// rw.cpp - written and placed in the public domain by Wei Dai #include "pch.h" #include "rw.h" #include "nbtheory.h" #include "asn.h" #ifndef CRYPTOPP_IMPORTS NAMESPACE_BEGIN(CryptoPP) void RWFunction::BERDecode(BufferedTransformation &bt) { BERSequenceDecoder seq(bt); m_n.BERDecode(seq); seq.MessageEnd(); } void RWFunction::DEREncode(BufferedTransformation &bt) const { DERSequenceEncoder seq(bt); m_n.DEREncode(seq); seq.MessageEnd(); } Integer RWFunction::ApplyFunction(const Integer &in) const { DoQuickSanityCheck(); Integer out = in.Squared()%m_n; const word r = 12; // this code was written to handle both r = 6 and r = 12, // but now only r = 12 is used in P1363 const word r2 = r/2; const word r3a = (16 + 5 - r) % 16; // n%16 could be 5 or 13 const word r3b = (16 + 13 - r) % 16; const word r4 = (8 + 5 - r/2) % 8; // n%8 == 5 switch (out % 16) { case r: break; case r2: case r2+8: out <<= 1; break; case r3a: case r3b: out.Negate(); out += m_n; break; case r4: case r4+8: out.Negate(); out += m_n; out <<= 1; break; default: out = Integer::Zero(); } return out; } bool RWFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const { bool pass = true; pass = pass && m_n > Integer::One() && m_n%8 == 5; return pass; } bool RWFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const { return GetValueHelper(this, name, valueType, pValue).Assignable() CRYPTOPP_GET_FUNCTION_ENTRY(Modulus) ; } void RWFunction::AssignFrom(const NameValuePairs &source) { AssignFromHelper(this, source) CRYPTOPP_SET_FUNCTION_ENTRY(Modulus) ; } // ***************************************************************************** // private key operations: // generate a random private key void InvertibleRWFunction::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg) { int modulusSize = 2048; alg.GetIntValue("ModulusSize", modulusSize) || alg.GetIntValue("KeySize", modulusSize); if (modulusSize < 16) throw InvalidArgument("InvertibleRWFunction: specified modulus length is too small"); AlgorithmParameters primeParam = MakeParametersForTwoPrimesOfEqualSize(modulusSize); m_p.GenerateRandom(rng, CombinedNameValuePairs(primeParam, MakeParameters("EquivalentTo", 3)("Mod", 8))); m_q.GenerateRandom(rng, CombinedNameValuePairs(primeParam, MakeParameters("EquivalentTo", 7)("Mod", 8))); m_n = m_p * m_q; m_u = m_q.InverseMod(m_p); } void InvertibleRWFunction::BERDecode(BufferedTransformation &bt) { BERSequenceDecoder seq(bt); m_n.BERDecode(seq); m_p.BERDecode(seq); m_q.BERDecode(seq); m_u.BERDecode(seq); seq.MessageEnd(); } void InvertibleRWFunction::DEREncode(BufferedTransformation &bt) const { DERSequenceEncoder seq(bt); m_n.DEREncode(seq); m_p.DEREncode(seq); m_q.DEREncode(seq); m_u.DEREncode(seq); seq.MessageEnd(); } Integer InvertibleRWFunction::CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const { DoQuickSanityCheck(); ModularArithmetic modn(m_n); Integer r, rInv; do { // do this in a loop for people using small numbers for testing r.Randomize(rng, Integer::One(), m_n - Integer::One()); rInv = modn.MultiplicativeInverse(r); } while (rInv.IsZero()); Integer re = modn.Square(r); re = modn.Multiply(re, x); // blind Integer cp=re%m_p, cq=re%m_q; if (Jacobi(cp, m_p) * Jacobi(cq, m_q) != 1) { cp = cp.IsOdd() ? (cp+m_p) >> 1 : cp >> 1; cq = cq.IsOdd() ? (cq+m_q) >> 1 : cq >> 1; } #pragma omp parallel #pragma omp sections { #pragma omp section cp = ModularSquareRoot(cp, m_p); #pragma omp section cq = ModularSquareRoot(cq, m_q); } Integer y = CRT(cq, m_q, cp, m_p, m_u); y = modn.Multiply(y, rInv); // unblind y = STDMIN(y, m_n-y); if (ApplyFunction(y) != x) // check throw Exception(Exception::OTHER_ERROR, "InvertibleRWFunction: computational error during private key operation"); return y; } bool InvertibleRWFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const { bool pass = RWFunction::Validate(rng, level); pass = pass && m_p > Integer::One() && m_p%8 == 3 && m_p < m_n; pass = pass && m_q > Integer::One() && m_q%8 == 7 && m_q < m_n; pass = pass && m_u.IsPositive() && m_u < m_p; if (level >= 1) { pass = pass && m_p * m_q == m_n; pass = pass && m_u * m_q % m_p == 1; } if (level >= 2) pass = pass && VerifyPrime(rng, m_p, level-2) && VerifyPrime(rng, m_q, level-2); return pass; } bool InvertibleRWFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const { return GetValueHelper<RWFunction>(this, name, valueType, pValue).Assignable() CRYPTOPP_GET_FUNCTION_ENTRY(Prime1) CRYPTOPP_GET_FUNCTION_ENTRY(Prime2) CRYPTOPP_GET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1) ; } void InvertibleRWFunction::AssignFrom(const NameValuePairs &source) { AssignFromHelper<RWFunction>(this, source) CRYPTOPP_SET_FUNCTION_ENTRY(Prime1) CRYPTOPP_SET_FUNCTION_ENTRY(Prime2) CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1) ; } NAMESPACE_END #endif