diff --git a/src/thue_morse2.v b/src/thue_morse2.v index 677fb34..ce8201d 100644 --- a/src/thue_morse2.v +++ b/src/thue_morse2.v @@ -91,208 +91,75 @@ Qed. All squared factors of odd length have length 1 or 3. *) -Lemma tm_step_factor5 : forall (n : nat) (hd a tl : list bool), - tm_step n = hd ++ a ++ tl -> length a = 5 - -> a <> [ true; false; true; false; true]. -Proof. - intros n hd a tl. intros H I. - - destruct n. - assert (length (tm_step 0) = length (tm_step 0)). reflexivity. - rewrite H in H0 at 2. simpl in H0. - rewrite app_length in H0. rewrite app_length in H0. - rewrite I in H0. rewrite Nat.add_shuffle3 in H0. - apply Nat.succ_inj in H0. inversion H0. - - assert (even (length (tm_step (S n))) = true). - rewrite tm_size_power2. rewrite Nat.pow_succ_r. apply Nat.even_mul. - apply Nat.le_0_l. - - assert (J: even (length hd) = negb (even (length tl))). - rewrite H in H0. rewrite app_length in H0. rewrite app_length in H0. - rewrite I in H0. rewrite Nat.even_add in H0. rewrite Nat.even_add in H0. - destruct (even (length hd)); destruct (even (length tl)). - inversion H0. reflexivity. reflexivity. inversion H0. - - assert (K: {a=[true; false; true; false; true]} - + {~ a=[ true; false; true; false; true]}). - apply list_eq_dec. apply bool_dec. destruct K. - - assert ({even (length hd) = true} + {even (length hd) <> true}). - apply bool_dec. destruct H1. - - (* case length hd is even *) - rewrite e0 in J. rewrite Nat.negb_even in J. - destruct tl. inversion J. - destruct b. - - assert (count_occ Bool.bool_dec hd true = count_occ Bool.bool_dec hd false). - generalize e0. generalize H. apply tm_step_count_occ. - - assert (count_occ Bool.bool_dec (hd ++ a ++ [true]) true - = count_occ Bool.bool_dec (hd ++ a ++ [true]) false). - assert (even (length (hd ++ a ++ [true])) = true). - rewrite app_length. rewrite app_length. - rewrite Nat.even_add. rewrite Nat.even_add. - rewrite e0. rewrite e. reflexivity. - replace (hd ++ a ++ true :: tl) with ((hd ++ a ++ [true]) ++ tl) in H. - generalize H2. generalize H. apply tm_step_count_occ. - rewrite <- app_assoc. apply app_inv_head_iff. - rewrite <- app_assoc. reflexivity. - - rewrite count_occ_app in H2. rewrite H1 in H2. - symmetry in H2. - rewrite count_occ_app in H2. rewrite Nat.add_cancel_l in H2. - - rewrite count_occ_app in H2. rewrite count_occ_app in H2. - rewrite e in H2. simpl in H2. inversion H2. - - replace (hd ++ a ++ false::tl) - with (hd ++ [true; false] ++ [true; false] ++ [true; false] ++ tl) in H. - apply tm_step_cubefree in H. contradiction H. reflexivity. - simpl. apply Nat.lt_0_2. - - rewrite e. reflexivity. - - (* case length hd is odd *) - apply not_true_is_false in n0. - rewrite app_removelast_last with (l := hd) (d := true) in H. - rewrite app_removelast_last with (l := hd) (d := true) in n0. - rewrite app_length in n0. simpl in n0. - rewrite Nat.add_1_r in n0. rewrite Nat.even_succ in n0. - rewrite <- Nat.negb_even in n0. rewrite negb_false_iff in n0. - - destruct (last hd true). - rewrite <- app_assoc in H. - assert (count_occ Bool.bool_dec (removelast hd) true - = count_occ Bool.bool_dec (removelast hd) false). - generalize n0. generalize H. apply tm_step_count_occ. - replace (removelast hd ++ [true] ++ a ++ tl) - with ((removelast hd ++ [true; true]) ++ [false;true;false;true] ++ tl) in H. - assert (count_occ Bool.bool_dec (removelast hd ++ [true;true]) true - = count_occ Bool.bool_dec (removelast hd ++ [true;true]) false). - assert (even (length (removelast hd ++ [true;true])) = true). - rewrite app_length. rewrite Nat.even_add_even. assumption. - apply Nat.EvenT_Even. apply Nat.even_EvenT. reflexivity. - generalize H2. generalize H. apply tm_step_count_occ. - - rewrite count_occ_app in H2. rewrite count_occ_app in H2. - rewrite H1 in H2. rewrite Nat.add_cancel_l in H2. - simpl in H2. inversion H2. - - rewrite e. rewrite app_assoc_reverse. reflexivity. - - replace ((removelast hd ++ [false]) ++ a ++ tl) - with (removelast hd ++ [false; true] ++ [false; true] ++ [false;true] ++ tl) in H. - apply tm_step_cubefree in H. contradiction H. reflexivity. - simpl. apply Nat.lt_0_2. - - rewrite e. rewrite app_assoc_reverse. reflexivity. - - assert (length hd <> 0). destruct hd. inversion n0. - simpl. apply Nat.neq_succ_0. rewrite <- length_zero_iff_nil. assumption. - assert (length hd <> 0). destruct hd. inversion n0. - simpl. apply Nat.neq_succ_0. rewrite <- length_zero_iff_nil. assumption. - - assumption. -Qed. - -Lemma tm_step_factor5' : forall (n : nat) (hd a tl : list bool), - tm_step n = hd ++ a ++ tl -> length a = 5 - -> a <> [ false; true; false; true; false]. -Proof. - intros n hd a tl. intros H I. - assert (K: {a=[false; true; false; true; false]} - + {~ a=[false; true; false; true; false]}). - apply list_eq_dec. apply bool_dec. destruct K. - assert (tm_step (S n) = hd ++ a ++ tl - ++ (map negb hd) ++ [ true; false; true; false; true ] - ++ (map negb tl)). - rewrite tm_build. rewrite H. - rewrite map_app. rewrite map_app. - rewrite <- app_assoc. apply app_inv_head_iff. - rewrite <- app_assoc. rewrite e. reflexivity. - rewrite app_assoc in H0. rewrite app_assoc in H0. - rewrite app_assoc in H0. apply tm_step_factor5 in H0. - contradiction H0. reflexivity. - reflexivity. assumption. -Qed. - - Lemma tm_step_consecutive_identical_length : - forall (n : nat) (hd a tl : list bool), - tm_step n = hd ++ a ++ tl -> length a = 5 - -> exists (b c : list bool) (d : bool), a = b ++ [d;d] ++ c. -Proof. - intros n hd a tl. intros H I. - destruct a. inversion I. destruct a. inversion I. - destruct a. inversion I. destruct a. inversion I. - destruct a. inversion I. - - assert (a = nil). simpl in I. - apply Nat.succ_inj in I. apply Nat.succ_inj in I. - apply Nat.succ_inj in I. apply Nat.succ_inj in I. - apply Nat.succ_inj in I. - apply length_zero_iff_nil in I. assumption. - rewrite H0. rewrite H0 in H. rewrite H0 in I. - - destruct b; destruct b0; destruct b1; destruct b2; destruct b3. - - exists nil. exists (true::true::true::nil). exists true. simpl. reflexivity. - exists nil. exists (true::true::false::nil). exists true. simpl. reflexivity. - exists nil. exists (true::false::true::nil). exists true. simpl. reflexivity. - exists nil. exists (true::false::false::nil). exists true. simpl. reflexivity. - exists nil. exists (false::true::true::nil). exists true. simpl. reflexivity. - exists nil. exists (false::true::false::nil). exists true. simpl. reflexivity. - exists nil. exists (false::false::true::nil). exists true. simpl. reflexivity. - exists nil. exists (false::false::false::nil). exists true. simpl. reflexivity. - - exists (true::false::nil). exists (true::nil). exists true. simpl. reflexivity. - exists (true::false::nil). exists (false::nil). exists true. simpl. reflexivity. - apply tm_step_factor5 in H. contradiction H. reflexivity. reflexivity. - exists (true::false::true::nil). exists (nil). exists false. simpl. reflexivity. - exists (true::false::false::nil). exists (nil). exists true. simpl. reflexivity. - exists (true::nil). exists (true::false::nil). exists false. simpl. reflexivity. - exists (true::nil). exists (false::true::nil). exists false. simpl. reflexivity. - exists (true::false::nil). exists (false::nil). exists false. simpl. reflexivity. - exists (false::nil). exists (true::true::nil). exists true. simpl. reflexivity. - exists (false::nil). exists (true::false::nil). exists true. simpl. reflexivity. - exists (false::nil). exists (false::true::nil). exists true. simpl. reflexivity. - exists (false::nil). exists (false::false::nil). exists true. simpl. reflexivity. - exists (false::true::false::nil). exists (nil). exists true. simpl. reflexivity. - apply tm_step_factor5' in H. contradiction H. reflexivity. reflexivity. - exists (false::true::nil). exists (true::nil). exists false. simpl. reflexivity. - exists (false::true::nil). exists (false::nil). exists false. simpl. reflexivity. - exists (false::false::nil). exists (true::nil). exists true. simpl. reflexivity. - exists (false::false::nil). exists (false::nil). exists true. simpl. reflexivity. - exists (nil). exists (true::false::true::nil). exists false. simpl. reflexivity. - exists (nil). exists (true::false::false::nil). exists false. simpl. reflexivity. - exists (nil). exists (false::true::true::nil). exists false. simpl. reflexivity. - exists (nil). exists (false::true::false::nil). exists false. simpl. reflexivity. - exists (nil). exists (false::false::true::nil). exists false. simpl. reflexivity. - exists (nil). exists (false::false::false::nil). exists false. simpl. reflexivity. -Qed. - -Lemma tm_step_consecutive_identical_length' : forall (n : nat) (hd a tl : list bool), tm_step n = hd ++ a ++ tl -> 4 < length a -> exists (b c : list bool) (d : bool), a = b ++ [d;d] ++ c. Proof. intros n hd a tl. intros H I. - rewrite <- firstn_skipn with (l := a) (n := 5). - assert (length (firstn 5 a) = 5). - apply firstn_length_le. apply Nat.le_succ_l. apply I. - rewrite <- firstn_skipn with (l := a) (n := 5) in H. - rewrite <- app_assoc in H. - assert (exists (b1 c1 : list bool) (d1 : bool), - firstn 5 a = b1 ++ [d1; d1] ++ c1). - generalize H0. generalize H. apply tm_step_consecutive_identical_length. - destruct H1. destruct H1. destruct H1. rewrite H1. - exists x. exists (x0 ++ (skipn 5 a)). exists x1. - rewrite <- app_assoc. apply app_inv_head_iff. - rewrite <- app_assoc. reflexivity. -Qed. + assert (J: Nat.Even (length hd) \/ Nat.Odd (length hd)). + apply Nat.Even_or_Odd. destruct J as [J | J]. + (* first case *) + replace (hd++a++tl) + with ((hd ++ (firstn 1 a)) ++ (skipn 1 (firstn 5 a)) + ++ ((skipn 5 a) ++ tl)) in H. + + assert (length (skipn 1 (firstn 5 a)) = 4). + rewrite skipn_length. rewrite firstn_length. + rewrite <- Nat.le_succ_l in I. rewrite Nat.min_l. + reflexivity. assumption. + + assert (odd (length (hd ++ firstn 1 a)) = true). + rewrite app_length. rewrite Nat.odd_add. rewrite <- Nat.negb_even. + apply Nat.Even_EvenT in J. apply Nat.EvenT_even in J. rewrite J. + rewrite firstn_length. rewrite Nat.min_l. reflexivity. + + apply Nat.lt_le_incl. + assert (1 < 4). rewrite <- Nat.succ_lt_mono. apply Nat.lt_0_succ. + generalize I. generalize H1. apply Nat.lt_trans. + + assert (exists (x : bool) (u v : list bool), + skipn 1 (firstn 5 a) = u ++ [x;x] ++ v). + generalize H1. generalize H0. generalize H. apply tm_step_pattern4_odd_prefix. + destruct H2. destruct H2. destruct H2. + exists ((firstn 1 a) ++ x0). exists (x1 ++ (skipn 5 a)). exists x. + replace ((firstn 1 a ++ x0) ++ [x; x] ++ x1 ++ skipn 5 a) + with (firstn 1 a ++ (x0 ++ [x;x] ++ x1) ++ skipn 5 a). rewrite <- H2. + rewrite app_assoc. replace (firstn 1 a) with (firstn 1 (firstn 5 a)). + rewrite firstn_skipn. rewrite firstn_skipn. reflexivity. + rewrite firstn_firstn. reflexivity. + rewrite <- app_assoc. rewrite <- app_assoc. rewrite <- app_assoc. + reflexivity. + rewrite <- app_assoc. apply app_inv_head_iff. + replace (firstn 1 a) with (firstn 1 (firstn 5 a)). + rewrite app_assoc. rewrite firstn_skipn. + rewrite app_assoc. rewrite firstn_skipn. + reflexivity. + rewrite firstn_firstn. reflexivity. + + (* second case *) + replace (hd++a++tl) with (hd ++ (firstn 4 a) ++ ((skipn 4 a) ++ tl)) in H. + + assert (length (firstn 4 a) = 4). rewrite firstn_length. + rewrite <- Nat.le_succ_l in I. rewrite Nat.min_l. + reflexivity. assert (4 <= 5). apply Nat.le_succ_diag_r. + generalize I. generalize H0. apply Nat.le_trans. + + apply Nat.Odd_OddT in J. apply Nat.OddT_odd in J. + + assert (exists (x : bool) (u v : list bool), firstn 4 a = u ++ [x;x] ++ v). + generalize J. generalize H0. generalize H. apply tm_step_pattern4_odd_prefix. + destruct H1. destruct H1. destruct H1. + exists x0. exists (x1++(skipn 4 a)). exists x. + + replace (x0 ++ [x;x] ++ x1 ++ (skipn 4 a)) + with ((x0++[x;x]++x1) ++ (skipn 4 a)). + rewrite <- H1. rewrite firstn_skipn. reflexivity. + rewrite <- app_assoc. rewrite <- app_assoc. reflexivity. + apply app_inv_head_iff. + rewrite app_assoc. rewrite firstn_skipn. reflexivity. +Qed. Theorem tm_step_odd_square : forall (n : nat) (hd a tl : list bool), tm_step n = hd ++ a ++ a ++ tl -> odd (length a) = true -> length a < 4. @@ -301,7 +168,7 @@ Proof. assert (J: 4 < length a \/ length a <= 4). apply Nat.lt_ge_cases. destruct J. assert (exists b c d, a = b ++ [d;d] ++ c). - generalize H0. generalize H. apply tm_step_consecutive_identical_length'. + generalize H0. generalize H. apply tm_step_consecutive_identical_length. destruct H1. destruct H1. destruct H1. rewrite H1 in H. replace (hd ++ (x ++ [x1; x1] ++ x0) ++ (x ++ [x1; x1] ++ x0) ++ tl) @@ -829,7 +696,3 @@ Proof. (* TODO: utiliser tm_step_odd_prefix_square pour le cas impair *) (* TODO: la taille du facteur divise la taille du préfixe ? *) -Admitted. - - -