Require Import Nat. Require Import PeanoNat. Require Import List. Import ListNotations. (** * Various definitions of a subsequences Different definitions of a subsequence are given; they are proved below to be equivalent, allowing to choose the most convenient at any step of a proof. *) Definition subsequence {X: Type} (l s : list X) := exists (l1: list X) (l2 : list (list X)), length s = length l2 /\ l = l1 ++ flat_map (fun e => (fst e) :: (snd e)) (combine s l2). Definition subsequence2 {X: Type} (l s : list X) := exists (t: list bool), length t = length l /\ s = map snd (filter fst (combine t l)). Fixpoint subsequence3 {X: Type} (l s : list X) : Prop := match s with | nil => True | hd::tl => exists l1 l2, l = l1 ++ (hd::l2) /\ subsequence3 l2 tl end. (** Identical elementary properties of all definitions of a subsequence. *) Theorem subsequence_nil_r {X: Type}: forall (l : list X), subsequence l nil. Proof. intro l. exists l. exists nil. rewrite app_nil_r. split; easy. Qed. Theorem subsequence2_nil_r {X: Type} : forall (l : list X), subsequence2 l nil. Proof. intro l. exists (repeat false (length l)). rewrite repeat_length. split; try induction l; easy. Qed. Theorem subsequence3_nil_r {X: Type} : forall (l : list X), subsequence3 l nil. Proof. intro l. reflexivity. Qed. Theorem subsequence_nil_cons_r {X: Type}: forall (l: list X) (a:X), ~ subsequence nil (a::l). Proof. intros l a. intro H. destruct H. destruct H. destruct H. destruct x. rewrite app_nil_l in H0. destruct x0. apply PeanoNat.Nat.neq_succ_0 in H. contradiction H. apply nil_cons in H0. contradiction H0. apply nil_cons in H0. contradiction H0. Qed. Theorem subsequence2_nil_cons_r {X: Type}: forall (l: list X) (a:X), ~ subsequence2 nil (a::l). Proof. intros l a. intro H. destruct H. destruct H. assert (x = nil). destruct x. reflexivity. apply PeanoNat.Nat.neq_succ_0 in H. contradiction H. rewrite H1 in H0. symmetry in H0. apply nil_cons in H0. contradiction H0. Qed. Theorem subsequence3_nil_cons_r {X: Type}: forall (l: list X) (a:X), ~ subsequence3 nil (a::l). Proof. intros l a. intro H. destruct H. destruct H. destruct H. destruct x; apply nil_cons in H; contradiction H. Qed. Theorem subsequence_cons_l {X: Type}: forall (l s: list X) (a: X), subsequence l s -> subsequence (a::l) s. Proof. intros l s a. intro H. destruct H. destruct H. destruct H. exists (a::x). exists x0. split. assumption. rewrite H0. reflexivity. Qed. Theorem subsequence2_cons_l {X: Type} : forall (l s: list X) (a: X), subsequence2 l s -> subsequence2 (a::l) s. Proof. intros l s a. intro H. destruct H. destruct H. exists (false::x). split; try apply eq_S; assumption. Qed. Theorem subsequence3_cons_l {X: Type} : forall (l s: list X) (a: X), subsequence3 l s -> subsequence3 (a::l) s. Proof. intros l s a. intro H. destruct s. apply subsequence3_nil_r. destruct H. destruct H. destruct H. exists (a::x0). exists x1. rewrite H. split; easy. Qed. Theorem subsequence_cons_r {X: Type} : forall (l s: list X) (a: X), subsequence l (a::s) -> subsequence l s. Proof. intros l s a. intro H. destruct H. destruct H. destruct H. destruct x0. apply PeanoNat.Nat.neq_succ_0 in H. contradiction H. exists (x++a::l0). exists x0. split. inversion H. reflexivity. rewrite H0. rewrite <- app_assoc. apply app_inv_head_iff. reflexivity. Qed. Theorem subsequence2_cons_r {X: Type} : forall (l s: list X) (a: X), subsequence2 l (a::s) -> subsequence2 l s. Proof. intro l. induction l. intros. apply subsequence2_nil_cons_r in H. contradiction H. intros s a0 . intro H. destruct H. destruct H. destruct x. symmetry in H0. apply nil_cons in H0. contradiction H0. destruct b. simpl in H0. inversion H0. exists (false::x). split; try rewrite <- H; reflexivity. apply subsequence2_cons_l. apply IHl with (a := a0). exists x. split; inversion H; easy. Qed. Theorem subsequence3_cons_r {X: Type} : forall (l s: list X) (a: X), subsequence3 l (a::s) -> subsequence3 l s. Proof. intros l s a. intro H. simpl in H. destruct H. destruct H. destruct s. apply subsequence3_nil_r. destruct H. simpl in H0. destruct H0. destruct H0. destruct H0. exists (x ++ a::x2). exists x3. rewrite H. rewrite H0. split. rewrite <- app_assoc. rewrite app_comm_cons. reflexivity. assumption. Qed. Theorem subsequence_cons_eq {X: Type} : forall (l1 l2: list X) (a: X), subsequence (a::l1) (a::l2) <-> subsequence l1 l2. Proof. intros l s a. split; intro H; destruct H; destruct H; destruct H. destruct x. destruct x0. apply PeanoNat.Nat.neq_succ_0 in H. contradiction H. inversion H0. exists l0. exists x0. inversion H. rewrite H3. split; reflexivity. destruct x0. apply PeanoNat.Nat.neq_succ_0 in H. contradiction H. exists (x1 ++ (a::l0)). exists x0. inversion H. rewrite H2. split. reflexivity. inversion H0. rewrite <- app_assoc. apply app_inv_head_iff. rewrite app_comm_cons. reflexivity. exists nil. exists (x::x0). simpl. split; [ rewrite H | rewrite H0 ]; reflexivity. Qed. Theorem subsequence2_cons_eq {X: Type}: forall (l1 l2: list X) (a: X), subsequence2 (a::l1) (a::l2) <-> subsequence2 l1 l2. Proof. intros l s a. split; intro H; destruct H; destruct H. destruct x. inversion H0. destruct b. exists (x). split; inversion H; try rewrite H2; inversion H0; reflexivity. inversion H. assert (subsequence2 l (a::s)). exists x. split; assumption. apply subsequence2_cons_r with (a := a). assumption. exists (true :: x). split. apply eq_S. assumption. rewrite H0. reflexivity. Qed. Theorem subsequence3_cons_eq {X: Type} : forall (l1 l2: list X) (a: X), subsequence3 (a::l1) (a::l2) <-> subsequence3 l1 l2. Proof. intros l s a. split; intro H. destruct H. destruct H. destruct H. destruct x. inversion H. assumption. destruct s. apply subsequence3_nil_r. destruct H0. destruct H0. destruct H0. exists (x1 ++ (a::x3)). exists x4. inversion H. rewrite H0. rewrite <- app_assoc. rewrite app_comm_cons. split; easy. exists nil. exists l. split; easy. Qed. (** Decidability and equivalence of all definitions of a subsequence. *) Theorem subsequence2_dec {X: Type}: (forall x y : X, {x = y} + {x <> y}) -> forall (l s : list X), { subsequence2 l s } + { ~ subsequence2 l s }. Proof. intro H. intro l. induction l; intro s. destruct s. left. apply subsequence2_nil_r. right. apply subsequence2_nil_cons_r. assert({subsequence2 l s} + {~ subsequence2 l s}). apply IHl. destruct H0. rewrite <- subsequence2_cons_eq with (a := a) in s0. apply subsequence2_cons_r in s0. left. assumption. destruct s. left. apply subsequence2_nil_r. assert ({x=a}+{x<>a}). apply H. destruct H0. rewrite e. destruct IHl with (s := s); [ left | right ]; rewrite subsequence2_cons_eq; assumption. right. intro I. destruct I. destruct H0. destruct x0. symmetry in H1. apply nil_cons in H1. contradiction H1. destruct b. inversion H1. rewrite H3 in n0. contradiction n0. reflexivity. assert (subsequence2 l (x::s)). exists x0. split; inversion H0; easy. apply n in H2. contradiction H2. Qed. Theorem subsequence3_dec {X: Type}: (forall x y : X, {x = y} + {x <> y}) -> forall (l s : list X), { subsequence3 l s } + { ~ subsequence3 l s }. Proof. intro H. intro l. induction l. intro s. destruct s. left. reflexivity. right. apply subsequence3_nil_cons_r. intro s. assert({subsequence3 l s} + {~ subsequence3 l s}). apply IHl. destruct H0. rewrite <- subsequence3_cons_eq with (a := a) in s0. apply subsequence3_cons_r in s0. left. assumption. destruct s. left. apply subsequence3_nil_r. assert ({x=a}+{x<>a}). apply H. destruct H0. rewrite e. destruct IHl with (s := s); [ left | right ]; rewrite subsequence3_cons_eq; assumption. right. intro I. destruct I. destruct H0. destruct H0. destruct x0. inversion H0. rewrite H3 in n0. contradiction n0. reflexivity. assert (subsequence3 l (x::s)). exists x2. exists x1. inversion H0. split. reflexivity. assumption. apply n in H2. contradiction H2. Qed. Theorem subsequence_eq_def_2 {X: Type} : (forall (x y : X), {x = y} + {x <> y}) -> (forall l s : list X, subsequence l s <-> subsequence2 l s). Proof. intro I. intro l. induction l. intro s. split; intro H. destruct s. apply subsequence2_nil_r. apply subsequence_nil_cons_r in H. contradiction H. destruct s. apply subsequence_nil_r. apply subsequence2_nil_cons_r in H. contradiction H. intro s. destruct s. split; intro H. apply subsequence2_nil_r. apply subsequence_nil_r. assert ({a=x} + {a<>x}). apply I. destruct H. rewrite e. rewrite subsequence2_cons_eq. rewrite <- IHl. rewrite subsequence_cons_eq. split; intro; assumption. split; intro H. apply subsequence2_cons_l. apply IHl. destruct H. destruct H. destruct H. destruct x0. destruct x1. apply PeanoNat.Nat.neq_succ_0 in H. contradiction H. simpl in H0. inversion H0. rewrite H2 in n. contradiction n. reflexivity. inversion H0. exists x2. exists x1. split. assumption. reflexivity. apply subsequence_cons_l. apply IHl. destruct H. destruct H. destruct x0. simpl in H0. symmetry in H0. apply nil_cons in H0. contradiction H0. destruct b. simpl in H0. inversion H0. rewrite H2 in n. contradiction n. reflexivity. exists x0. inversion H. inversion H0. split; reflexivity. Qed. Theorem subsequence_dec {X: Type}: (forall x y : X, {x = y} + {x <> y}) -> forall (l s : list X), { subsequence l s } + { ~ subsequence l s }. Proof. intro H. intros l s. assert ({ subsequence2 l s } + { ~ subsequence2 l s }). apply subsequence2_dec. assumption. destruct H0. rewrite <- subsequence_eq_def_2 in s0. left. assumption. assumption. rewrite <- subsequence_eq_def_2 in n. right. assumption. assumption. Qed. Theorem subsequence_eq_def_3 {X: Type} : (forall (x y : X), {x = y} + {x <> y}) -> (forall l s : list X, subsequence l s <-> subsequence3 l s). Proof. intro I. intro l. induction l. intro s. split; intro H. destruct s. apply subsequence3_nil_r. apply subsequence_nil_cons_r in H. contradiction H. destruct s. apply subsequence_nil_r. apply subsequence3_nil_cons_r in H. contradiction H. intro s. destruct s. split; intro H. apply subsequence3_nil_r. apply subsequence_nil_r. assert ({a=x} + {a<>x}). apply I. destruct H. rewrite e. rewrite subsequence3_cons_eq. rewrite <- IHl. rewrite subsequence_cons_eq. split; intro; assumption. split; intro H. apply subsequence3_cons_l. apply IHl. destruct H. destruct H. destruct H. destruct x0. destruct x1. apply PeanoNat.Nat.neq_succ_0 in H. contradiction H. simpl in H0. inversion H0. rewrite H2 in n. contradiction n. reflexivity. inversion H0. exists x2. exists x1. split. assumption. reflexivity. apply subsequence_cons_l. apply IHl. destruct H. destruct H. destruct H. destruct x0. inversion H. rewrite H2 in n. contradiction n. reflexivity. exists x2. exists x1. split. inversion H. reflexivity. assumption. Qed. (** Various general properties of a subsequence. *) Theorem subsequence2_app {X: Type} : forall l1 s1 l2 s2 : list X, subsequence2 l1 s1 -> subsequence2 l2 s2 -> subsequence2 (l1++l2) (s1++s2). Proof. intros l1 s1 l2 s2. intros H I. destruct H. destruct I. exists (x++x0). destruct H. destruct H0. split. rewrite app_length. rewrite app_length. rewrite H. rewrite H0. reflexivity. rewrite H1. rewrite H2. assert (J: forall (t : list bool) (u : list X) (v: list bool) (w : list X), length t = length u -> combine (t++v) (u++w) = (combine t u) ++ (combine v w)). intros t u v w. generalize u. induction t; intro u0; intro K. replace u0 with (nil : list X). reflexivity. destruct u0. reflexivity. apply O_S in K. contradiction K. destruct u0. apply PeanoNat.Nat.neq_succ_0 in K. contradiction K. simpl. rewrite IHt. reflexivity. inversion K. reflexivity. rewrite J. rewrite filter_app. rewrite map_app. reflexivity. assumption. Qed. Theorem subsequence_trans {X: Type} : forall (l1 l2 l3: list X), subsequence l1 l2 -> subsequence2 l2 l3 -> subsequence2 l1 l3. Proof. intros l1 l2 l3. intros H I. destruct H. destruct H. destruct H. destruct I. destruct H1. exists ( (repeat false (length x)) ++ (flat_map (fun e => (fst e) :: (repeat false (length (snd e)))) (combine x1 x0))). split. rewrite app_length. rewrite repeat_length. rewrite H0. rewrite app_length. rewrite Nat.add_cancel_l. rewrite flat_map_length. rewrite flat_map_length. assert (forall (u: list X) (v: list (list X)), length u = length v -> list_sum (map (fun z => length (fst z :: snd z)) (combine u v)) = list_sum (map (fun z => S (length z)) v)). intros u v. generalize u. induction v; intro u0; intro I. apply length_zero_iff_nil in I. rewrite I. reflexivity. destruct u0. apply O_S in I. contradiction I. simpl. rewrite IHv. reflexivity. inversion I. reflexivity. rewrite H3. assert (forall (u: list bool) (v: list (list X)), length u = length v -> list_sum (map (fun z => length (fst z :: repeat false (length (snd z)))) (combine u v)) = list_sum (map (fun z => S (length z)) v)). intros u v. generalize u. induction v; intro u0; intro I; destruct u0. reflexivity. apply PeanoNat.Nat.neq_succ_0 in I. contradiction I. apply O_S in I. contradiction I. simpl. rewrite IHv. rewrite repeat_length. reflexivity. inversion I. reflexivity. rewrite H4. reflexivity. rewrite H1. rewrite H. reflexivity. assumption. assert (K: forall (w v: list X) u, filter fst (combine ((repeat false (length w)) ++ u) (w ++ v)) = filter fst (combine u v)). intro w0. induction w0. reflexivity. apply IHw0. rewrite H2. rewrite H0. assert (forall (u v: list X) (w: list bool), map snd (filter fst (combine ((repeat false (length u)) ++ w) (u ++ v))) = map snd (filter fst (combine w v))). intro u. induction u; intros v w. reflexivity. apply IHu. rewrite H3. assert (forall (u: list bool) (v: list X) (w: list (list X)), length u = length w -> length u = length v -> filter fst (combine (flat_map (fun e => fst e:: (repeat false (length (snd e)))) (combine u w)) (flat_map (fun e => fst e :: snd e) (combine v w))) = filter fst (combine u v)). intros u v w. generalize u. generalize v. induction w; intros v0 u0; intros I J. apply length_zero_iff_nil in I. rewrite I. reflexivity. destruct u0. reflexivity. destruct v0. apply PeanoNat.Nat.neq_succ_0 in J; contradiction J. destruct b; simpl; rewrite K; rewrite IHw. reflexivity. inversion I; reflexivity. inversion J; reflexivity. reflexivity. inversion I; reflexivity. inversion J; reflexivity. rewrite H4; try rewrite H1; try rewrite H; reflexivity. Qed. Example test1: subsequence [1;2;3;4;5] [1;3;5]. Proof. unfold subsequence. exists []. exists [[2];[4];[]]. simpl. easy. Qed. Example test2: subsequence [1;2;3;4;5] [2;4]. Proof. unfold subsequence. exists [1]. exists [[3];[5]]. simpl. easy. Qed. Example test3: subsequence [1;2;3;4;5] [1;3;5]. Proof. rewrite subsequence_eq_def_2. exists [true; false; true; false; true]. split; reflexivity. apply Nat.eq_dec. Qed. Theorem subsequence0_eq_def_2 {X: Type} : forall l s : list X, subsequence l s -> subsequence2 l s. Proof. intros l s. intro H. destruct H. destruct H. destruct H. exists ( (repeat false (length x)) ++ (flat_map (fun e => true :: (repeat false (length e))) x0)). split. rewrite H0. rewrite app_length. rewrite app_length. rewrite repeat_length. rewrite Nat.add_cancel_l. rewrite flat_map_length. rewrite flat_map_length. assert (forall v (u: list X), length u = length v -> map (fun e => length (fst e :: snd e)) (combine u v) = map (fun e => length (true :: repeat false (length e))) v). intro v. induction v; intro u; intro I. apply length_zero_iff_nil in I. rewrite I. reflexivity. destruct u. apply O_S in I. contradiction I. simpl. rewrite IHv. rewrite repeat_length. reflexivity. inversion I. reflexivity. rewrite H1. reflexivity. inversion H. reflexivity. rewrite H0. assert (forall (u: list X) v w, filter fst (combine (repeat false (length u) ++ v) (u ++ w)) = filter fst (combine v w)). intro u. induction u; intros v w. reflexivity. simpl. apply IHu. assert (forall (v: list (list X)) (u : list X), length u = length v -> u = map snd (filter fst (combine (flat_map (fun e => true:: repeat false (length e)) v) (flat_map (fun e => fst e :: snd e) (combine u v))))). intro v. induction v; intro u; intro I. apply length_zero_iff_nil in I. rewrite I. reflexivity. destruct u. apply O_S in I. contradiction I. simpl. rewrite H1. rewrite <- IHv. reflexivity. inversion I. reflexivity. rewrite H1. rewrite <- H2. reflexivity. inversion H. reflexivity. Qed. Theorem subsequence0_eq_def_3 {X: Type} : forall l s : list X, subsequence2 l s -> subsequence3 l s. Proof. intros l s. intro H. destruct H. destruct H. assert (I: forall u (v w: list X), length u = length w -> v = map snd (filter fst (combine u w)) -> subsequence3 w v). intro u. induction u; intros v w; intros I J. rewrite J. apply subsequence3_nil_r. destruct v. apply subsequence3_nil_r. destruct w. apply Nat.neq_succ_0 in I. contradiction I. destruct a. exists nil. exists w. inversion J. apply IHu in H3. split. reflexivity. inversion J. rewrite <- H5. assumption. inversion I. reflexivity. simpl in J. assert (subsequence3 w (x0::v)). apply IHu. inversion I. reflexivity. assumption. apply subsequence3_cons_l. assumption. apply I with (u := x); assumption. Qed. Theorem subsequence0_eq_def_1 {X: Type} : forall l s : list X, subsequence3 l s -> subsequence l s. Proof. intros l s. generalize l. induction s; intro l0; intro H. apply subsequence_nil_r. destruct H. destruct H. destruct H. apply IHs in H0. destruct H0. destruct H0. destruct H0. exists x. exists (x1:: x2). split. simpl. rewrite H0. reflexivity. rewrite H. rewrite H1. reflexivity. Qed. (* destruct H. destruct H. (* z contient la position des booléens dans x *) pose (z := map snd (filter fst (combine x (seq 0 (length x))))). destruct s. exists l. exists nil. rewrite app_nil_r. split; easy. assert (0 < length z). unfold z. rewrite map_length. assert (forall v (u: list X) (w: list nat), length u = length v -> length u = length w -> length (filter fst (combine v w)) = length (map snd (filter fst (combine v u)))). intro v. induction v; intros u w; intros I J. reflexivity. destruct w. apply length_zero_iff_nil in J. rewrite J in I. apply O_S in I. contradiction I. destruct u. apply O_S in J. contradiction J. destruct a; simpl. apply eq_S. apply IHv. inversion I. reflexivity. inversion J. reflexivity. apply IHv. inversion I. reflexivity. inversion J. reflexivity. assert (length (x0::s) = length (map snd (filter fst (combine x l)))). rewrite H0. reflexivity. rewrite <- H1 with (w := seq 0 (length x)) in H2. rewrite <- H2. apply Nat.lt_0_succ. inversion H. reflexivity. rewrite H. rewrite seq_length. reflexivity. exists (firstn (hd 0 z) l). (* z2 contient la position du true suivant *) pose (z2 := (skipn 1 z) ++ [ length l ]). (* z3 contient la longueur de chaque bloc true; false; false; ... *) pose (z3 := map (fun e => (snd e) - (fst e)) (combine z z2)). exists (map (fun e => firstn ((snd e) -1) (skipn (S (fst e)) l)) (combine z z3)). assert (length (x0::s) = length z). unfold z. rewrite H0. rewrite map_length. rewrite map_length. rewrite H. assert (forall u (v: list X) (w: list nat), length v = length w -> length (filter fst (combine u v)) = length (filter fst (combine u w))). intro u. induction u; intros v w; intro I. reflexivity. destruct v. symmetry in I. apply length_zero_iff_nil in I. rewrite I. reflexivity. destruct w. apply Nat.neq_succ_0 in I. contradiction I. destruct a; simpl; rewrite IHu with (w := w). inversion I; reflexivity. inversion I; reflexivity. reflexivity. inversion I; reflexivity. rewrite H2 with (w := seq 0 (length l)). reflexivity. rewrite seq_length. reflexivity. unfold z3. unfold z2. split. destruct z. apply Nat.nlt_0_r in H1. contradiction H1. rewrite map_length. rewrite combine_length. rewrite map_length. rewrite combine_length. rewrite app_length. rewrite Nat.add_1_r. simpl. apply eq_S. rewrite Nat.min_id. rewrite Nat.min_id. inversion H2. reflexivity. unfold z. rewrite H0. assert (forall (u: list bool) (v: list X), length u = length v -> v = firstn (hd 0 (map snd (filter fst (combine u (seq 0 (length u)))))) v ++ flat_map (fun e : X * list X => fst e :: snd e) (combine (map snd (filter fst (combine u v))) (map (fun e : nat * nat => firstn (snd e - 1) (skipn (S (fst e)) v)) (combine (map snd (filter fst (combine u (seq 0 (length u))))) (map (fun e : nat * nat => snd e - fst e) (combine (map snd (filter fst (combine u (seq 0 (length u))))) (skipn 1 (map snd (filter fst (combine u (seq 0 (length u))))) ++ [length v]))))))). intro u. induction u; intro v; intro I. symmetry in I. apply length_zero_iff_nil in I. assumption. destruct v. rewrite app_nil_r. rewrite firstn_nil. reflexivity. destruct a. replace (map snd (filter fst (combine (true :: u) (seq 0 (length (true :: u)))))) with *)