TouchesChunk(ChunkX, ChunkZ)) { ZapRegionInRawChunkData(a_Region, ChunkData, ChunkX, ChunkZ); } unsigned char ChunkHeader[5]; size_t DataSize = ChunkData.size() + 1; ChunkHeader[0] = (DataSize >> 24) & 0xff; ChunkHeader[1] = (DataSize >> 16) & 0xff; ChunkHeader[2] = (DataSize >> 8) & 0xff; ChunkHeader[3] = DataSize & 0xff; ChunkHeader[4] = 2; // zlib compression size_t Alignment = 4096 - (ChunkData.size() + 5) % 4096; // 5 bytes of the header are appended outside of ChunkData if (Alignment > 0) { ChunkData.append(Alignment, (char)0); } HeaderOut[i] = htonl(((DataOut.size() / 4096 + 2) << 8) | ((ChunkData.size() + 5) / 4096)); DataOut.append((const char *)ChunkHeader, sizeof(ChunkHeader)); DataOut.append(ChunkData); } // for i - chunks in fIn for (int i = 1024; i < 2048; i++) { HeaderOut[i] = HeaderIn[i]; } fIn.Close(); fOut.Write(HeaderOut, sizeof(HeaderOut)); fOut.Write(DataOut.data(), DataOut.size()); fOut.Close(); cFile::Delete(FileNameIn); cFile::Rename(FileNameOut, FileNameIn); } void cZapper::LoadChunkData(cFile & a_InFile, int a_ChunkHeaderValue, AString & a_ChunkData, int a_ChunkX, int a_ChunkZ) { a_ChunkHeaderValue = ntohl(a_ChunkHeaderValue); // Convert from big-endian to system-endian int ChunkOffset = (a_ChunkHeaderValue >> 8) * 4096; int ChunkSize = (a_ChunkHeaderValue & 0xff) * 4096; a_InFile.Seek(ChunkOffset); unsigned char ChunkHeader[5]; a_InFile.Read(ChunkHeader, sizeof(ChunkHeader)); if (ChunkHeader[4] != 2) { fprintf(stderr, "Chunk [%d, %d] is compressed in an unknown scheme (%d), skipping", a_ChunkX, a_ChunkZ, ChunkHeader[4]); return; } int ActualSize = (ChunkHeader[0] << 24) | (ChunkHeader[1] << 16) | (ChunkHeader[2] << 8) | ChunkHeader[3]; ActualSize -= 1; // Compression took 1 byte a_ChunkData.resize(ActualSize); int BytesRead = a_InFile.Read((void *)(a_ChunkData.data()), ActualSize); if (BytesRead != ActualSize) { fprintf(stderr, "Chunk is truncated in file (%d bytes out of %d), skipping.", BytesRead, ActualSize); a_ChunkData.clear(); return; } } void cZapper::ZapRegionInRawChunkData(const cRegion & a_Region, AString & a_ChunkData, int a_ChunkX, int a_ChunkZ) { // Decompress the data: char Uncompressed[CHUNK_INFLATE_MAX]; z_stream strm; strm.zalloc = (alloc_func)NULL; strm.zfree = (free_func)NULL; strm.opaque = NULL; inflateInit(&strm); strm.next_out = (Bytef *)Uncompressed; strm.avail_out = sizeof(Uncompressed); strm.next_in = (Bytef *)a_ChunkData.data(); strm.avail_in = a_ChunkData.size(); int res = inflate(&strm, Z_FINISH); inflateEnd(&strm); if (res != Z_STREAM_END) { fprintf(stderr, "Chunk [%d, %d] failed to decompress: error %d. Skipping chunk.", a_ChunkX, a_ChunkZ, res); return; } /* // DEBUG: Output src to a file: cFile f1; if (f1.Open(Printf("chunk_%d_%d_in.nbt", a_ChunkX, a_ChunkZ), cFile::fmWrite)) { f1.Write(Uncompressed, strm.total_out); } //*/ cParsedNBT NBT(Uncompressed, strm.total_out); if (!NBT.IsValid()) { fprintf(stderr, "Chunk [%d, %d] failed to parse. Skipping chunk.", a_ChunkX, a_ChunkZ); return; } ZapRegionInNBTChunk(a_Region, NBT, a_ChunkX, a_ChunkZ); cFastNBTWriter Writer; for (int ch = NBT.GetFirstChild(0); ch >= 0; ch = NBT.GetNextSibling(ch)) { SerializeNBTTag(NBT, ch, Writer); } Writer.Finish(); /* // DEBUG: Output dst to a file: cFile f2; if (f2.Open(Printf("chunk_%d_%d_out.nbt", a_ChunkX, a_ChunkZ), cFile::fmWrite)) { f2.Write(Writer.GetResult().data(), Writer.GetResult().size()); } //*/ // Compress the serialized data into "Uncompressed" (reuse buffer) CompressString(Writer.GetResult().data(), Writer.GetResult().size(), a_ChunkData); } void cZapper::ZapRegionInNBTChunk(const cRegion & a_Region, cParsedNBT & a_NBT, int a_ChunkX, int a_ChunkZ) { int LevelTag = a_NBT.FindChildByName(a_NBT.GetRoot(), "Level"); if (LevelTag < 0) { fprintf(stderr, "Cannot find Level tag in chunk [%d, %d]'s NBT. Skipping chunk.", a_ChunkX, a_ChunkZ); return; } // Create a copy of the region and limit it to the current chunk: int BlockX = a_ChunkX * 16; int BlockZ = a_ChunkZ * 16; cRegion Local; Local.m_MinX = std::max(0, a_Region.m_MinX - BlockX); Local.m_MaxX = std::min(15, a_Region.m_MaxX - BlockX); Local.m_MinY = a_Region.m_MinY; Local.m_MaxY = a_Region.m_MaxY; Local.m_MinZ = std::max(0, a_Region.m_MinZ - BlockZ); Local.m_MaxZ = std::min(15, a_Region.m_MaxZ - BlockZ); if (a_Region.m_ShouldZapBlocks) { int SectionsTag = a_NBT.FindChildByName(LevelTag, "Sections"); if (SectionsTag < 0) { fprintf(stderr, "Cannot find the Sections tag in the Level tag in chunk [%d, %d]'s NBT. Skipping block-zapping in chunk.", a_ChunkX, a_ChunkZ); return; } ZapRegionBlocksInNBT(Local, a_NBT, SectionsTag); } if (a_Region.m_ShouldZapEntities) { int EntitiesTag = a_NBT.FindChildByName(LevelTag, "Entities"); if (EntitiesTag < 0) { fprintf(stderr, "Cannot find the Entities tag in the Level tag in chunk [%d, %d]'s NBT. Skipping entity-zapping in chunk.", a_ChunkX, a_ChunkZ); return; } ZapRegionEntitiesInNBT(Local, a_NBT, EntitiesTag); } } void cZapper::ZapRegionBlocksInNBT(const cRegion & a_Region, cParsedNBT & a_NBT, int a_SectionsTag) { for (int Child = a_NBT.GetFirstChild(a_SectionsTag); Child >= 0; Child = a_NBT.GetNextSibling(Child)) { int y = 0; int SectionY = a_NBT.FindChildByName(Child, "Y"); if ((SectionY < 0) || (a_NBT.GetType(SectionY) != TAG_Byte)) { continue; } y = a_NBT.GetByte(SectionY); if ((y * 16 > a_Region.m_MaxY) || (y * 16 + 16 < a_Region.m_MinY)) { continue; } int BlockDataTag = a_NBT.FindChildByName(Child, "Blocks"); int BlockMetaTag = a_NBT.FindChildByName(Child, "Data"); int BlockAddTag = a_NBT.FindChildByName(Child, "Add"); if (BlockDataTag > 0) { ZapRegionInNBTSectionBytes(a_Region, y, (unsigned char *)(a_NBT.GetData(BlockDataTag))); } if (BlockMetaTag > 0) { ZapRegionInNBTSectionNibbles(a_Region, y, (unsigned char *)(a_NBT.GetData(BlockMetaTag))); } if (BlockAddTag > 0) { ZapRegionInNBTSectionNibbles(a_Region, y, (unsigned char *)(a_NBT.GetData(BlockAddTag))); } } // for Child - Level / Sections / [] } void cZapper::ZapRegionInNBTSectionBytes(const cRegion & a_Region, int a_SectionY, unsigned char * a_BlockBytes) { int MinY = std::max(0, a_Region.m_MinY - a_SectionY * 16); int MaxY = std::min(15, a_Region.m_MaxY - a_SectionY * 16); ASSERT(MinY >= 0); ASSERT(MaxY >= 0); for (int y = MinY; y <= MaxY; y++) { for (int z = a_Region.m_MinZ; z <= a_Region.m_MaxZ; z++) { for (int x = a_Region.m_MinX; x <= a_Region.m_MaxX; x++) { a_BlockBytes[x + z * 16 + y * 16 * 16] = 0; } } } } void cZapper::ZapRegionInNBTSectionNibbles(const cRegion & a_Region, int a_SectionY, unsigned char * a_BlockNibbles) { int MinY = std::max(0, a_Region.m_MinY - a_SectionY * 16); int MaxY = std::min(15, a_Region.m_MaxY - a_SectionY * 16); ASSERT(MinY >= 0); ASSERT(MaxY >= 0); for (int y = MinY; y <= MaxY; y++) { for (int z = a_Region.m_MinZ; z < a_Region.m_MaxZ; z++) { for (int x = a_Region.m_MinX; x < a_Region.m_MaxX; x++) { cChunkDef::SetNibble(a_BlockNibbles, x, y, z, 0); } } } } void cZapper::ZapRegionEntitiesInNBT(const cRegion & a_Region, cParsedNBT & a_NBT, int a_EntitiesTag) { // TODO } void cZapper::SerializeNBTTag(const cParsedNBT & a_NBT, int a_Tag, cFastNBTWriter & a_Writer) { switch (a_NBT.GetType(a_Tag)) { case TAG_Byte: a_Writer.AddByte (a_NBT.GetName(a_Tag), a_NBT.GetByte (a_Tag)); break; case TAG_Short: a_Writer.AddShort (a_NBT.GetName(a_Tag), a_NBT.GetShort (a_Tag)); break; case TAG_Int: a_Writer.AddInt (a_NBT.GetName(a_Tag), a_NBT.GetInt (a_Tag)); break; case TAG_Long: a_Writer.AddLong (a_NBT.GetName(a_Tag), a_NBT.GetLong (a_Tag)); break; case TAG_Float: a_Writer.AddFloat (a_NBT.GetName(a_Tag), a_NBT.GetFloat (a_Tag)); break; case TAG_Double: a_Writer.AddDouble (a_NBT.GetName(a_Tag), a_NBT.GetDouble(a_Tag)); break; case TAG_ByteArray: a_Writer.AddByteArray(a_NBT.GetName(a_Tag), a_NBT.GetData (a_Tag), a_NBT.GetDataLength(a_Tag)); break; case TAG_String: a_Writer.AddString (a_NBT.GetName(a_Tag), a_NBT.GetString(a_Tag)); break; case TAG_IntArray: { std::vector Data; int NumInts = a_NBT.GetDataLength(a_Tag) / 4; Data.reserve(NumInts); int * OrigData = (int *)(a_NBT.GetData(a_Tag)); for (int i = 0; i < NumInts; i++) { Data.push_back(ntohl(OrigData[i])); } a_Writer.AddIntArray (a_NBT.GetName(a_Tag), &Data.front(), Data.size()); break; } case TAG_List: { a_Writer.BeginList(a_NBT.GetName(a_Tag), a_NBT.GetChildrenType(a_Tag)); for (int ch = a_NBT.GetFirstChild(a_Tag); ch >= 0; ch = a_NBT.GetNextSibling(ch)) { SerializeNBTTag(a_NBT, ch, a_Writer); } // for ch - children[] a_Writer.EndList(); break; } case TAG_Compound: { a_Writer.BeginCompound(a_NBT.GetName(a_Tag)); for (int ch = a_NBT.GetFirstChild(a_Tag); ch >= 0; ch = a_NBT.GetNextSibling(ch)) { SerializeNBTTag(a_NBT, ch, a_Writer); } // for ch - children[] a_Writer.EndCompound(); break; } default: { ASSERT(!"Unknown NBT tag"); break; } } }