<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>
<html xmlns="http://www.w3.org/1999/xhtml"><head><title>bignum</title><link rel="stylesheet" href="../../jargon.css" type="text/css"/><meta name="generator" content="DocBook XSL Stylesheets V1.61.0"/><link rel="home" href="../index.html" title="The Jargon File"/><link rel="up" href="../B.html" title="B"/><link rel="previous" href="big-endian.html" title="big-endian"/><link rel="next" href="bigot.html" title="bigot"/></head><body><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">bignum</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="big-endian.html">Prev</a> </td><th width="60%" align="center">B</th><td width="20%" align="right"> <a accesskey="n" href="bigot.html">Next</a></td></tr></table><hr/></div><dt><a id="bignum"/><dt xmlns="" id="bignum"><b>bignum</b>: <span xmlns="http://www.w3.org/1999/xhtml" class="pronunciation">/big´nuhm/</span>, <span xmlns="http://www.w3.org/1999/xhtml" class="grammar">n.</span></dt></dt><dd><p> [common; orig. from MIT MacLISP]</p></dd><dd><p> 1. [techspeak] A multiple-precision computer representation for very
   large integers.  </p></dd><dd><p> 2. More generally, any very large number.  &#8220;<span class="quote">Have you ever
   looked at the United States Budget?  There's bignums for you!</span>&#8221;
   </p></dd><dd><p> 3. [Stanford] In backgammon, large numbers on the dice especially a
   roll of double fives or double sixes (compare <a href="../M/moby.html"><i class="glossterm">moby</i></a>,
   sense 4).  See also <a href="../E/El-Camino-Bignum.html"><i class="glossterm">El Camino Bignum</i></a>.</p></dd><dd><p>Sense 1 may require some explanation.  Most computer languages
   provide a kind of data called <span class="firstterm">integer</span>, but such computer integers are usually
   very limited in size; usually they must be smaller than
   <tt class="literal">2<sup>31</sup></tt> (2,147,483,648).  If you
   want to work with numbers larger than that, you have to use floating-point
   numbers, which are usually accurate to only six or seven decimal places.
   Computer languages that provide bignums can perform exact calculations on
   very large numbers, such as 1000! (the factorial of 1000, which is 1000
   times 999 times 998 times ... times 2 times 1).  For example, this
   value for 1000!  was computed by the MacLISP system using bignums:</p><div class="literallayout"><p><br/>
40238726007709377354370243392300398571937486421071<br/>
46325437999104299385123986290205920442084869694048<br/>
00479988610197196058631666872994808558901323829669<br/>
94459099742450408707375991882362772718873251977950<br/>
59509952761208749754624970436014182780946464962910<br/>
56393887437886487337119181045825783647849977012476<br/>
63288983595573543251318532395846307555740911426241<br/>
74743493475534286465766116677973966688202912073791<br/>
43853719588249808126867838374559731746136085379534<br/>
52422158659320192809087829730843139284440328123155<br/>
86110369768013573042161687476096758713483120254785<br/>
89320767169132448426236131412508780208000261683151<br/>
02734182797770478463586817016436502415369139828126<br/>
48102130927612448963599287051149649754199093422215<br/>
66832572080821333186116811553615836546984046708975<br/>
60290095053761647584772842188967964624494516076535<br/>
34081989013854424879849599533191017233555566021394<br/>
50399736280750137837615307127761926849034352625200<br/>
01588853514733161170210396817592151090778801939317<br/>
81141945452572238655414610628921879602238389714760<br/>
88506276862967146674697562911234082439208160153780<br/>
88989396451826324367161676217916890977991190375403<br/>
12746222899880051954444142820121873617459926429565<br/>
81746628302955570299024324153181617210465832036786<br/>
90611726015878352075151628422554026517048330422614<br/>
39742869330616908979684825901254583271682264580665<br/>
26769958652682272807075781391858178889652208164348<br/>
34482599326604336766017699961283186078838615027946<br/>
59551311565520360939881806121385586003014356945272<br/>
24206344631797460594682573103790084024432438465657<br/>
24501440282188525247093519062092902313649327349756<br/>
55139587205596542287497740114133469627154228458623<br/>
77387538230483865688976461927383814900140767310446<br/>
64025989949022222176590433990188601856652648506179<br/>
97023561938970178600408118897299183110211712298459<br/>
01641921068884387121855646124960798722908519296819<br/>
37238864261483965738229112312502418664935314397013<br/>
74285319266498753372189406942814341185201580141233<br/>
44828015051399694290153483077644569099073152433278<br/>
28826986460278986432113908350621709500259738986355<br/>
42771967428222487575867657523442202075736305694988<br/>
25087968928162753848863396909959826280956121450994<br/>
87170124451646126037902930912088908694202851064018<br/>
21543994571568059418727489980942547421735824010636<br/>
77404595741785160829230135358081840096996372524230<br/>
56085590370062427124341690900415369010593398383577<br/>
79394109700277534720000000000000000000000000000000<br/>
00000000000000000000000000000000000000000000000000<br/>
00000000000000000000000000000000000000000000000000<br/>
00000000000000000000000000000000000000000000000000<br/>
00000000000000000000000000000000000000000000000000<br/>
00000000000000000.<br/>
</p></div></dd><div class="navfooter"><hr/><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="big-endian.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="../B.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="bigot.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">big-endian </td><td width="20%" align="center"><a accesskey="h" href="../index.html">Home</a></td><td width="40%" align="right" valign="top"> bigot</td></tr></table></div></body></html>