#ifdef TEST_GLOBALS #include "TestGlobals.h" #else #include "Globals.h" #endif #include "ChunkData.h" cChunkData::cChunkData() #if __cplusplus < 201103L // auto_ptr style interface for memory management : IsOwner(true) #endif { memset(m_Sections, 0, sizeof(m_Sections)); } cChunkData::~cChunkData() { #if __cplusplus < 201103L // auto_ptr style interface for memory management if (!IsOwner) { return; } #endif for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++) { if (m_Sections[i] == NULL) Free(m_Sections[i]);; } } #if __cplusplus < 201103L // auto_ptr style interface for memory management cChunkData::cChunkData(const cChunkData& other) : IsOwner(true) { for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++) { m_Sections[i] = other.m_Sections[i]; } other.IsOwner = false; } cChunkData& cChunkData::operator=(const cChunkData& other) { if (&other != this) { if (IsOwner) { for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++) { if (m_Sections[i]) Free(m_Sections[i]);; } } IsOwner = true; for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++) { m_Sections[i] = other.m_Sections[i]; } other.IsOwner = false; } return *this; } #else // unique_ptr style interface for memory management cChunkData::cChunkData(cChunkData&& other) { for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++) { m_Sections[i] = other.m_Sections[i]; other.m_Sections[i] = NULL; } } cChunkData& cChunkData::operator=(cChunkData&& other) { if (&other != this) { for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++) { Free(m_Sections[i]);; m_Sections[i] = other.m_Sections[i]; other.m_Sections[i] = NULL; } } return *this; } #endif BLOCKTYPE cChunkData::GetBlock(int a_X, int a_Y, int a_Z) const { ASSERT((a_X >= 0) && (a_X < cChunkDef::Width)); ASSERT((a_Y >= 0) && (a_Y < cChunkDef::Height)); ASSERT((a_Z >= 0) && (a_Z < cChunkDef::Width)); int Section = a_Y / CHUNK_SECTION_HEIGHT; if (m_Sections[Section] != NULL) { int Index = cChunkDef::MakeIndexNoCheck(a_X, a_Y - (Section * CHUNK_SECTION_HEIGHT), a_Z); return m_Sections[Section]->m_BlockTypes[Index]; } else { return 0; } } void cChunkData::SetBlock(int a_RelX, int a_RelY, int a_RelZ, BLOCKTYPE a_Block) { if ( (a_RelX >= cChunkDef::Width) || (a_RelX < 0) || (a_RelY >= cChunkDef::Height) || (a_RelY < 0) || (a_RelZ >= cChunkDef::Width) || (a_RelZ < 0) ) { ASSERT(!"cChunkData::SetMeta(): index out of range!"); return; } int Section = a_RelY / CHUNK_SECTION_HEIGHT; if (m_Sections[Section] == NULL) { if (a_Block == 0x00) { return; } m_Sections[Section] = Allocate(); if (m_Sections[Section] == NULL) { ASSERT(!"Failed to allocate a new section in Chunkbuffer"); return; } ZeroSection(m_Sections[Section]); } int Index = cChunkDef::MakeIndexNoCheck(a_RelX, a_RelY - (Section * CHUNK_SECTION_HEIGHT), a_RelZ); m_Sections[Section]->m_BlockTypes[Index] = a_Block; } NIBBLETYPE cChunkData::GetMeta(int a_RelX, int a_RelY, int a_RelZ) const { if ( (a_RelX < cChunkDef::Width) && (a_RelX > -1) && (a_RelY < cChunkDef::Height) && (a_RelY > -1) && (a_RelZ < cChunkDef::Width) && (a_RelZ > -1)) { int Section = a_RelY / CHUNK_SECTION_HEIGHT; if (m_Sections[Section] != NULL) { int Index = cChunkDef::MakeIndexNoCheck(a_RelX, a_RelY - (Section * CHUNK_SECTION_HEIGHT), a_RelZ); return (m_Sections[Section]->m_BlockMeta[Index / 2] >> ((Index & 1) * 4)) & 0x0f; } else { return 0; } } ASSERT(!"cChunkData::GetMeta(): coords out of chunk range!"); return 0; } bool cChunkData::SetMeta(int a_RelX, int a_RelY, int a_RelZ, NIBBLETYPE a_Nibble) { if ( (a_RelX >= cChunkDef::Width) || (a_RelX < 0) || (a_RelY >= cChunkDef::Height) || (a_RelY < 0) || (a_RelZ >= cChunkDef::Width) || (a_RelZ < 0) ) { ASSERT(!"cChunkData::SetMeta(): index out of range!"); return false; } int Section = a_RelY / CHUNK_SECTION_HEIGHT; if (m_Sections[Section] == NULL) { if ((a_Nibble & 0xf) == 0x00) { return false; } m_Sections[Section] = Allocate(); if (m_Sections[Section] == NULL) { ASSERT(!"Failed to allocate a new section in Chunkbuffer"); return false; } ZeroSection(m_Sections[Section]); } int Index = cChunkDef::MakeIndexNoCheck(a_RelX, a_RelY - (Section * CHUNK_SECTION_HEIGHT), a_RelZ); NIBBLETYPE oldval = m_Sections[Section]->m_BlockMeta[Index / 2] >> ((Index & 1) * 4) & 0xf; m_Sections[Section]->m_BlockMeta[Index / 2] = static_cast( (m_Sections[Section]->m_BlockMeta[Index / 2] & (0xf0 >> ((Index & 1) * 4))) | // The untouched nibble ((a_Nibble & 0x0f) << ((Index & 1) * 4)) // The nibble being set ); return oldval == a_Nibble; } NIBBLETYPE cChunkData::GetBlockLight(int a_RelX, int a_RelY, int a_RelZ) const { if ((a_RelX < cChunkDef::Width) && (a_RelX > -1) && (a_RelY < cChunkDef::Height) && (a_RelY > -1) && (a_RelZ < cChunkDef::Width) && (a_RelZ > -1)) { int Section = a_RelY / CHUNK_SECTION_HEIGHT; if (m_Sections[Section] != NULL) { int Index = cChunkDef::MakeIndexNoCheck(a_RelX, a_RelY - (Section * CHUNK_SECTION_HEIGHT), a_RelZ); return (m_Sections[Section]->m_BlockLight[Index / 2] >> ((Index & 1) * 4)) & 0x0f; } else { return 0; } } ASSERT(!"cChunkData::GetMeta(): coords out of chunk range!"); return 0; } NIBBLETYPE cChunkData::GetSkyLight(int a_RelX, int a_RelY, int a_RelZ) const { if ((a_RelX < cChunkDef::Width) && (a_RelX > -1) && (a_RelY < cChunkDef::Height) && (a_RelY > -1) && (a_RelZ < cChunkDef::Width) && (a_RelZ > -1)) { int Section = a_RelY / CHUNK_SECTION_HEIGHT; if (m_Sections[Section] != NULL) { int Index = cChunkDef::MakeIndexNoCheck(a_RelX, a_RelY - (Section * CHUNK_SECTION_HEIGHT), a_RelZ); return (m_Sections[Section]->m_BlockLight[Index / 2] >> ((Index & 1) * 4)) & 0x0f; } else { return 0xF; } } ASSERT(!"cChunkData::GetMeta(): coords out of chunk range!"); return 0; } cChunkData cChunkData::Copy() const { cChunkData copy; for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++) { if (m_Sections[i] != NULL) { copy.m_Sections[i] = Allocate(); *copy.m_Sections[i] = *m_Sections[i]; } } return copy; } void cChunkData::CopyBlocks (BLOCKTYPE * a_dest, size_t a_Idx, size_t length) const { for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++) { const size_t segment_length = CHUNK_SECTION_HEIGHT * 16 * 16; if (a_Idx > 0) { a_Idx = std::max(a_Idx - length, (size_t) 0); } if (a_Idx == 0) { size_t tocopy = std::min(segment_length, length); length -= tocopy; if (m_Sections[i] != NULL) { memcpy( &a_dest[i * segment_length], &m_Sections[i]->m_BlockTypes, sizeof(BLOCKTYPE) * tocopy ); } else { memset( &a_dest[i * segment_length], 0, sizeof(BLOCKTYPE) * tocopy ); } } } } void cChunkData::CopyMeta(NIBBLETYPE * a_dest) const { for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++) { const size_t segment_length = CHUNK_SECTION_HEIGHT * 16 * 16 / 2; if (m_Sections[i] != NULL) { memcpy( &a_dest[i * segment_length], &m_Sections[i]->m_BlockMeta, sizeof(NIBBLETYPE) * segment_length ); } else { memset( &a_dest[i * segment_length], 0, sizeof(BLOCKTYPE) * segment_length ); } } } void cChunkData::CopyBlockLight(NIBBLETYPE * a_dest) const { for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++) { const size_t segment_length = CHUNK_SECTION_HEIGHT * 16 * 16 / 2; if (m_Sections[i] != NULL) { memcpy( &a_dest[i * segment_length], &m_Sections[i]->m_BlockLight, sizeof(NIBBLETYPE) * segment_length ); } else { memset( &a_dest[i * segment_length], 0, sizeof(BLOCKTYPE) * segment_length ); } } } void cChunkData::CopySkyLight(NIBBLETYPE * a_dest) const { for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++) { const size_t segment_length = CHUNK_SECTION_HEIGHT * 16 * 16 / 2; if (m_Sections[i] != NULL) { memcpy( &a_dest[i * segment_length], &m_Sections[i]->m_BlockSkyLight, sizeof(NIBBLETYPE) * segment_length ); } else { memset( &a_dest[i * segment_length], 0xFF, sizeof(BLOCKTYPE) * segment_length ); } } } void cChunkData::SetBlocks(const BLOCKTYPE * a_src) { for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++) { const size_t segment_length = CHUNK_SECTION_HEIGHT * 16 * 16; if (m_Sections[i] != NULL) { memcpy( &m_Sections[i]->m_BlockTypes, &a_src[i * segment_length], sizeof(BLOCKTYPE) * segment_length ); } else { // j counts how many of leading zeros the buffer has // if j == segment_length then the buffer is all zeros so there is no point // creating the buffer. size_t j = 0; // do nothing whilst 0 for (; j < segment_length && a_src[i * segment_length + j] == 0; j++); if (j != segment_length) { m_Sections[i] = Allocate(); memcpy( &m_Sections[i]->m_BlockTypes, &a_src[i * segment_length], sizeof(BLOCKTYPE) * segment_length ); memset( m_Sections[i]->m_BlockMeta, 0x00, sizeof(m_Sections[i]->m_BlockMeta) ); memset( m_Sections[i]->m_BlockLight, 0x00, sizeof(m_Sections[i]->m_BlockLight) ); memset( m_Sections[i]->m_BlockSkyLight, 0xFF, sizeof(m_Sections[i]->m_BlockSkyLight) ); } } } } void cChunkData::SetMeta(const NIBBLETYPE * a_src) { for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++) { const size_t segment_length = CHUNK_SECTION_HEIGHT * 16 * 16 / 2; if (m_Sections[i] != NULL) { memcpy( &m_Sections[i]->m_BlockMeta, &a_src[i * segment_length], sizeof(NIBBLETYPE) * segment_length ); } else { // j counts how many of leading zeros the buffer has // if j == segment_length then the buffer is all zeros so there is no point // creating the buffer. size_t j = 0; // do nothing whilst 0 for (; j < segment_length && a_src[i * segment_length + j] == 0; j++); if (j != segment_length) { m_Sections[i] = Allocate(); memcpy( &m_Sections[i]->m_BlockMeta, &a_src[i * segment_length], sizeof(BLOCKTYPE) * segment_length ); memset( m_Sections[i]->m_BlockTypes, 0x00, sizeof(m_Sections[i]->m_BlockTypes) ); memset( m_Sections[i]->m_BlockLight, 0x00, sizeof(m_Sections[i]->m_BlockLight) ); memset( m_Sections[i]->m_BlockSkyLight, 0xFF, sizeof(m_Sections[i]->m_BlockSkyLight) ); } } } } void cChunkData::SetBlockLight(const NIBBLETYPE * a_src) { if (!a_src) return; for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++) { const size_t segment_length = CHUNK_SECTION_HEIGHT * 16 * 16 / 2; if (m_Sections[i] != NULL) { memcpy( &m_Sections[i]->m_BlockLight, &a_src[i * segment_length], sizeof(NIBBLETYPE) * segment_length ); } else { // j counts how many of leading zeros the buffer has // if j == segment_length then the buffer is all zeros so there is no point // creating the buffer. size_t j = 0; // do nothing whilst 0 for (; j < segment_length && a_src[i * segment_length + j] == 0; j++); if (j != segment_length) { m_Sections[i] = Allocate(); memcpy( &m_Sections[i]->m_BlockLight, &a_src[i * segment_length], sizeof(BLOCKTYPE) * segment_length ); memset( m_Sections[i]->m_BlockTypes, 0x00, sizeof(m_Sections[i]->m_BlockTypes) ); memset( m_Sections[i]->m_BlockMeta, 0x00, sizeof(m_Sections[i]->m_BlockMeta) ); memset( m_Sections[i]->m_BlockSkyLight, 0xFF, sizeof(m_Sections[i]->m_BlockSkyLight) ); } } } } void cChunkData::SetSkyLight (const NIBBLETYPE * a_src) { if (!a_src) return; for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++) { const size_t segment_length = CHUNK_SECTION_HEIGHT * 16 * 16 / 2; if (m_Sections[i] != NULL) { memcpy( &m_Sections[i]->m_BlockSkyLight, &a_src[i * segment_length], sizeof(NIBBLETYPE) * segment_length ); } else { // j counts how many of leading zeros the buffer has // if j == segment_length then the buffer is all zeros so there is no point // creating the buffer. size_t j = 0; // do nothing whilst 0 for (; j < segment_length && a_src[i * segment_length + j] == 0xFF; j++); if (j != segment_length) { m_Sections[i] = Allocate(); memcpy( &m_Sections[i]->m_BlockSkyLight, &a_src[i * segment_length], sizeof(BLOCKTYPE) * segment_length ); memset( m_Sections[i]->m_BlockTypes, 0x00, sizeof(m_Sections[i]->m_BlockTypes) ); memset( m_Sections[i]->m_BlockMeta, 0x00, sizeof(m_Sections[i]->m_BlockMeta) ); memset( m_Sections[i]->m_BlockLight, 0x00, sizeof(m_Sections[i]->m_BlockLight) ); } } } } cChunkData::sChunkSection * cChunkData::Allocate() const { // TODO: use a allocation pool return new cChunkData::sChunkSection; } void cChunkData::Free(cChunkData::sChunkSection * ptr) const { delete ptr; } void cChunkData::ZeroSection(cChunkData::sChunkSection * ptr) const { memset( ptr->m_BlockTypes, 0x00, sizeof(ptr->m_BlockTypes) ); memset( ptr->m_BlockMeta, 0x00, sizeof(ptr->m_BlockMeta) ); memset( ptr->m_BlockLight, 0x00, sizeof(ptr->m_BlockLight) ); memset( ptr->m_BlockSkyLight, 0xFF, sizeof(ptr->m_BlockSkyLight) ); }