diff --git a/src/thue_morse.v b/src/thue_morse.v index 29f1bcc..65718b8 100644 --- a/src/thue_morse.v +++ b/src/thue_morse.v @@ -347,19 +347,18 @@ Proof. destruct k. - rewrite Nat.mul_0_r. rewrite tm_step_head_1. simpl. rewrite tm_step_head_1. reflexivity. - - rewrite <- tm_step_lemma. - rewrite tm_morphism_double_index. reflexivity. + - rewrite <- tm_step_lemma. apply tm_morphism_double_index. Qed. Lemma tm_step_single_bit_index : forall (n : nat), nth_error (tm_step (S n)) (2^n) = Some true. Proof. intro n. - rewrite tm_build. rewrite nth_error_app2. - - rewrite tm_size_power2. rewrite Nat.sub_diag. + rewrite tm_build. rewrite nth_error_app2; rewrite tm_size_power2. + - rewrite Nat.sub_diag. replace (true) with (negb false). apply map_nth_error. rewrite tm_step_head_1. reflexivity. reflexivity. - - rewrite tm_size_power2. apply Nat.le_refl. + - apply Nat.le_refl. Qed. Lemma tm_step_repunit_index : forall (n : nat), @@ -414,7 +413,7 @@ Lemma tm_step_add_range : forall (n m k : nat), Proof. intros n m k. intro H. induction m. - - rewrite Nat.add_comm. reflexivity. + - rewrite Nat.add_0_r. reflexivity. - rewrite Nat.add_succ_r. rewrite <- tm_size_power2 in H. assert (nth_error (tm_step n) k = Some (nth k (tm_step n) false)). generalize H. apply nth_error_nth'. @@ -434,15 +433,13 @@ Proof. apply Nat.add_sub_assoc. rewrite Nat.add_comm. assert (n <= n). apply le_n. symmetry. replace (m) with (m + (n-n)) at 1. generalize H3. - apply Nat.add_sub_assoc. rewrite Nat.sub_diag. rewrite Nat.add_comm. - reflexivity. + apply Nat.add_sub_assoc. rewrite Nat.sub_diag. apply Nat.add_0_r. - destruct H1. symmetry. replace (n) with (m + (n - m)). apply tm_step_add_range. apply H0. replace (n) with (m + n - m) at 2. generalize H1. apply Nat.add_sub_assoc. rewrite Nat.add_comm. assert (m <= m). apply le_n. symmetry. replace (n) with (n + (m-m)) at 1. generalize H3. - apply Nat.add_sub_assoc. rewrite Nat.sub_diag. rewrite Nat.add_comm. - reflexivity. + apply Nat.add_sub_assoc. rewrite Nat.sub_diag. apply Nat.add_0_r. Qed. (** @@ -512,11 +509,11 @@ Proof. rewrite Nat.mul_sub_distr_r. rewrite <- Nat.pow_add_r. rewrite Nat.add_sub_swap. replace (n+m) with (m+n). reflexivity. - rewrite Nat.add_comm. reflexivity. assumption. + apply Nat.add_comm. assumption. rewrite Nat.mul_sub_distr_r. rewrite <- Nat.pow_add_r. rewrite Nat.add_sub_swap. replace (n+m) with (m+n). reflexivity. - rewrite Nat.add_comm. reflexivity. assumption. + apply Nat.add_comm. assumption. rewrite tm_size_power2. assert (k*2^m <= k*2^m + j). apply Nat.le_add_r. @@ -709,7 +706,7 @@ Proof. assert (N: nth_error (tm_step m) (2^j) = Some true). replace (nth_error (tm_step m) (2^j)) with (nth_error (tm_step (S j)) (2^j)). - rewrite tm_step_single_bit_index. reflexivity. + apply tm_step_single_bit_index. apply tm_step_stable. apply Nat.pow_lt_mono_r. apply Nat.lt_1_2. apply Nat.lt_succ_diag_r. assumption. @@ -948,7 +945,7 @@ Proof. rewrite Nat.mul_cancel_l in H3. apply count_occ_bool_list2 in H3. assumption. easy. apply Nat.mul_1_l. apply Nat.mul_1_l. rewrite app_assoc_reverse. rewrite app_inv_head_iff. - rewrite app_assoc_reverse. reflexivity. + apply app_assoc_reverse. assert (I := H). replace (hd++a++a++a++tl) with ((hd++a)++(a++a++tl)) in I. assert (count_occ Bool.bool_dec (hd++a) true = count_occ Bool.bool_dec (hd++a) false). @@ -978,11 +975,11 @@ Proof. rewrite <- Nat.mul_add_distr_r in H3. rewrite <- Nat.mul_add_distr_r in H3. rewrite Nat.mul_cancel_l in H3. apply count_occ_bool_list2 in H3. assumption. easy. apply Nat.mul_1_l. apply Nat.mul_1_l. - rewrite app_assoc_reverse. reflexivity. + apply app_assoc_reverse. rewrite app_assoc_reverse. rewrite app_inv_head_iff. rewrite app_assoc_reverse. rewrite app_inv_head_iff. - rewrite app_assoc_reverse. reflexivity. - rewrite app_assoc_reverse. rewrite app_inv_head_iff. reflexivity. + apply app_assoc_reverse. + apply app_assoc_reverse. Qed. @@ -1262,7 +1259,7 @@ Proof. generalize H0. symmetry in M. generalize M. replace (b++b++b++tl2) with ((b++b++b)++tl2). apply tm_morphism_app3. rewrite app_assoc_reverse. apply app_inv_head_iff. - rewrite app_assoc_reverse. reflexivity. + apply app_assoc_reverse. assert (hd2 ++ b ++ b ++ b ++ tl2 = (tm_morphism (firstn (Nat.div2 (length hd2)) (tm_step n))) ++ (tm_morphism (firstn (Nat.div2 (length b))