#include "Globals.h" #include #include "Path.h" #include "../Chunk.h" #define JUMP_G_COST 20 #define DISTANCE_MANHATTAN 0 // 1: More speed, a bit less accuracy 0: Max accuracy, less speed. #define HEURISTICS_ONLY 0 // 1: Much more speed, much less accurate. #define CALCULATIONS_PER_STEP 10 // Higher means more CPU load but faster path calculations. // The only version which guarantees the shortest path is 0, 0. bool compareHeuristics::operator()(cPathCell * & a_Cell1, cPathCell * & a_Cell2) { return a_Cell1->m_F > a_Cell2->m_F; } /* cPath implementation */ cPath::cPath( cChunk & a_Chunk, const Vector3d & a_StartingPoint, const Vector3d & a_EndingPoint, int a_MaxSteps, double a_BoundingBoxWidth, double a_BoundingBoxHeight, int a_MaxUp, int a_MaxDown ) : m_CurrentPoint(0), // GetNextPoint increments this to 1, but that's fine, since the first cell is always a_StartingPoint m_Chunk(&a_Chunk), m_BadChunkFound(false) { // TODO: if src not walkable OR dest not walkable, then abort. // Borrow a new "isWalkable" from ProcessIfWalkable, make ProcessIfWalkable also call isWalkable a_BoundingBoxWidth = 1; // Until we improve physics, if ever. m_BoundingBoxWidth = CeilC(a_BoundingBoxWidth); m_BoundingBoxHeight = CeilC(a_BoundingBoxHeight); m_HalfWidth = a_BoundingBoxWidth / 2; int HalfWidthInt = FloorC(a_BoundingBoxWidth / 2); m_Source.x = FloorC(a_StartingPoint.x - HalfWidthInt); m_Source.y = FloorC(a_StartingPoint.y); m_Source.z = FloorC(a_StartingPoint.z - HalfWidthInt); m_Destination.x = FloorC(a_EndingPoint.x - HalfWidthInt); m_Destination.y = FloorC(a_EndingPoint.y); m_Destination.z = FloorC(a_EndingPoint.z - HalfWidthInt); if (GetCell(m_Source)->m_IsSolid || GetCell(m_Destination)->m_IsSolid) { m_Status = ePathFinderStatus::PATH_NOT_FOUND; return; } m_NearestPointToTarget = GetCell(m_Source); m_Status = ePathFinderStatus::CALCULATING; m_StepsLeft = a_MaxSteps; ProcessCell(GetCell(a_StartingPoint), nullptr, 0); m_Chunk = nullptr; } cPath::~cPath() { if (m_Status == ePathFinderStatus::CALCULATING) { FinishCalculation(); } } ePathFinderStatus cPath::Step(cChunk & a_Chunk) { m_Chunk = &a_Chunk; if (m_Status != ePathFinderStatus::CALCULATING) { return m_Status; } if (m_BadChunkFound) { FinishCalculation(ePathFinderStatus::PATH_NOT_FOUND); return m_Status; } if (m_StepsLeft == 0) { AttemptToFindAlternative(); } else { --m_StepsLeft; int i; for (i = 0; i < CALCULATIONS_PER_STEP; ++i) { if (Step_Internal()) // Step_Internal returns true when no more calculation is needed. { break; // if we're here, m_Status must have changed either to PATH_FOUND or PATH_NOT_FOUND. } } m_Chunk = nullptr; } return m_Status; } Vector3i cPath::AcceptNearbyPath() { ASSERT(m_Status == ePathFinderStatus::NEARBY_FOUND); m_Status = ePathFinderStatus::PATH_FOUND; return m_Destination; } bool cPath::IsSolid(const Vector3i & a_Location) { ASSERT(m_Chunk != nullptr); auto Chunk = m_Chunk->GetNeighborChunk(a_Location.x, a_Location.z); if ((Chunk == nullptr) || !Chunk->IsValid()) { m_BadChunkFound = true; return true; } m_Chunk = Chunk; BLOCKTYPE BlockType; NIBBLETYPE BlockMeta; int RelX = a_Location.x - m_Chunk->GetPosX() * cChunkDef::Width; int RelZ = a_Location.z - m_Chunk->GetPosZ() * cChunkDef::Width; m_Chunk->GetBlockTypeMeta(RelX, a_Location.y, RelZ, BlockType, BlockMeta); if ( (BlockType == E_BLOCK_FENCE) || (BlockType == E_BLOCK_OAK_FENCE_GATE) || (BlockType == E_BLOCK_NETHER_BRICK_FENCE) || ((BlockType >= E_BLOCK_SPRUCE_FENCE_GATE) && (BlockType <= E_BLOCK_ACACIA_FENCE)) ) { // TODO move this out of IsSolid to a proper place. GetCell(a_Location + Vector3i(0, 1, 0))->m_IsSolid = true; // Mobs will always think that the fence is 2 blocks high and therefore won't jump over. } if (BlockType == E_BLOCK_STATIONARY_WATER) { GetCell(a_Location + Vector3i(0, -1, 0))->m_IsSolid = true; } return cBlockInfo::IsSolid(BlockType); } bool cPath::Step_Internal() { cPathCell * CurrentCell = OpenListPop(); // Path not reachable. if (CurrentCell == nullptr) { AttemptToFindAlternative(); return true; } // Path found. if (CurrentCell->m_Location == m_Destination) { BuildPath(); FinishCalculation(ePathFinderStatus::PATH_FOUND); return true; } // Calculation not finished yet. // Check if we have a new NearestPoint. // TODO I don't like this that much, there should be a smarter way. if ((m_Destination - CurrentCell->m_Location).Length() < 5) { if (m_Rand.NextInt(4) == 0) { m_NearestPointToTarget = CurrentCell; } } else if (CurrentCell->m_H < m_NearestPointToTarget->m_H) { m_NearestPointToTarget = CurrentCell; } // process a currentCell by inspecting all neighbors. // Check North, South, East, West on our height. ProcessIfWalkable(CurrentCell->m_Location + Vector3i(1, 0, 0), CurrentCell, 10); ProcessIfWalkable(CurrentCell->m_Location + Vector3i(-1, 0, 0), CurrentCell, 10); ProcessIfWalkable(CurrentCell->m_Location + Vector3i(0, 0, 1), CurrentCell, 10); ProcessIfWalkable(CurrentCell->m_Location + Vector3i(0, 0, -1), CurrentCell, 10); // Check diagonals on XY plane. // x = -1: west, x = 1: east. for (int x = -1; x <= 1; x += 2) { if (GetCell(CurrentCell->m_Location + Vector3i(x, 0, 0))->m_IsSolid) // If there's a solid our east / west. { if (!GetCell(CurrentCell->m_Location + Vector3i(0, 1, 0))->m_IsSolid) // If there isn't a solid above. { ProcessIfWalkable(CurrentCell->m_Location + Vector3i(x, 1, 0), CurrentCell, JUMP_G_COST); // Check east-up / west-up. } } else { ProcessIfWalkable(CurrentCell->m_Location + Vector3i(x, -1, 0), CurrentCell, 14); // Else check east-down / west-down. } } // Check diagonals on the YZ plane. for (int z = -1; z <= 1; z += 2) { if (GetCell(CurrentCell->m_Location + Vector3i(0, 0, z))->m_IsSolid) // If there's a solid our north / south. { if (!GetCell(CurrentCell->m_Location + Vector3i(0, 1, 0))->m_IsSolid) // If there isn't a solid above. { ProcessIfWalkable(CurrentCell->m_Location + Vector3i(0, 1, z), CurrentCell, JUMP_G_COST); // Check north-up / south-up. } } else { ProcessIfWalkable(CurrentCell->m_Location + Vector3i(0, -1, z), CurrentCell, 14); // Else check north-down / south-down. } } // Check diagonals on the XZ plane. (Normal diagonals, this plane is special because of gravity, etc) for (int x = -1; x <= 1; x += 2) { for (int z = -1; z <= 1; z += 2) { // This condition prevents diagonal corner cutting. if (!GetCell(CurrentCell->m_Location + Vector3i(x, 0, 0))->m_IsSolid && !GetCell(CurrentCell->m_Location + Vector3i(0, 0, z))->m_IsSolid) { // This prevents falling of "sharp turns" e.g. a 1x1x20 rectangle in the air which breaks in a right angle suddenly. if (GetCell(CurrentCell->m_Location + Vector3i(x, -1, 0))->m_IsSolid && GetCell(CurrentCell->m_Location + Vector3i(0, -1, z))->m_IsSolid) { ProcessIfWalkable(CurrentCell->m_Location + Vector3i(x, 0, z), CurrentCell, 14); // 14 is a good enough approximation of sqrt(10 + 10). } } } } return false; } void cPath::AttemptToFindAlternative() { if (m_NearestPointToTarget == GetCell(m_Source)) { FinishCalculation(ePathFinderStatus::PATH_NOT_FOUND); } else { m_Destination = m_NearestPointToTarget->m_Location; BuildPath(); FinishCalculation(ePathFinderStatus::NEARBY_FOUND); } } void cPath::BuildPath() { cPathCell * CurrentCell = GetCell(m_Destination); do { m_PathPoints.push_back(CurrentCell->m_Location); // Populate the cPath with points. CurrentCell = CurrentCell->m_Parent; } while (CurrentCell != nullptr); } void cPath::FinishCalculation() { m_Map.clear(); m_OpenList = std::priority_queue, compareHeuristics>{}; } void cPath::FinishCalculation(ePathFinderStatus a_NewStatus) { if (m_BadChunkFound) { a_NewStatus = ePathFinderStatus::PATH_NOT_FOUND; } m_Status = a_NewStatus; FinishCalculation(); } void cPath::OpenListAdd(cPathCell * a_Cell) { a_Cell->m_Status = eCellStatus::OPENLIST; m_OpenList.push(a_Cell); #ifdef COMPILING_PATHFIND_DEBUGGER si::setBlock(a_Cell->m_Location.x, a_Cell->m_Location.y, a_Cell->m_Location.z, debug_open, SetMini(a_Cell)); #endif } cPathCell * cPath::OpenListPop() // Popping from the open list also means adding to the closed list. { if (m_OpenList.size() == 0) { return nullptr; // We've exhausted the search space and nothing was found, this will trigger a PATH_NOT_FOUND or NEARBY_FOUND status. } cPathCell * Ret = m_OpenList.top(); m_OpenList.pop(); Ret->m_Status = eCellStatus::CLOSEDLIST; #ifdef COMPILING_PATHFIND_DEBUGGER si::setBlock((Ret)->m_Location.x, (Ret)->m_Location.y, (Ret)->m_Location.z, debug_closed, SetMini(Ret)); #endif return Ret; } void cPath::ProcessIfWalkable(const Vector3i & a_Location, cPathCell * a_Parent, int a_Cost) { cPathCell * cell = GetCell(a_Location); int x, y, z; // Make sure we fit in the position. for (y = 0; y < m_BoundingBoxHeight; ++y) { for (x = 0; x < m_BoundingBoxWidth; ++x) { for (z = 0; z < m_BoundingBoxWidth; ++z) { if (GetCell(a_Location + Vector3i(x, y, z))->m_IsSolid) { return; } } } } /* y = -1; for (x = 0; x < m_BoundingBoxWidth; ++x) { for (z = 0; z < m_BoundingBoxWidth; ++z) { if (!GetCell(a_Location + Vector3i(x, y, z))->m_IsSolid) { return; } } } ProcessCell(cell, a_Parent, a_Cost); */ // Make sure there's at least 1 piece of solid below us. bool GroundFlag = false; y =-1; for (x = 0; x < m_BoundingBoxWidth; ++x) { for (z = 0; z < m_BoundingBoxWidth; ++z) { if (GetCell(a_Location + Vector3i(x, y, z))->m_IsSolid) { GroundFlag = true; break; } } } if (GroundFlag) { ProcessCell(cell, a_Parent, a_Cost); } } void cPath::ProcessCell(cPathCell * a_Cell, cPathCell * a_Caller, int a_GDelta) { // Case 1: Cell is in the closed list, ignore it. if (a_Cell->m_Status == eCellStatus::CLOSEDLIST) { return; } if (a_Cell->m_Status == eCellStatus::NOLIST) // Case 2: The cell is not in any list. { // Cell is walkable, add it to the open list. // Note that non-walkable cells are filtered out in Step_internal(); // Special case: Start cell goes here, gDelta is 0, caller is NULL. a_Cell->m_Parent = a_Caller; if (a_Caller != nullptr) { a_Cell->m_G = a_Caller->m_G + a_GDelta; } else { a_Cell->m_G = 0; } // Calculate H. This is A*'s Heuristics value. #if DISTANCE_MANHATTAN == 1 // Manhattan distance. DeltaX + DeltaY + DeltaZ. a_Cell->m_H = 10 * (abs(a_Cell->m_Location.x-m_Destination.x) + abs(a_Cell->m_Location.y-m_Destination.y) + abs(a_Cell->m_Location.z-m_Destination.z)); #else // Euclidian distance. sqrt(DeltaX^2 + DeltaY^2 + DeltaZ^2), more precise. a_Cell->m_H = static_castm_H)>((a_Cell->m_Location - m_Destination).Length() * 10); #endif #if HEURISTICS_ONLY == 1 a_Cell->m_F = a_Cell->m_H; // Greedy search. https://en.wikipedia.org/wiki/Greedy_search #else a_Cell->m_F = a_Cell->m_H + a_Cell->m_G; // Regular A*. #endif OpenListAdd(a_Cell); return; } // Case 3: Cell is in the open list, check if G and H need an update. int NewG = a_Caller->m_G + a_GDelta; if (NewG < a_Cell->m_G) { a_Cell->m_G = NewG; a_Cell->m_H = a_Cell->m_F + a_Cell->m_G; a_Cell->m_Parent = a_Caller; } } cPathCell * cPath::GetCell(const Vector3i & a_Location) { // Create the cell in the hash table if it's not already there. if (m_Map.count(a_Location) == 0) // Case 1: Cell is not on any list. We've never checked this cell before. { m_Map[a_Location].m_Location = a_Location; m_Map[a_Location].m_IsSolid = IsSolid(a_Location); m_Map[a_Location].m_Status = eCellStatus::NOLIST; #ifdef COMPILING_PATHFIND_DEBUGGER #ifdef COMPILING_PATHFIND_DEBUGGER_MARK_UNCHECKED si::setBlock(a_Location.x, a_Location.y, a_Location.z, debug_unchecked, Cell->m_IsSolid ? NORMAL : MINI); #endif #endif return &m_Map[a_Location]; } else { return &m_Map[a_Location]; } }