// LightingThread.cpp // Implements the cLightingThread class representing the thread that processes requests for lighting #include "Globals.h" #include "LightingThread.h" #include "ChunkMap.h" #include "World.h" /// If more than this many chunks are in the queue, a warning is printed to the log #define WARN_ON_QUEUE_SIZE 800 /// Chunk data callback that takes the chunk data and puts them into cLightingThread's m_BlockTypes[] / m_HeightMap[]: class cReader : public cChunkDataCallback { virtual void BlockTypes(const BLOCKTYPE * a_Type) override { // ROW is a block of 16 Blocks, one whole row is copied at a time (hopefully the compiler will optimize that) // C++ doesn't permit copying arrays, but arrays as a part of a struct is ok :) typedef struct {BLOCKTYPE m_Row[16]; } ROW; ROW * InputRows = (ROW *)a_Type; ROW * OutputRows = (ROW *)m_BlockTypes; int InputIdx = 0; int OutputIdx = m_ReadingChunkX + m_ReadingChunkZ * cChunkDef::Width * 3; for (int y = 0; y < cChunkDef::Height; y++) { for (int z = 0; z < cChunkDef::Width; z++) { OutputRows[OutputIdx] = InputRows[InputIdx++]; OutputIdx += 3; } // for z // Skip into the next y-level in the 3x3 chunk blob; each level has cChunkDef::Width * 9 rows // We've already walked cChunkDef::Width * 3 in the "for z" cycle, that makes cChunkDef::Width * 6 rows left to skip OutputIdx += cChunkDef::Width * 6; } // for y } // BlockTypes() virtual void HeightMap(const cChunkDef::HeightMap * a_Heightmap) override { typedef struct {HEIGHTTYPE m_Row[16]; } ROW; ROW * InputRows = (ROW *)a_Heightmap; ROW * OutputRows = (ROW *)m_HeightMap; int InputIdx = 0; int OutputIdx = m_ReadingChunkX + m_ReadingChunkZ * cChunkDef::Width * 3; for (int z = 0; z < cChunkDef::Width; z++) { OutputRows[OutputIdx] = InputRows[InputIdx++]; OutputIdx += 3; } // for z } public: int m_ReadingChunkX; // 0, 1 or 2; x-offset of the chunk we're reading from the BlockTypes start int m_ReadingChunkZ; // 0, 1 or 2; z-offset of the chunk we're reading from the BlockTypes start BLOCKTYPE * m_BlockTypes; // 3x3 chunks of block types, organized as a single XZY blob of data (instead of 3x3 XZY blobs) HEIGHTTYPE * m_HeightMap; // 3x3 chunks of height map, organized as a single XZY blob of data (instead of 3x3 XZY blobs) } ; /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // cLightingThread: cLightingThread::cLightingThread(void) : super("cLightingThread"), m_World(NULL) { } cLightingThread::~cLightingThread() { Stop(); } bool cLightingThread::Start(cWorld * a_World) { ASSERT(m_World == NULL); // Not started yet m_World = a_World; return super::Start(); } void cLightingThread::Stop(void) { { cCSLock Lock(m_CS); for (sItems::iterator itr = m_Queue.begin(), end = m_Queue.end(); itr != end; ++itr) { delete itr->m_ChunkStay; } m_Queue.clear(); } m_ShouldTerminate = true; m_evtItemAdded.Set(); Wait(); } void cLightingThread::QueueChunk(int a_ChunkX, int a_ChunkZ, cChunkCoordCallback * a_CallbackAfter) { ASSERT(m_World != NULL); // Did you call Start() properly? cChunkStay * ChunkStay = new cChunkStay(m_World); ChunkStay->Add(a_ChunkX + 1, ZERO_CHUNK_Y, a_ChunkZ + 1); ChunkStay->Add(a_ChunkX + 1, ZERO_CHUNK_Y, a_ChunkZ); ChunkStay->Add(a_ChunkX + 1, ZERO_CHUNK_Y, a_ChunkZ - 1); ChunkStay->Add(a_ChunkX, ZERO_CHUNK_Y, a_ChunkZ + 1); ChunkStay->Add(a_ChunkX, ZERO_CHUNK_Y, a_ChunkZ); ChunkStay->Add(a_ChunkX, ZERO_CHUNK_Y, a_ChunkZ - 1); ChunkStay->Add(a_ChunkX - 1, ZERO_CHUNK_Y, a_ChunkZ + 1); ChunkStay->Add(a_ChunkX - 1, ZERO_CHUNK_Y, a_ChunkZ); ChunkStay->Add(a_ChunkX - 1, ZERO_CHUNK_Y, a_ChunkZ - 1); ChunkStay->Enable(); ChunkStay->Load(); cCSLock Lock(m_CS); m_Queue.push_back(sItem(a_ChunkX, a_ChunkZ, ChunkStay, a_CallbackAfter)); if (m_Queue.size() > WARN_ON_QUEUE_SIZE) { LOGINFO("Lighting thread overloaded, %d items in queue", m_Queue.size()); } m_evtItemAdded.Set(); } void cLightingThread::WaitForQueueEmpty(void) { cCSLock Lock(m_CS); while (!m_ShouldTerminate && (!m_Queue.empty() || !m_PostponedQueue.empty())) { cCSUnlock Unlock(Lock); m_evtQueueEmpty.Wait(); } } size_t cLightingThread::GetQueueLength(void) { cCSLock Lock(m_CS); return m_Queue.size() + m_PostponedQueue.size(); } void cLightingThread::ChunkReady(int a_ChunkX, int a_ChunkZ) { // Check all the items in the m_PostponedQueue, if the chunk is their neighbor, move the item to m_Queue bool NewlyAdded = false; { cCSLock Lock(m_CS); for (sItems::iterator itr = m_PostponedQueue.begin(); itr != m_PostponedQueue.end(); ) { if ( (itr->x - a_ChunkX >= -1) && (itr->x - a_ChunkX <= 1) && (itr->z - a_ChunkZ >= -1) && (itr->z - a_ChunkZ <= 1) ) { // It is a neighbor m_Queue.push_back(*itr); itr = m_PostponedQueue.erase(itr); NewlyAdded = true; } else { ++itr; } } // for itr - m_PostponedQueue[] } // Lock(m_CS) if (NewlyAdded) { m_evtItemAdded.Set(); // Notify the thread it has some work to do } } void cLightingThread::Execute(void) { for (;;) { { cCSLock Lock(m_CS); if (m_Queue.size() == 0) { cCSUnlock Unlock(Lock); m_evtItemAdded.Wait(); } } if (m_ShouldTerminate) { return; } // Process one items from the queue: sItem Item; { cCSLock Lock(m_CS); if (m_Queue.empty()) { continue; } Item = m_Queue.front(); m_Queue.pop_front(); if (m_Queue.empty()) { m_evtQueueEmpty.Set(); } } // CSLock(m_CS) LightChunk(Item); } } void cLightingThread::LightChunk(cLightingThread::sItem & a_Item) { cChunkDef::BlockNibbles BlockLight, SkyLight; if (!ReadChunks(a_Item.x, a_Item.z)) { // Neighbors not available. Re-queue in the postponed queue cCSLock Lock(m_CS); m_PostponedQueue.push_back(a_Item); return; } /* // DEBUG: torch somewhere: m_BlockTypes[19 + 24 * cChunkDef::Width * 3 + (m_HeightMap[24 + 24 * cChunkDef::Width * 3] / 2) * BlocksPerYLayer] = E_BLOCK_TORCH; // m_HeightMap[24 + 24 * cChunkDef::Width * 3]++; */ PrepareBlockLight(); CalcLight(m_BlockLight); PrepareSkyLight(); /* // DEBUG: Save chunk data with highlighted seeds for visual inspection: cFile f4; if ( f4.Open(Printf("Chunk_%d_%d_seeds.grab", a_Item.x, a_Item.z), cFile::fmWrite) ) { for (int z = 0; z < cChunkDef::Width * 3; z++) { for (int y = cChunkDef::Height / 2; y >= 0; y--) { unsigned char Seeds [cChunkDef::Width * 3]; memcpy(Seeds, m_BlockTypes + y * BlocksPerYLayer + z * cChunkDef::Width * 3, cChunkDef::Width * 3); for (int x = 0; x < cChunkDef::Width * 3; x++) { if (m_IsSeed1[y * BlocksPerYLayer + z * cChunkDef::Width * 3 + x]) { Seeds[x] = E_BLOCK_DIAMOND_BLOCK; } } f4.Write(Seeds, cChunkDef::Width * 3); } } } //*/ CalcLight(m_SkyLight); /* // DEBUG: Save XY slices of the chunk data and lighting for visual inspection: cFile f1, f2, f3; if ( f1.Open(Printf("Chunk_%d_%d_data.grab", a_Item.x, a_Item.z), cFile::fmWrite) && f2.Open(Printf("Chunk_%d_%d_sky.grab", a_Item.x, a_Item.z), cFile::fmWrite) && f3.Open(Printf("Chunk_%d_%d_glow.grab", a_Item.x, a_Item.z), cFile::fmWrite) ) { for (int z = 0; z < cChunkDef::Width * 3; z++) { for (int y = cChunkDef::Height / 2; y >= 0; y--) { f1.Write(m_BlockTypes + y * BlocksPerYLayer + z * cChunkDef::Width * 3, cChunkDef::Width * 3); unsigned char SkyLight [cChunkDef::Width * 3]; unsigned char BlockLight[cChunkDef::Width * 3]; for (int x = 0; x < cChunkDef::Width * 3; x++) { SkyLight[x] = m_SkyLight [y * BlocksPerYLayer + z * cChunkDef::Width * 3 + x] << 4; BlockLight[x] = m_BlockLight[y * BlocksPerYLayer + z * cChunkDef::Width * 3 + x] << 4; } f2.Write(SkyLight, cChunkDef::Width * 3); f3.Write(BlockLight, cChunkDef::Width * 3); } } } //*/ CompressLight(m_BlockLight, BlockLight); CompressLight(m_SkyLight, SkyLight); m_World->ChunkLighted(a_Item.x, a_Item.z, BlockLight, SkyLight); if (a_Item.m_Callback != NULL) { a_Item.m_Callback->Call(a_Item.x, a_Item.z); } delete a_Item.m_ChunkStay; } bool cLightingThread::ReadChunks(int a_ChunkX, int a_ChunkZ) { cReader Reader; Reader.m_BlockTypes = m_BlockTypes; Reader.m_HeightMap = m_HeightMap; for (int z = 0; z < 3; z++) { Reader.m_ReadingChunkZ = z; for (int x = 0; x < 3; x++) { Reader.m_ReadingChunkX = x; if (!m_World->GetChunkData(a_ChunkX + x - 1, a_ChunkZ + z - 1, Reader)) { return false; } } // for z } // for x memset(m_BlockLight, 0, sizeof(m_BlockLight)); memset(m_SkyLight, 0, sizeof(m_SkyLight)); return true; } void cLightingThread::PrepareSkyLight(void) { // Clear seeds: memset(m_IsSeed1, 0, sizeof(m_IsSeed1)); m_NumSeeds = 0; // Walk every column that has all XZ neighbors for (int z = 1; z < cChunkDef::Width * 3 - 1; z++) { int BaseZ = z * cChunkDef::Width * 3; for (int x = 1; x < cChunkDef::Width * 3 - 1; x++) { int idx = BaseZ + x; int Current = m_HeightMap[idx] + 1; int Neighbor1 = m_HeightMap[idx + 1] + 1; // X + 1 int Neighbor2 = m_HeightMap[idx - 1] + 1; // X - 1 int Neighbor3 = m_HeightMap[idx + cChunkDef::Width * 3] + 1; // Z + 1 int Neighbor4 = m_HeightMap[idx - cChunkDef::Width * 3] + 1; // Z - 1 int MaxNeighbor = std::max(std::max(Neighbor1, Neighbor2), std::max(Neighbor3, Neighbor4)); // Maximum of the four neighbors // Fill the column from the top down to Current with all-light: for (int y = cChunkDef::Height - 1, Index = idx + y * BlocksPerYLayer; y >= Current; y--, Index -= BlocksPerYLayer) { m_SkyLight[Index] = 15; } // Add Current as a seed: if (Current < cChunkDef::Height) { int CurrentIdx = idx + Current * BlocksPerYLayer; m_IsSeed1[CurrentIdx] = true; m_SeedIdx1[m_NumSeeds++] = CurrentIdx; } // Add seed from Current up to the highest neighbor: for (int y = Current + 1, Index = idx + y * BlocksPerYLayer; y < MaxNeighbor; y++, Index += BlocksPerYLayer) { m_IsSeed1[Index] = true; m_SeedIdx1[m_NumSeeds++] = Index; } } } } void cLightingThread::PrepareBlockLight(void) { // Clear seeds: memset(m_IsSeed1, 0, sizeof(m_IsSeed1)); memset(m_IsSeed2, 0, sizeof(m_IsSeed2)); m_NumSeeds = 0; // Walk every column that has all XZ neighbors, make a seed for each light-emitting block: for (int z = 1; z < cChunkDef::Width * 3 - 1; z++) { int BaseZ = z * cChunkDef::Width * 3; for (int x = 1; x < cChunkDef::Width * 3 - 1; x++) { int idx = BaseZ + x; for (int y = m_HeightMap[idx], Index = idx + y * BlocksPerYLayer; y >= 0; y--, Index -= BlocksPerYLayer) { if (g_BlockLightValue[m_BlockTypes[Index]] == 0) { continue; } // Add current block as a seed: m_IsSeed1[Index] = true; m_SeedIdx1[m_NumSeeds++] = Index; // Light it up: m_BlockLight[Index] = g_BlockLightValue[m_BlockTypes[Index]]; } } } } void cLightingThread::CalcLight(NIBBLETYPE * a_Light) { int NumSeeds2 = 0; while (m_NumSeeds > 0) { // Buffer 1 -> buffer 2 memset(m_IsSeed2, 0, sizeof(m_IsSeed2)); NumSeeds2 = 0; CalcLightStep(a_Light, m_NumSeeds, m_IsSeed1, m_SeedIdx1, NumSeeds2, m_IsSeed2, m_SeedIdx2); if (NumSeeds2 == 0) { return; } // Buffer 2 -> buffer 1 memset(m_IsSeed1, 0, sizeof(m_IsSeed1)); m_NumSeeds = 0; CalcLightStep(a_Light, NumSeeds2, m_IsSeed2, m_SeedIdx2, m_NumSeeds, m_IsSeed1, m_SeedIdx1); } } void cLightingThread::CalcLightStep( NIBBLETYPE * a_Light, int a_NumSeedsIn, unsigned char * a_IsSeedIn, unsigned int * a_SeedIdxIn, int & a_NumSeedsOut, unsigned char * a_IsSeedOut, unsigned int * a_SeedIdxOut ) { UNUSED(a_IsSeedIn); int NumSeedsOut = 0; for (int i = 0; i < a_NumSeedsIn; i++) { int SeedIdx = a_SeedIdxIn[i]; int SeedX = SeedIdx % (cChunkDef::Width * 3); int SeedZ = (SeedIdx / (cChunkDef::Width * 3)) % (cChunkDef::Width * 3); int SeedY = SeedIdx / BlocksPerYLayer; // Propagate seed: if (SeedX < cChunkDef::Width * 3 - 1) { PropagateLight(a_Light, SeedIdx, SeedIdx + 1, NumSeedsOut, a_IsSeedOut, a_SeedIdxOut); } if (SeedX > 0) { PropagateLight(a_Light, SeedIdx, SeedIdx - 1, NumSeedsOut, a_IsSeedOut, a_SeedIdxOut); } if (SeedZ < cChunkDef::Width * 3 - 1) { PropagateLight(a_Light, SeedIdx, SeedIdx + cChunkDef::Width * 3, NumSeedsOut, a_IsSeedOut, a_SeedIdxOut); } if (SeedZ > 0) { PropagateLight(a_Light, SeedIdx, SeedIdx - cChunkDef::Width * 3, NumSeedsOut, a_IsSeedOut, a_SeedIdxOut); } if (SeedY < cChunkDef::Height - 1) { PropagateLight(a_Light, SeedIdx, SeedIdx + cChunkDef::Width * cChunkDef::Width * 3 * 3, NumSeedsOut, a_IsSeedOut, a_SeedIdxOut); } if (SeedY > 0) { PropagateLight(a_Light, SeedIdx, SeedIdx - cChunkDef::Width * cChunkDef::Width * 3 * 3, NumSeedsOut, a_IsSeedOut, a_SeedIdxOut); } } // for i - a_SeedIdxIn[] a_NumSeedsOut = NumSeedsOut; } void cLightingThread::CompressLight(NIBBLETYPE * a_LightArray, NIBBLETYPE * a_ChunkLight) { int InIdx = cChunkDef::Width * 49; // Index to the first nibble of the middle chunk in the a_LightArray int OutIdx = 0; for (int y = 0; y < cChunkDef::Height; y++) { for (int z = 0; z < cChunkDef::Width; z++) { for (int x = 0; x < cChunkDef::Width; x += 2) { a_ChunkLight[OutIdx++] = (a_LightArray[InIdx + 1] << 4) | a_LightArray[InIdx]; InIdx += 2; } InIdx += cChunkDef::Width * 2; } // Skip into the next y-level in the 3x3 chunk blob; each level has cChunkDef::Width * 9 rows // We've already walked cChunkDef::Width * 3 in the "for z" cycle, that makes cChunkDef::Width * 6 rows left to skip InIdx += cChunkDef::Width * cChunkDef::Width * 6; } }