<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?> <html xmlns="http://www.w3.org/1999/xhtml"><head><title>bignum</title><link rel="stylesheet" href="../../jargon.css" type="text/css"/><meta name="generator" content="DocBook XSL Stylesheets V1.61.0"/><link rel="home" href="../index.html" title="The Jargon File"/><link rel="up" href="../B.html" title="B"/><link rel="previous" href="big-endian.html" title="big-endian"/><link rel="next" href="bigot.html" title="bigot"/></head><body><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">bignum</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="big-endian.html">Prev</a> </td><th width="60%" align="center">B</th><td width="20%" align="right"> <a accesskey="n" href="bigot.html">Next</a></td></tr></table><hr/></div><dt><a id="bignum"/><dt xmlns="" id="bignum"><b>bignum</b>: <span xmlns="http://www.w3.org/1999/xhtml" class="pronunciation">/big´nuhm/</span>, <span xmlns="http://www.w3.org/1999/xhtml" class="grammar">n.</span></dt></dt><dd><p> [common; orig. from MIT MacLISP]</p></dd><dd><p> 1. [techspeak] A multiple-precision computer representation for very large integers. </p></dd><dd><p> 2. More generally, any very large number. “<span class="quote">Have you ever looked at the United States Budget? There's bignums for you!</span>” </p></dd><dd><p> 3. [Stanford] In backgammon, large numbers on the dice especially a roll of double fives or double sixes (compare <a href="../M/moby.html"><i class="glossterm">moby</i></a>, sense 4). See also <a href="../E/El-Camino-Bignum.html"><i class="glossterm">El Camino Bignum</i></a>.</p></dd><dd><p>Sense 1 may require some explanation. Most computer languages provide a kind of data called <span class="firstterm">integer</span>, but such computer integers are usually very limited in size; usually they must be smaller than <tt class="literal">2<sup>31</sup></tt> (2,147,483,648). If you want to work with numbers larger than that, you have to use floating-point numbers, which are usually accurate to only six or seven decimal places. Computer languages that provide bignums can perform exact calculations on very large numbers, such as 1000! (the factorial of 1000, which is 1000 times 999 times 998 times ... times 2 times 1). For example, this value for 1000! was computed by the MacLISP system using bignums:</p><div class="literallayout"><p><br/> 40238726007709377354370243392300398571937486421071<br/> 46325437999104299385123986290205920442084869694048<br/> 00479988610197196058631666872994808558901323829669<br/> 94459099742450408707375991882362772718873251977950<br/> 59509952761208749754624970436014182780946464962910<br/> 56393887437886487337119181045825783647849977012476<br/> 63288983595573543251318532395846307555740911426241<br/> 74743493475534286465766116677973966688202912073791<br/> 43853719588249808126867838374559731746136085379534<br/> 52422158659320192809087829730843139284440328123155<br/> 86110369768013573042161687476096758713483120254785<br/> 89320767169132448426236131412508780208000261683151<br/> 02734182797770478463586817016436502415369139828126<br/> 48102130927612448963599287051149649754199093422215<br/> 66832572080821333186116811553615836546984046708975<br/> 60290095053761647584772842188967964624494516076535<br/> 34081989013854424879849599533191017233555566021394<br/> 50399736280750137837615307127761926849034352625200<br/> 01588853514733161170210396817592151090778801939317<br/> 81141945452572238655414610628921879602238389714760<br/> 88506276862967146674697562911234082439208160153780<br/> 88989396451826324367161676217916890977991190375403<br/> 12746222899880051954444142820121873617459926429565<br/> 81746628302955570299024324153181617210465832036786<br/> 90611726015878352075151628422554026517048330422614<br/> 39742869330616908979684825901254583271682264580665<br/> 26769958652682272807075781391858178889652208164348<br/> 34482599326604336766017699961283186078838615027946<br/> 59551311565520360939881806121385586003014356945272<br/> 24206344631797460594682573103790084024432438465657<br/> 24501440282188525247093519062092902313649327349756<br/> 55139587205596542287497740114133469627154228458623<br/> 77387538230483865688976461927383814900140767310446<br/> 64025989949022222176590433990188601856652648506179<br/> 97023561938970178600408118897299183110211712298459<br/> 01641921068884387121855646124960798722908519296819<br/> 37238864261483965738229112312502418664935314397013<br/> 74285319266498753372189406942814341185201580141233<br/> 44828015051399694290153483077644569099073152433278<br/> 28826986460278986432113908350621709500259738986355<br/> 42771967428222487575867657523442202075736305694988<br/> 25087968928162753848863396909959826280956121450994<br/> 87170124451646126037902930912088908694202851064018<br/> 21543994571568059418727489980942547421735824010636<br/> 77404595741785160829230135358081840096996372524230<br/> 56085590370062427124341690900415369010593398383577<br/> 79394109700277534720000000000000000000000000000000<br/> 00000000000000000000000000000000000000000000000000<br/> 00000000000000000000000000000000000000000000000000<br/> 00000000000000000000000000000000000000000000000000<br/> 00000000000000000000000000000000000000000000000000<br/> 00000000000000000.<br/> </p></div></dd><div class="navfooter"><hr/><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="big-endian.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="../B.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="bigot.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">big-endian </td><td width="20%" align="center"><a accesskey="h" href="../index.html">Home</a></td><td width="40%" align="right" valign="top"> bigot</td></tr></table></div></body></html>