// DelayedFluidSimulator.cpp // Interfaces to the cDelayedFluidSimulator class representing a fluid simulator that has a configurable delay // before simulating a block. Each tick it takes a consecutive delay "slot" and simulates only blocks in that slot. #include "Globals.h" #include "DelayedFluidSimulator.h" #include "../World.h" #include "../Chunk.h" //////////////////////////////////////////////////////////////////////////////// // cDelayedFluidSimulatorChunkData::cSlot bool cDelayedFluidSimulatorChunkData::cSlot::Add(int a_RelX, int a_RelY, int a_RelZ) { ASSERT(a_RelZ >= 0); ASSERT(a_RelZ < static_cast(ARRAYCOUNT(m_Blocks))); cCoordWithIntVector & Blocks = m_Blocks[a_RelZ]; int Index = cChunkDef::MakeIndexNoCheck(a_RelX, a_RelY, a_RelZ); for (cCoordWithIntVector::const_iterator itr = Blocks.begin(), end = Blocks.end(); itr != end; ++itr) { if (itr->Data == Index) { // Already present return false; } } // for itr - Blocks[] Blocks.emplace_back(a_RelX, a_RelY, a_RelZ, Index); return true; } //////////////////////////////////////////////////////////////////////////////// // cDelayedFluidSimulatorChunkData: cDelayedFluidSimulatorChunkData::cDelayedFluidSimulatorChunkData(int a_TickDelay) : m_Slots(new cSlot[ToUnsigned(a_TickDelay)]) { } cDelayedFluidSimulatorChunkData::~cDelayedFluidSimulatorChunkData() { delete[] m_Slots; m_Slots = nullptr; } //////////////////////////////////////////////////////////////////////////////// // cDelayedFluidSimulator: cDelayedFluidSimulator::cDelayedFluidSimulator(cWorld & a_World, BLOCKTYPE a_Fluid, BLOCKTYPE a_StationaryFluid, int a_TickDelay) : Super(a_World, a_Fluid, a_StationaryFluid), m_TickDelay(a_TickDelay), m_AddSlotNum(a_TickDelay - 1), m_SimSlotNum(0), m_TotalBlocks(0) { } void cDelayedFluidSimulator::Simulate(float a_Dt) { m_AddSlotNum = m_SimSlotNum; m_SimSlotNum += 1; if (m_SimSlotNum >= m_TickDelay) { m_SimSlotNum = 0; } } void cDelayedFluidSimulator::SimulateChunk(std::chrono::milliseconds a_Dt, int a_ChunkX, int a_ChunkZ, cChunk * a_Chunk) { auto ChunkDataRaw = (m_FluidBlock == E_BLOCK_WATER) ? a_Chunk->GetWaterSimulatorData() : a_Chunk->GetLavaSimulatorData(); cDelayedFluidSimulatorChunkData * ChunkData = static_cast(ChunkDataRaw); cDelayedFluidSimulatorChunkData::cSlot & Slot = ChunkData->m_Slots[m_SimSlotNum]; // Simulate all the blocks in the scheduled slot: for (size_t i = 0; i < ARRAYCOUNT(Slot.m_Blocks); i++) { cCoordWithIntVector & Blocks = Slot.m_Blocks[i]; if (Blocks.empty()) { continue; } for (cCoordWithIntVector::iterator itr = Blocks.begin(), end = Blocks.end(); itr != end; ++itr) { SimulateBlock(a_Chunk, itr->x, itr->y, itr->z); } m_TotalBlocks -= static_cast(Blocks.size()); Blocks.clear(); } } void cDelayedFluidSimulator::AddBlock(cChunk & a_Chunk, Vector3i a_Position, BLOCKTYPE a_Block) { if ((a_Block != m_FluidBlock) && (a_Block != m_StationaryFluidBlock)) { return; } auto ChunkDataRaw = (m_FluidBlock == E_BLOCK_WATER) ? a_Chunk.GetWaterSimulatorData() : a_Chunk.GetLavaSimulatorData(); cDelayedFluidSimulatorChunkData * ChunkData = static_cast(ChunkDataRaw); cDelayedFluidSimulatorChunkData::cSlot & Slot = ChunkData->m_Slots[m_AddSlotNum]; // Add, if not already present: if (!Slot.Add(a_Position.x, a_Position.y, a_Position.z)) { return; } ++m_TotalBlocks; } void cDelayedFluidSimulator::WakeUp(cChunk & a_Chunk, Vector3i a_Position, BLOCKTYPE a_Block) { if (!cChunkDef::IsValidHeight(a_Position.y)) { // Not inside the world (may happen when rclk with a full bucket - the client sends Y = -1) return; } AddBlock(a_Chunk, a_Position, a_Block); }