// ChunkDataSerializer.cpp // Implements the cChunkDataSerializer class representing the object that can: // - serialize chunk data to different protocol versions // - cache such serialized data for multiple clients #include "Globals.h" #include "ChunkDataSerializer.h" #include "zlib/zlib.h" #include "ByteBuffer.h" #include "Protocol_1_8.h" #include "Protocol_1_9.h" /** Calls the given function with every present chunk section. */ template void ForEachSection(const cChunkData & a_Data, Func a_Func) { for (size_t SectionIdx = 0; SectionIdx < cChunkData::NumSections; ++SectionIdx) { auto Section = a_Data.GetSection(SectionIdx); if (Section != nullptr) { a_Func(*Section); } } } //////////////////////////////////////////////////////////////////////////////// // cChunkDataSerializer: cChunkDataSerializer::cChunkDataSerializer( const cChunkData & a_Data, const unsigned char * a_BiomeData, const eDimension a_Dimension ): m_Data(a_Data), m_BiomeData(a_BiomeData), m_Dimension(a_Dimension) { } const AString & cChunkDataSerializer::Serialize(int a_Version, int a_ChunkX, int a_ChunkZ) { Serializations::const_iterator itr = m_Serializations.find(a_Version); if (itr != m_Serializations.end()) { return itr->second; } AString data; switch (a_Version) { case RELEASE_1_8_0: Serialize47(data, a_ChunkX, a_ChunkZ); break; case RELEASE_1_9_0: Serialize107(data, a_ChunkX, a_ChunkZ); break; case RELEASE_1_9_4: Serialize110(data, a_ChunkX, a_ChunkZ); break; // TODO: Other protocol versions may serialize the data differently; implement here default: { LOGERROR("cChunkDataSerializer::Serialize(): Unknown version: %d", a_Version); ASSERT(!"Unknown chunk data serialization version"); break; } } if (!data.empty()) { m_Serializations[a_Version] = data; } return m_Serializations[a_Version]; } void cChunkDataSerializer::Serialize47(AString & a_Data, int a_ChunkX, int a_ChunkZ) { // This function returns the fully compressed packet (including packet size), not the raw packet! // Create the packet: cByteBuffer Packet(512 KiB); Packet.WriteVarInt32(0x21); // Packet id (Chunk Data packet) Packet.WriteBEInt32(a_ChunkX); Packet.WriteBEInt32(a_ChunkZ); Packet.WriteBool(true); // "Ground-up continuous", or rather, "biome data present" flag Packet.WriteBEUInt16(m_Data.GetSectionBitmask()); // Write the chunk size: const int BiomeDataSize = cChunkDef::Width * cChunkDef::Width; UInt32 ChunkSize = ( m_Data.NumPresentSections() * cChunkData::SectionBlockCount * 3 + // Blocks and lighting BiomeDataSize // Biome data ); Packet.WriteVarInt32(ChunkSize); // Chunk written as seperate arrays of (blocktype + meta), blocklight and skylight // each array stores all present sections of the same kind packed together // Write the block types to the packet: ForEachSection(m_Data, [&](const cChunkData::sChunkSection & a_Section) { for (size_t BlockIdx = 0; BlockIdx != cChunkData::SectionBlockCount; ++BlockIdx) { BLOCKTYPE BlockType = a_Section.m_BlockTypes[BlockIdx] & 0xFF; NIBBLETYPE BlockMeta = a_Section.m_BlockMetas[BlockIdx / 2] >> ((BlockIdx & 1) * 4) & 0x0f; Packet.WriteBEUInt8(static_cast(BlockType << 4) | BlockMeta); Packet.WriteBEUInt8(static_cast(BlockType >> 4)); } } ); // Write the block lights: ForEachSection(m_Data, [&](const cChunkData::sChunkSection & a_Section) { Packet.WriteBuf(a_Section.m_BlockLight, sizeof(a_Section.m_BlockLight)); } ); // Write the sky lights: ForEachSection(m_Data, [&](const cChunkData::sChunkSection & a_Section) { Packet.WriteBuf(a_Section.m_BlockSkyLight, sizeof(a_Section.m_BlockSkyLight)); } ); // Write the biome data: Packet.WriteBuf(m_BiomeData, BiomeDataSize); AString PacketData; Packet.ReadAll(PacketData); Packet.CommitRead(); cByteBuffer Buffer(20); if (PacketData.size() >= 256) { if (!cProtocol_1_8_0::CompressPacket(PacketData, a_Data)) { ASSERT(!"Packet compression failed."); a_Data.clear(); return; } } else { AString PostData; Buffer.WriteVarInt32(static_cast(Packet.GetUsedSpace() + 1)); Buffer.WriteVarInt32(0); Buffer.ReadAll(PostData); Buffer.CommitRead(); a_Data.clear(); a_Data.reserve(PostData.size() + PacketData.size()); a_Data.append(PostData.data(), PostData.size()); a_Data.append(PacketData.data(), PacketData.size()); } } void cChunkDataSerializer::Serialize107(AString & a_Data, int a_ChunkX, int a_ChunkZ) { // This function returns the fully compressed packet (including packet size), not the raw packet! // Create the packet: cByteBuffer Packet(512 KiB); Packet.WriteVarInt32(0x20); // Packet id (Chunk Data packet) Packet.WriteBEInt32(a_ChunkX); Packet.WriteBEInt32(a_ChunkZ); Packet.WriteBool(true); // "Ground-up continuous", or rather, "biome data present" flag Packet.WriteVarInt32(m_Data.GetSectionBitmask()); // Write the chunk size: const size_t BitsPerEntry = 13; const size_t Mask = (1 << BitsPerEntry) - 1; // Creates a mask that is 13 bits long, ie 0b1111111111111 const size_t ChunkSectionDataArraySize = (cChunkData::SectionBlockCount * BitsPerEntry) / 8 / 8; // Convert from bit count to long count size_t ChunkSectionSize = ( 1 + // Bits per block - set to 13, so the global palette is used and the palette has a length of 0 1 + // Palette length 2 + // Data array length VarInt - 2 bytes for the current value ChunkSectionDataArraySize * 8 + // Actual block data - multiplied by 8 because first number is longs cChunkData::SectionBlockCount / 2 // Block light ); if (m_Dimension == dimOverworld) { // Sky light is only sent in the overworld. ChunkSectionSize += cChunkData::SectionBlockCount / 2; } const size_t BiomeDataSize = cChunkDef::Width * cChunkDef::Width; size_t ChunkSize = ( ChunkSectionSize * m_Data.NumPresentSections() + BiomeDataSize ); Packet.WriteVarInt32(static_cast(ChunkSize)); // Write each chunk section... ForEachSection(m_Data, [&](const cChunkData::sChunkSection & a_Section) { Packet.WriteBEUInt8(BitsPerEntry); Packet.WriteVarInt32(0); // Palette length is 0 Packet.WriteVarInt32(static_cast(ChunkSectionDataArraySize)); UInt64 TempLong = 0; // Temporary value that will be stored into UInt64 CurrentlyWrittenIndex = 0; // "Index" of the long that would be written to for (size_t Index = 0; Index < cChunkData::SectionBlockCount; Index++) { UInt64 Value = static_cast(a_Section.m_BlockTypes[Index] << 4); if (Index % 2 == 0) { Value |= a_Section.m_BlockMetas[Index / 2] & 0x0f; } else { Value |= a_Section.m_BlockMetas[Index / 2] >> 4; } Value &= Mask; // It shouldn't go out of bounds, but it's still worth being careful // Painful part where we write data into the long array. Based off of the normal code. size_t BitPosition = Index * BitsPerEntry; size_t FirstIndex = BitPosition / 64; size_t SecondIndex = ((Index + 1) * BitsPerEntry - 1) / 64; size_t BitOffset = BitPosition % 64; if (FirstIndex != CurrentlyWrittenIndex) { // Write the current data before modifiying it. Packet.WriteBEUInt64(TempLong); TempLong = 0; CurrentlyWrittenIndex = FirstIndex; } TempLong |= (Value << BitOffset); if (FirstIndex != SecondIndex) { // Part of the data is now in the second long; write the first one first Packet.WriteBEUInt64(TempLong); CurrentlyWrittenIndex = SecondIndex; TempLong = (Value >> (64 - BitOffset)); } } // The last long will generally not be written Packet.WriteBEUInt64(TempLong); // Write lighting: Packet.WriteBuf(a_Section.m_BlockLight, sizeof(a_Section.m_BlockLight)); if (m_Dimension == dimOverworld) { // Skylight is only sent in the overworld; the nether and end do not use it Packet.WriteBuf(a_Section.m_BlockSkyLight, sizeof(a_Section.m_BlockSkyLight)); } } ); // Write the biome data Packet.WriteBuf(m_BiomeData, BiomeDataSize); AString PacketData; Packet.ReadAll(PacketData); Packet.CommitRead(); cByteBuffer Buffer(20); if (PacketData.size() >= 256) { if (!cProtocol_1_9_0::CompressPacket(PacketData, a_Data)) { ASSERT(!"Packet compression failed."); a_Data.clear(); return; } } else { AString PostData; Buffer.WriteVarInt32(static_cast(Packet.GetUsedSpace() + 1)); Buffer.WriteVarInt32(0); Buffer.ReadAll(PostData); Buffer.CommitRead(); a_Data.clear(); a_Data.reserve(PostData.size() + PacketData.size()); a_Data.append(PostData.data(), PostData.size()); a_Data.append(PacketData.data(), PacketData.size()); } } void cChunkDataSerializer::Serialize110(AString & a_Data, int a_ChunkX, int a_ChunkZ) { // This function returns the fully compressed packet (including packet size), not the raw packet! // Create the packet: cByteBuffer Packet(512 KiB); Packet.WriteVarInt32(0x20); // Packet id (Chunk Data packet) Packet.WriteBEInt32(a_ChunkX); Packet.WriteBEInt32(a_ChunkZ); Packet.WriteBool(true); // "Ground-up continuous", or rather, "biome data present" flag Packet.WriteVarInt32(m_Data.GetSectionBitmask()); // Write the chunk size: const size_t BitsPerEntry = 13; const size_t Mask = (1 << BitsPerEntry) - 1; // Creates a mask that is 13 bits long, ie 0b1111111111111 const size_t ChunkSectionDataArraySize = (cChunkData::SectionBlockCount * BitsPerEntry) / 8 / 8; // Convert from bit count to long count size_t ChunkSectionSize = ( 1 + // Bits per block - set to 13, so the global palette is used and the palette has a length of 0 1 + // Palette length 2 + // Data array length VarInt - 2 bytes for the current value ChunkSectionDataArraySize * 8 + // Actual block data - multiplied by 8 because first number is longs cChunkData::SectionBlockCount / 2 // Block light ); if (m_Dimension == dimOverworld) { // Sky light is only sent in the overworld. ChunkSectionSize += cChunkData::SectionBlockCount / 2; } const size_t BiomeDataSize = cChunkDef::Width * cChunkDef::Width; size_t ChunkSize = ( ChunkSectionSize * m_Data.NumPresentSections() + BiomeDataSize ); Packet.WriteVarInt32(static_cast(ChunkSize)); // Write each chunk section... ForEachSection(m_Data, [&](const cChunkData::sChunkSection & a_Section) { Packet.WriteBEUInt8(BitsPerEntry); Packet.WriteVarInt32(0); // Palette length is 0 Packet.WriteVarInt32(static_cast(ChunkSectionDataArraySize)); UInt64 TempLong = 0; // Temporary value that will be stored into UInt64 CurrentlyWrittenIndex = 0; // "Index" of the long that would be written to for (size_t Index = 0; Index < cChunkData::SectionBlockCount; Index++) { UInt64 Value = static_cast(a_Section.m_BlockTypes[Index] << 4); if (Index % 2 == 0) { Value |= a_Section.m_BlockMetas[Index / 2] & 0x0f; } else { Value |= a_Section.m_BlockMetas[Index / 2] >> 4; } Value &= Mask; // It shouldn't go out of bounds, but it's still worth being careful // Painful part where we write data into the long array. Based off of the normal code. size_t BitPosition = Index * BitsPerEntry; size_t FirstIndex = BitPosition / 64; size_t SecondIndex = ((Index + 1) * BitsPerEntry - 1) / 64; size_t BitOffset = BitPosition % 64; if (FirstIndex != CurrentlyWrittenIndex) { // Write the current data before modifiying it. Packet.WriteBEUInt64(TempLong); TempLong = 0; CurrentlyWrittenIndex = FirstIndex; } TempLong |= (Value << BitOffset); if (FirstIndex != SecondIndex) { // Part of the data is now in the second long; write the first one first Packet.WriteBEUInt64(TempLong); CurrentlyWrittenIndex = SecondIndex; TempLong = (Value >> (64 - BitOffset)); } } // The last long will generally not be written Packet.WriteBEUInt64(TempLong); // Write lighting: Packet.WriteBuf(a_Section.m_BlockLight, sizeof(a_Section.m_BlockLight)); if (m_Dimension == dimOverworld) { // Skylight is only sent in the overworld; the nether and end do not use it Packet.WriteBuf(a_Section.m_BlockSkyLight, sizeof(a_Section.m_BlockSkyLight)); } } ); // Write the biome data Packet.WriteBuf(m_BiomeData, BiomeDataSize); // Identify 1.9.4's tile entity list as empty Packet.WriteBEUInt8(0); AString PacketData; Packet.ReadAll(PacketData); Packet.CommitRead(); cByteBuffer Buffer(20); if (PacketData.size() >= 256) { if (!cProtocol_1_9_0::CompressPacket(PacketData, a_Data)) { ASSERT(!"Packet compression failed."); a_Data.clear(); return; } } else { AString PostData; Buffer.WriteVarInt32(static_cast(Packet.GetUsedSpace() + 1)); Buffer.WriteVarInt32(0); Buffer.ReadAll(PostData); Buffer.CommitRead(); a_Data.clear(); a_Data.reserve(PostData.size() + PacketData.size()); a_Data.append(PostData.data(), PostData.size()); a_Data.append(PacketData.data(), PacketData.size()); } }