1
0
forked from aniani/vim
vim/src/regexp_bt.c
Christian Brabandt be07caa071
patch 9.0.1777: patch 9.0.1771 causes problems
Problem:  patch 9.0.1771 causes problems
Solution: revert it

Revert "patch 9.0.1771: regex: combining chars in collections not handled"
This reverts commit ca22fc36a4e8a315f199893ee8ff6253573f5fbe.

Signed-off-by: Christian Brabandt <cb@256bit.org>
2023-08-20 22:28:28 +02:00

5599 lines
140 KiB
C

/* vi:set ts=8 sts=4 sw=4 noet:
*
* Backtracking regular expression implementation.
*
* This file is included in "regexp.c".
*
* NOTICE:
*
* This is NOT the original regular expression code as written by Henry
* Spencer. This code has been modified specifically for use with the VIM
* editor, and should not be used separately from Vim. If you want a good
* regular expression library, get the original code. The copyright notice
* that follows is from the original.
*
* END NOTICE
*
* Copyright (c) 1986 by University of Toronto.
* Written by Henry Spencer. Not derived from licensed software.
*
* Permission is granted to anyone to use this software for any
* purpose on any computer system, and to redistribute it freely,
* subject to the following restrictions:
*
* 1. The author is not responsible for the consequences of use of
* this software, no matter how awful, even if they arise
* from defects in it.
*
* 2. The origin of this software must not be misrepresented, either
* by explicit claim or by omission.
*
* 3. Altered versions must be plainly marked as such, and must not
* be misrepresented as being the original software.
*
* Beware that some of this code is subtly aware of the way operator
* precedence is structured in regular expressions. Serious changes in
* regular-expression syntax might require a total rethink.
*
* Changes have been made by Tony Andrews, Olaf 'Rhialto' Seibert, Robert
* Webb, Ciaran McCreesh and Bram Moolenaar.
* Named character class support added by Walter Briscoe (1998 Jul 01)
*/
/*
* The "internal use only" fields in regexp.h are present to pass info from
* compile to execute that permits the execute phase to run lots faster on
* simple cases. They are:
*
* regstart char that must begin a match; NUL if none obvious; Can be a
* multi-byte character.
* reganch is the match anchored (at beginning-of-line only)?
* regmust string (pointer into program) that match must include, or NULL
* regmlen length of regmust string
* regflags RF_ values or'ed together
*
* Regstart and reganch permit very fast decisions on suitable starting points
* for a match, cutting down the work a lot. Regmust permits fast rejection
* of lines that cannot possibly match. The regmust tests are costly enough
* that vim_regcomp() supplies a regmust only if the r.e. contains something
* potentially expensive (at present, the only such thing detected is * or +
* at the start of the r.e., which can involve a lot of backup). Regmlen is
* supplied because the test in vim_regexec() needs it and vim_regcomp() is
* computing it anyway.
*/
/*
* Structure for regexp "program". This is essentially a linear encoding
* of a nondeterministic finite-state machine (aka syntax charts or
* "railroad normal form" in parsing technology). Each node is an opcode
* plus a "next" pointer, possibly plus an operand. "Next" pointers of
* all nodes except BRANCH and BRACES_COMPLEX implement concatenation; a "next"
* pointer with a BRANCH on both ends of it is connecting two alternatives.
* (Here we have one of the subtle syntax dependencies: an individual BRANCH
* (as opposed to a collection of them) is never concatenated with anything
* because of operator precedence). The "next" pointer of a BRACES_COMPLEX
* node points to the node after the stuff to be repeated.
* The operand of some types of node is a literal string; for others, it is a
* node leading into a sub-FSM. In particular, the operand of a BRANCH node
* is the first node of the branch.
* (NB this is *not* a tree structure: the tail of the branch connects to the
* thing following the set of BRANCHes.)
*
* pattern is coded like:
*
* +-----------------+
* | V
* <aa>\|<bb> BRANCH <aa> BRANCH <bb> --> END
* | ^ | ^
* +------+ +----------+
*
*
* +------------------+
* V |
* <aa>* BRANCH BRANCH <aa> --> BACK BRANCH --> NOTHING --> END
* | | ^ ^
* | +---------------+ |
* +---------------------------------------------+
*
*
* +----------------------+
* V |
* <aa>\+ BRANCH <aa> --> BRANCH --> BACK BRANCH --> NOTHING --> END
* | | ^ ^
* | +-----------+ |
* +--------------------------------------------------+
*
*
* +-------------------------+
* V |
* <aa>\{} BRANCH BRACE_LIMITS --> BRACE_COMPLEX <aa> --> BACK END
* | | ^
* | +----------------+
* +-----------------------------------------------+
*
*
* <aa>\@!<bb> BRANCH NOMATCH <aa> --> END <bb> --> END
* | | ^ ^
* | +----------------+ |
* +--------------------------------+
*
* +---------+
* | V
* \z[abc] BRANCH BRANCH a BRANCH b BRANCH c BRANCH NOTHING --> END
* | | | | ^ ^
* | | | +-----+ |
* | | +----------------+ |
* | +---------------------------+ |
* +------------------------------------------------------+
*
* They all start with a BRANCH for "\|" alternatives, even when there is only
* one alternative.
*/
/*
* The opcodes are:
*/
// definition number opnd? meaning
#define END 0 // End of program or NOMATCH operand.
#define BOL 1 // Match "" at beginning of line.
#define EOL 2 // Match "" at end of line.
#define BRANCH 3 // node Match this alternative, or the
// next...
#define BACK 4 // Match "", "next" ptr points backward.
#define EXACTLY 5 // str Match this string.
#define NOTHING 6 // Match empty string.
#define STAR 7 // node Match this (simple) thing 0 or more
// times.
#define PLUS 8 // node Match this (simple) thing 1 or more
// times.
#define MATCH 9 // node match the operand zero-width
#define NOMATCH 10 // node check for no match with operand
#define BEHIND 11 // node look behind for a match with operand
#define NOBEHIND 12 // node look behind for no match with operand
#define SUBPAT 13 // node match the operand here
#define BRACE_SIMPLE 14 // node Match this (simple) thing between m and
// n times (\{m,n\}).
#define BOW 15 // Match "" after [^a-zA-Z0-9_]
#define EOW 16 // Match "" at [^a-zA-Z0-9_]
#define BRACE_LIMITS 17 // nr nr define the min & max for BRACE_SIMPLE
// and BRACE_COMPLEX.
#define NEWL 18 // Match line-break
#define BHPOS 19 // End position for BEHIND or NOBEHIND
// character classes: 20-48 normal, 50-78 include a line-break
#define ADD_NL 30
#define FIRST_NL ANY + ADD_NL
#define ANY 20 // Match any one character.
#define ANYOF 21 // str Match any character in this string.
#define ANYBUT 22 // str Match any character not in this
// string.
#define IDENT 23 // Match identifier char
#define SIDENT 24 // Match identifier char but no digit
#define KWORD 25 // Match keyword char
#define SKWORD 26 // Match word char but no digit
#define FNAME 27 // Match file name char
#define SFNAME 28 // Match file name char but no digit
#define PRINT 29 // Match printable char
#define SPRINT 30 // Match printable char but no digit
#define WHITE 31 // Match whitespace char
#define NWHITE 32 // Match non-whitespace char
#define DIGIT 33 // Match digit char
#define NDIGIT 34 // Match non-digit char
#define HEX 35 // Match hex char
#define NHEX 36 // Match non-hex char
#define OCTAL 37 // Match octal char
#define NOCTAL 38 // Match non-octal char
#define WORD 39 // Match word char
#define NWORD 40 // Match non-word char
#define HEAD 41 // Match head char
#define NHEAD 42 // Match non-head char
#define ALPHA 43 // Match alpha char
#define NALPHA 44 // Match non-alpha char
#define LOWER 45 // Match lowercase char
#define NLOWER 46 // Match non-lowercase char
#define UPPER 47 // Match uppercase char
#define NUPPER 48 // Match non-uppercase char
#define LAST_NL NUPPER + ADD_NL
#define WITH_NL(op) ((op) >= FIRST_NL && (op) <= LAST_NL)
#define MOPEN 80 // -89 Mark this point in input as start of
// \( subexpr. MOPEN + 0 marks start of
// match.
#define MCLOSE 90 // -99 Analogous to MOPEN. MCLOSE + 0 marks
// end of match.
#define BACKREF 100 // -109 node Match same string again \1-\9
#ifdef FEAT_SYN_HL
# define ZOPEN 110 // -119 Mark this point in input as start of
// \z( subexpr.
# define ZCLOSE 120 // -129 Analogous to ZOPEN.
# define ZREF 130 // -139 node Match external submatch \z1-\z9
#endif
#define BRACE_COMPLEX 140 // -149 node Match nodes between m & n times
#define NOPEN 150 // Mark this point in input as start of
// \%( subexpr.
#define NCLOSE 151 // Analogous to NOPEN.
#define MULTIBYTECODE 200 // mbc Match one multi-byte character
#define RE_BOF 201 // Match "" at beginning of file.
#define RE_EOF 202 // Match "" at end of file.
#define CURSOR 203 // Match location of cursor.
#define RE_LNUM 204 // nr cmp Match line number
#define RE_COL 205 // nr cmp Match column number
#define RE_VCOL 206 // nr cmp Match virtual column number
#define RE_MARK 207 // mark cmp Match mark position
#define RE_VISUAL 208 // Match Visual area
#define RE_COMPOSING 209 // any composing characters
/*
* Flags to be passed up and down.
*/
#define HASWIDTH 0x1 // Known never to match null string.
#define SIMPLE 0x2 // Simple enough to be STAR/PLUS operand.
#define SPSTART 0x4 // Starts with * or +.
#define HASNL 0x8 // Contains some \n.
#define HASLOOKBH 0x10 // Contains "\@<=" or "\@<!".
#define WORST 0 // Worst case.
static int num_complex_braces; // Complex \{...} count
static char_u *regcode; // Code-emit pointer, or JUST_CALC_SIZE
static long regsize; // Code size.
static int reg_toolong; // TRUE when offset out of range
static char_u had_endbrace[NSUBEXP]; // flags, TRUE if end of () found
static long brace_min[10]; // Minimums for complex brace repeats
static long brace_max[10]; // Maximums for complex brace repeats
static int brace_count[10]; // Current counts for complex brace repeats
static int one_exactly = FALSE; // only do one char for EXACTLY
// When making changes to classchars also change nfa_classcodes.
static char_u *classchars = (char_u *)".iIkKfFpPsSdDxXoOwWhHaAlLuU";
static int classcodes[] = {
ANY, IDENT, SIDENT, KWORD, SKWORD,
FNAME, SFNAME, PRINT, SPRINT,
WHITE, NWHITE, DIGIT, NDIGIT,
HEX, NHEX, OCTAL, NOCTAL,
WORD, NWORD, HEAD, NHEAD,
ALPHA, NALPHA, LOWER, NLOWER,
UPPER, NUPPER
};
/*
* When regcode is set to this value, code is not emitted and size is computed
* instead.
*/
#define JUST_CALC_SIZE ((char_u *) -1)
// Values for rs_state in regitem_T.
typedef enum regstate_E
{
RS_NOPEN = 0 // NOPEN and NCLOSE
, RS_MOPEN // MOPEN + [0-9]
, RS_MCLOSE // MCLOSE + [0-9]
#ifdef FEAT_SYN_HL
, RS_ZOPEN // ZOPEN + [0-9]
, RS_ZCLOSE // ZCLOSE + [0-9]
#endif
, RS_BRANCH // BRANCH
, RS_BRCPLX_MORE // BRACE_COMPLEX and trying one more match
, RS_BRCPLX_LONG // BRACE_COMPLEX and trying longest match
, RS_BRCPLX_SHORT // BRACE_COMPLEX and trying shortest match
, RS_NOMATCH // NOMATCH
, RS_BEHIND1 // BEHIND / NOBEHIND matching rest
, RS_BEHIND2 // BEHIND / NOBEHIND matching behind part
, RS_STAR_LONG // STAR/PLUS/BRACE_SIMPLE longest match
, RS_STAR_SHORT // STAR/PLUS/BRACE_SIMPLE shortest match
} regstate_T;
/*
* Structure used to save the current input state, when it needs to be
* restored after trying a match. Used by reg_save() and reg_restore().
* Also stores the length of "backpos".
*/
typedef struct
{
union
{
char_u *ptr; // rex.input pointer, for single-line regexp
lpos_T pos; // rex.input pos, for multi-line regexp
} rs_u;
int rs_len;
} regsave_T;
// struct to save start/end pointer/position in for \(\)
typedef struct
{
union
{
char_u *ptr;
lpos_T pos;
} se_u;
} save_se_T;
// used for BEHIND and NOBEHIND matching
typedef struct regbehind_S
{
regsave_T save_after;
regsave_T save_behind;
int save_need_clear_subexpr;
save_se_T save_start[NSUBEXP];
save_se_T save_end[NSUBEXP];
} regbehind_T;
/*
* When there are alternatives a regstate_T is put on the regstack to remember
* what we are doing.
* Before it may be another type of item, depending on rs_state, to remember
* more things.
*/
typedef struct regitem_S
{
regstate_T rs_state; // what we are doing, one of RS_ above
short rs_no; // submatch nr or BEHIND/NOBEHIND
char_u *rs_scan; // current node in program
union
{
save_se_T sesave;
regsave_T regsave;
} rs_un; // room for saving rex.input
} regitem_T;
// used for STAR, PLUS and BRACE_SIMPLE matching
typedef struct regstar_S
{
int nextb; // next byte
int nextb_ic; // next byte reverse case
long count;
long minval;
long maxval;
} regstar_T;
// used to store input position when a BACK was encountered, so that we now if
// we made any progress since the last time.
typedef struct backpos_S
{
char_u *bp_scan; // "scan" where BACK was encountered
regsave_T bp_pos; // last input position
} backpos_T;
/*
* "regstack" and "backpos" are used by regmatch(). They are kept over calls
* to avoid invoking malloc() and free() often.
* "regstack" is a stack with regitem_T items, sometimes preceded by regstar_T
* or regbehind_T.
* "backpos_T" is a table with backpos_T for BACK
*/
static garray_T regstack = {0, 0, 0, 0, NULL};
static garray_T backpos = {0, 0, 0, 0, NULL};
static regsave_T behind_pos;
/*
* Both for regstack and backpos tables we use the following strategy of
* allocation (to reduce malloc/free calls):
* - Initial size is fairly small.
* - When needed, the tables are grown bigger (8 times at first, double after
* that).
* - After executing the match we free the memory only if the array has grown.
* Thus the memory is kept allocated when it's at the initial size.
* This makes it fast while not keeping a lot of memory allocated.
* A three times speed increase was observed when using many simple patterns.
*/
#define REGSTACK_INITIAL 2048
#define BACKPOS_INITIAL 64
/*
* Opcode notes:
*
* BRANCH The set of branches constituting a single choice are hooked
* together with their "next" pointers, since precedence prevents
* anything being concatenated to any individual branch. The
* "next" pointer of the last BRANCH in a choice points to the
* thing following the whole choice. This is also where the
* final "next" pointer of each individual branch points; each
* branch starts with the operand node of a BRANCH node.
*
* BACK Normal "next" pointers all implicitly point forward; BACK
* exists to make loop structures possible.
*
* STAR,PLUS '=', and complex '*' and '+', are implemented as circular
* BRANCH structures using BACK. Simple cases (one character
* per match) are implemented with STAR and PLUS for speed
* and to minimize recursive plunges.
*
* BRACE_LIMITS This is always followed by a BRACE_SIMPLE or BRACE_COMPLEX
* node, and defines the min and max limits to be used for that
* node.
*
* MOPEN,MCLOSE ...are numbered at compile time.
* ZOPEN,ZCLOSE ...ditto
*/
/*
* A node is one char of opcode followed by two chars of "next" pointer.
* "Next" pointers are stored as two 8-bit bytes, high order first. The
* value is a positive offset from the opcode of the node containing it.
* An operand, if any, simply follows the node. (Note that much of the
* code generation knows about this implicit relationship.)
*
* Using two bytes for the "next" pointer is vast overkill for most things,
* but allows patterns to get big without disasters.
*/
#define OP(p) ((int)*(p))
#define NEXT(p) (((*((p) + 1) & 0377) << 8) + (*((p) + 2) & 0377))
#define OPERAND(p) ((p) + 3)
// Obtain an operand that was stored as four bytes, MSB first.
#define OPERAND_MIN(p) (((long)(p)[3] << 24) + ((long)(p)[4] << 16) \
+ ((long)(p)[5] << 8) + (long)(p)[6])
// Obtain a second operand stored as four bytes.
#define OPERAND_MAX(p) OPERAND_MIN((p) + 4)
// Obtain a second single-byte operand stored after a four bytes operand.
#define OPERAND_CMP(p) (p)[7]
static char_u *reg(int paren, int *flagp);
#ifdef BT_REGEXP_DUMP
static void regdump(char_u *, bt_regprog_T *);
#endif
static int re_num_cmp(long_u val, char_u *scan);
#ifdef DEBUG
static char_u *regprop(char_u *);
static int regnarrate = 0;
#endif
/*
* Setup to parse the regexp. Used once to get the length and once to do it.
*/
static void
regcomp_start(
char_u *expr,
int re_flags) // see vim_regcomp()
{
initchr(expr);
if (re_flags & RE_MAGIC)
reg_magic = MAGIC_ON;
else
reg_magic = MAGIC_OFF;
reg_string = (re_flags & RE_STRING);
reg_strict = (re_flags & RE_STRICT);
get_cpo_flags();
num_complex_braces = 0;
regnpar = 1;
CLEAR_FIELD(had_endbrace);
#ifdef FEAT_SYN_HL
regnzpar = 1;
re_has_z = 0;
#endif
regsize = 0L;
reg_toolong = FALSE;
regflags = 0;
#if defined(FEAT_SYN_HL) || defined(PROTO)
had_eol = FALSE;
#endif
}
/*
* Return TRUE if MULTIBYTECODE should be used instead of EXACTLY for
* character "c".
*/
static int
use_multibytecode(int c)
{
return has_mbyte && (*mb_char2len)(c) > 1
&& (re_multi_type(peekchr()) != NOT_MULTI
|| (enc_utf8 && utf_iscomposing(c)));
}
/*
* Emit (if appropriate) a byte of code
*/
static void
regc(int b)
{
if (regcode == JUST_CALC_SIZE)
regsize++;
else
*regcode++ = b;
}
/*
* Emit (if appropriate) a multi-byte character of code
*/
static void
regmbc(int c)
{
if (!has_mbyte && c > 0xff)
return;
if (regcode == JUST_CALC_SIZE)
regsize += (*mb_char2len)(c);
else
regcode += (*mb_char2bytes)(c, regcode);
}
/*
* Produce the bytes for equivalence class "c".
* Currently only handles latin1, latin9 and utf-8.
* NOTE: When changing this function, also change nfa_emit_equi_class()
*/
static void
reg_equi_class(int c)
{
if (enc_utf8 || STRCMP(p_enc, "latin1") == 0
|| STRCMP(p_enc, "iso-8859-15") == 0)
{
switch (c)
{
// Do not use '\300' style, it results in a negative number.
case 'A': case 0xc0: case 0xc1: case 0xc2: case 0xc3: case 0xc4:
case 0xc5: case 0x100: case 0x102: case 0x104: case 0x1cd:
case 0x1de: case 0x1e0: case 0x1fa: case 0x202: case 0x226:
case 0x23a: case 0x1e00: case 0x1ea0: case 0x1ea2: case 0x1ea4:
case 0x1ea6: case 0x1ea8: case 0x1eaa: case 0x1eac: case 0x1eae:
case 0x1eb0: case 0x1eb2: case 0x1eb4: case 0x1eb6:
regmbc('A'); regmbc(0xc0); regmbc(0xc1); regmbc(0xc2);
regmbc(0xc3); regmbc(0xc4); regmbc(0xc5);
regmbc(0x100); regmbc(0x102); regmbc(0x104);
regmbc(0x1cd); regmbc(0x1de); regmbc(0x1e0);
regmbc(0x1fa); regmbc(0x202); regmbc(0x226);
regmbc(0x23a); regmbc(0x1e00); regmbc(0x1ea0);
regmbc(0x1ea2); regmbc(0x1ea4); regmbc(0x1ea6);
regmbc(0x1ea8); regmbc(0x1eaa); regmbc(0x1eac);
regmbc(0x1eae); regmbc(0x1eb0); regmbc(0x1eb2);
regmbc(0x1eb4); regmbc(0x1eb6);
return;
case 'B': case 0x181: case 0x243: case 0x1e02:
case 0x1e04: case 0x1e06:
regmbc('B');
regmbc(0x181); regmbc(0x243); regmbc(0x1e02);
regmbc(0x1e04); regmbc(0x1e06);
return;
case 'C': case 0xc7:
case 0x106: case 0x108: case 0x10a: case 0x10c: case 0x187:
case 0x23b: case 0x1e08: case 0xa792:
regmbc('C'); regmbc(0xc7);
regmbc(0x106); regmbc(0x108); regmbc(0x10a);
regmbc(0x10c); regmbc(0x187); regmbc(0x23b);
regmbc(0x1e08); regmbc(0xa792);
return;
case 'D': case 0x10e: case 0x110: case 0x18a:
case 0x1e0a: case 0x1e0c: case 0x1e0e: case 0x1e10:
case 0x1e12:
regmbc('D'); regmbc(0x10e); regmbc(0x110);
regmbc(0x18a); regmbc(0x1e0a); regmbc(0x1e0c);
regmbc(0x1e0e); regmbc(0x1e10); regmbc(0x1e12);
return;
case 'E': case 0xc8: case 0xc9: case 0xca: case 0xcb:
case 0x112: case 0x114: case 0x116: case 0x118: case 0x11a:
case 0x204: case 0x206: case 0x228: case 0x246: case 0x1e14:
case 0x1e16: case 0x1e18: case 0x1e1a: case 0x1e1c:
case 0x1eb8: case 0x1eba: case 0x1ebc: case 0x1ebe:
case 0x1ec0: case 0x1ec2: case 0x1ec4: case 0x1ec6:
regmbc('E'); regmbc(0xc8); regmbc(0xc9);
regmbc(0xca); regmbc(0xcb); regmbc(0x112);
regmbc(0x114); regmbc(0x116); regmbc(0x118);
regmbc(0x11a); regmbc(0x204); regmbc(0x206);
regmbc(0x228); regmbc(0x246); regmbc(0x1e14);
regmbc(0x1e16); regmbc(0x1e18); regmbc(0x1e1a);
regmbc(0x1e1c); regmbc(0x1eb8); regmbc(0x1eba);
regmbc(0x1ebc); regmbc(0x1ebe); regmbc(0x1ec0);
regmbc(0x1ec2); regmbc(0x1ec4); regmbc(0x1ec6);
return;
case 'F': case 0x191: case 0x1e1e: case 0xa798:
regmbc('F'); regmbc(0x191); regmbc(0x1e1e);
regmbc(0xa798);
return;
case 'G': case 0x11c: case 0x11e: case 0x120:
case 0x122: case 0x193: case 0x1e4: case 0x1e6:
case 0x1f4: case 0x1e20: case 0xa7a0:
regmbc('G'); regmbc(0x11c); regmbc(0x11e);
regmbc(0x120); regmbc(0x122); regmbc(0x193);
regmbc(0x1e4); regmbc(0x1e6); regmbc(0x1f4);
regmbc(0x1e20); regmbc(0xa7a0);
return;
case 'H': case 0x124: case 0x126: case 0x21e:
case 0x1e22: case 0x1e24: case 0x1e26:
case 0x1e28: case 0x1e2a: case 0x2c67:
regmbc('H'); regmbc(0x124); regmbc(0x126);
regmbc(0x21e); regmbc(0x1e22); regmbc(0x1e24);
regmbc(0x1e26); regmbc(0x1e28); regmbc(0x1e2a);
regmbc(0x2c67);
return;
case 'I': case 0xcc: case 0xcd: case 0xce: case 0xcf:
case 0x128: case 0x12a: case 0x12c: case 0x12e:
case 0x130: case 0x197: case 0x1cf: case 0x208:
case 0x20a: case 0x1e2c: case 0x1e2e: case 0x1ec8:
case 0x1eca:
regmbc('I'); regmbc(0xcc); regmbc(0xcd);
regmbc(0xce); regmbc(0xcf); regmbc(0x128);
regmbc(0x12a); regmbc(0x12c); regmbc(0x12e);
regmbc(0x130); regmbc(0x197); regmbc(0x1cf);
regmbc(0x208); regmbc(0x20a); regmbc(0x1e2c);
regmbc(0x1e2e); regmbc(0x1ec8); regmbc(0x1eca);
return;
case 'J': case 0x134: case 0x248:
regmbc('J'); regmbc(0x134); regmbc(0x248);
return;
case 'K': case 0x136: case 0x198: case 0x1e8: case 0x1e30:
case 0x1e32: case 0x1e34: case 0x2c69: case 0xa740:
regmbc('K'); regmbc(0x136); regmbc(0x198);
regmbc(0x1e8); regmbc(0x1e30); regmbc(0x1e32);
regmbc(0x1e34); regmbc(0x2c69); regmbc(0xa740);
return;
case 'L': case 0x139: case 0x13b: case 0x13d: case 0x13f:
case 0x141: case 0x23d: case 0x1e36: case 0x1e38:
case 0x1e3a: case 0x1e3c: case 0x2c60:
regmbc('L'); regmbc(0x139); regmbc(0x13b);
regmbc(0x13d); regmbc(0x13f); regmbc(0x141);
regmbc(0x23d); regmbc(0x1e36); regmbc(0x1e38);
regmbc(0x1e3a); regmbc(0x1e3c); regmbc(0x2c60);
return;
case 'M': case 0x1e3e: case 0x1e40: case 0x1e42:
regmbc('M'); regmbc(0x1e3e); regmbc(0x1e40);
regmbc(0x1e42);
return;
case 'N': case 0xd1:
case 0x143: case 0x145: case 0x147: case 0x1f8:
case 0x1e44: case 0x1e46: case 0x1e48: case 0x1e4a:
case 0xa7a4:
regmbc('N'); regmbc(0xd1);
regmbc(0x143); regmbc(0x145); regmbc(0x147);
regmbc(0x1f8); regmbc(0x1e44); regmbc(0x1e46);
regmbc(0x1e48); regmbc(0x1e4a); regmbc(0xa7a4);
return;
case 'O': case 0xd2: case 0xd3: case 0xd4: case 0xd5: case 0xd6:
case 0xd8: case 0x14c: case 0x14e: case 0x150: case 0x19f:
case 0x1a0: case 0x1d1: case 0x1ea: case 0x1ec: case 0x1fe:
case 0x20c: case 0x20e: case 0x22a: case 0x22c: case 0x22e:
case 0x230: case 0x1e4c: case 0x1e4e: case 0x1e50: case 0x1e52:
case 0x1ecc: case 0x1ece: case 0x1ed0: case 0x1ed2: case 0x1ed4:
case 0x1ed6: case 0x1ed8: case 0x1eda: case 0x1edc: case 0x1ede:
case 0x1ee0: case 0x1ee2:
regmbc('O'); regmbc(0xd2); regmbc(0xd3); regmbc(0xd4);
regmbc(0xd5); regmbc(0xd6); regmbc(0xd8);
regmbc(0x14c); regmbc(0x14e); regmbc(0x150);
regmbc(0x19f); regmbc(0x1a0); regmbc(0x1d1);
regmbc(0x1ea); regmbc(0x1ec); regmbc(0x1fe);
regmbc(0x20c); regmbc(0x20e); regmbc(0x22a);
regmbc(0x22c); regmbc(0x22e); regmbc(0x230);
regmbc(0x1e4c); regmbc(0x1e4e); regmbc(0x1e50);
regmbc(0x1e52); regmbc(0x1ecc); regmbc(0x1ece);
regmbc(0x1ed0); regmbc(0x1ed2); regmbc(0x1ed4);
regmbc(0x1ed6); regmbc(0x1ed8); regmbc(0x1eda);
regmbc(0x1edc); regmbc(0x1ede); regmbc(0x1ee0);
regmbc(0x1ee2);
return;
case 'P': case 0x1a4: case 0x1e54: case 0x1e56: case 0x2c63:
regmbc('P'); regmbc(0x1a4); regmbc(0x1e54);
regmbc(0x1e56); regmbc(0x2c63);
return;
case 'Q': case 0x24a:
regmbc('Q'); regmbc(0x24a);
return;
case 'R': case 0x154: case 0x156: case 0x158: case 0x210:
case 0x212: case 0x24c: case 0x1e58: case 0x1e5a:
case 0x1e5c: case 0x1e5e: case 0x2c64: case 0xa7a6:
regmbc('R'); regmbc(0x154); regmbc(0x156);
regmbc(0x210); regmbc(0x212); regmbc(0x158);
regmbc(0x24c); regmbc(0x1e58); regmbc(0x1e5a);
regmbc(0x1e5c); regmbc(0x1e5e); regmbc(0x2c64);
regmbc(0xa7a6);
return;
case 'S': case 0x15a: case 0x15c: case 0x15e: case 0x160:
case 0x218: case 0x1e60: case 0x1e62: case 0x1e64:
case 0x1e66: case 0x1e68: case 0x2c7e: case 0xa7a8:
regmbc('S'); regmbc(0x15a); regmbc(0x15c);
regmbc(0x15e); regmbc(0x160); regmbc(0x218);
regmbc(0x1e60); regmbc(0x1e62); regmbc(0x1e64);
regmbc(0x1e66); regmbc(0x1e68); regmbc(0x2c7e);
regmbc(0xa7a8);
return;
case 'T': case 0x162: case 0x164: case 0x166: case 0x1ac:
case 0x1ae: case 0x21a: case 0x23e: case 0x1e6a: case 0x1e6c:
case 0x1e6e: case 0x1e70:
regmbc('T'); regmbc(0x162); regmbc(0x164);
regmbc(0x166); regmbc(0x1ac); regmbc(0x23e);
regmbc(0x1ae); regmbc(0x21a); regmbc(0x1e6a);
regmbc(0x1e6c); regmbc(0x1e6e); regmbc(0x1e70);
return;
case 'U': case 0xd9: case 0xda: case 0xdb: case 0xdc:
case 0x168: case 0x16a: case 0x16c: case 0x16e:
case 0x170: case 0x172: case 0x1af: case 0x1d3:
case 0x1d5: case 0x1d7: case 0x1d9: case 0x1db:
case 0x214: case 0x216: case 0x244: case 0x1e72:
case 0x1e74: case 0x1e76: case 0x1e78: case 0x1e7a:
case 0x1ee4: case 0x1ee6: case 0x1ee8: case 0x1eea:
case 0x1eec: case 0x1eee: case 0x1ef0:
regmbc('U'); regmbc(0xd9); regmbc(0xda);
regmbc(0xdb); regmbc(0xdc); regmbc(0x168);
regmbc(0x16a); regmbc(0x16c); regmbc(0x16e);
regmbc(0x170); regmbc(0x172); regmbc(0x1af);
regmbc(0x1d3); regmbc(0x1d5); regmbc(0x1d7);
regmbc(0x1d9); regmbc(0x1db); regmbc(0x214);
regmbc(0x216); regmbc(0x244); regmbc(0x1e72);
regmbc(0x1e74); regmbc(0x1e76); regmbc(0x1e78);
regmbc(0x1e7a); regmbc(0x1ee4); regmbc(0x1ee6);
regmbc(0x1ee8); regmbc(0x1eea); regmbc(0x1eec);
regmbc(0x1eee); regmbc(0x1ef0);
return;
case 'V': case 0x1b2: case 0x1e7c: case 0x1e7e:
regmbc('V'); regmbc(0x1b2); regmbc(0x1e7c);
regmbc(0x1e7e);
return;
case 'W': case 0x174: case 0x1e80: case 0x1e82:
case 0x1e84: case 0x1e86: case 0x1e88:
regmbc('W'); regmbc(0x174); regmbc(0x1e80);
regmbc(0x1e82); regmbc(0x1e84); regmbc(0x1e86);
regmbc(0x1e88);
return;
case 'X': case 0x1e8a: case 0x1e8c:
regmbc('X'); regmbc(0x1e8a); regmbc(0x1e8c);
return;
case 'Y': case 0xdd:
case 0x176: case 0x178: case 0x1b3: case 0x232: case 0x24e:
case 0x1e8e: case 0x1ef2: case 0x1ef6: case 0x1ef4: case 0x1ef8:
regmbc('Y'); regmbc(0xdd); regmbc(0x176);
regmbc(0x178); regmbc(0x1b3); regmbc(0x232);
regmbc(0x24e); regmbc(0x1e8e); regmbc(0x1ef2);
regmbc(0x1ef4); regmbc(0x1ef6); regmbc(0x1ef8);
return;
case 'Z': case 0x179: case 0x17b: case 0x17d: case 0x1b5:
case 0x1e90: case 0x1e92: case 0x1e94: case 0x2c6b:
regmbc('Z'); regmbc(0x179); regmbc(0x17b);
regmbc(0x17d); regmbc(0x1b5); regmbc(0x1e90);
regmbc(0x1e92); regmbc(0x1e94); regmbc(0x2c6b);
return;
case 'a': case 0xe0: case 0xe1: case 0xe2:
case 0xe3: case 0xe4: case 0xe5: case 0x101: case 0x103:
case 0x105: case 0x1ce: case 0x1df: case 0x1e1: case 0x1fb:
case 0x201: case 0x203: case 0x227: case 0x1d8f: case 0x1e01:
case 0x1e9a: case 0x1ea1: case 0x1ea3: case 0x1ea5:
case 0x1ea7: case 0x1ea9: case 0x1eab: case 0x1ead:
case 0x1eaf: case 0x1eb1: case 0x1eb3: case 0x1eb5:
case 0x1eb7: case 0x2c65:
regmbc('a'); regmbc(0xe0); regmbc(0xe1);
regmbc(0xe2); regmbc(0xe3); regmbc(0xe4);
regmbc(0xe5); regmbc(0x101); regmbc(0x103);
regmbc(0x105); regmbc(0x1ce); regmbc(0x1df);
regmbc(0x1e1); regmbc(0x1fb); regmbc(0x201);
regmbc(0x203); regmbc(0x227); regmbc(0x1d8f);
regmbc(0x1e01); regmbc(0x1e9a); regmbc(0x1ea1);
regmbc(0x1ea3); regmbc(0x1ea5); regmbc(0x1ea7);
regmbc(0x1ea9); regmbc(0x1eab); regmbc(0x1ead);
regmbc(0x1eaf); regmbc(0x1eb1); regmbc(0x1eb3);
regmbc(0x1eb5); regmbc(0x1eb7); regmbc(0x2c65);
return;
case 'b': case 0x180: case 0x253: case 0x1d6c: case 0x1d80:
case 0x1e03: case 0x1e05: case 0x1e07:
regmbc('b');
regmbc(0x180); regmbc(0x253); regmbc(0x1d6c);
regmbc(0x1d80); regmbc(0x1e03); regmbc(0x1e05);
regmbc(0x1e07);
return;
case 'c': case 0xe7:
case 0x107: case 0x109: case 0x10b: case 0x10d: case 0x188:
case 0x23c: case 0x1e09: case 0xa793: case 0xa794:
regmbc('c'); regmbc(0xe7); regmbc(0x107);
regmbc(0x109); regmbc(0x10b); regmbc(0x10d);
regmbc(0x188); regmbc(0x23c); regmbc(0x1e09);
regmbc(0xa793); regmbc(0xa794);
return;
case 'd': case 0x10f: case 0x111: case 0x257: case 0x1d6d:
case 0x1d81: case 0x1d91: case 0x1e0b: case 0x1e0d:
case 0x1e0f: case 0x1e11: case 0x1e13:
regmbc('d'); regmbc(0x10f); regmbc(0x111);
regmbc(0x257); regmbc(0x1d6d); regmbc(0x1d81);
regmbc(0x1d91); regmbc(0x1e0b); regmbc(0x1e0d);
regmbc(0x1e0f); regmbc(0x1e11); regmbc(0x1e13);
return;
case 'e': case 0xe8: case 0xe9: case 0xea: case 0xeb:
case 0x113: case 0x115: case 0x117: case 0x119:
case 0x11b: case 0x205: case 0x207: case 0x229:
case 0x247: case 0x1d92: case 0x1e15: case 0x1e17:
case 0x1e19: case 0x1e1b: case 0x1eb9: case 0x1ebb:
case 0x1e1d: case 0x1ebd: case 0x1ebf: case 0x1ec1:
case 0x1ec3: case 0x1ec5: case 0x1ec7:
regmbc('e'); regmbc(0xe8); regmbc(0xe9);
regmbc(0xea); regmbc(0xeb); regmbc(0x113);
regmbc(0x115); regmbc(0x117); regmbc(0x119);
regmbc(0x11b); regmbc(0x205); regmbc(0x207);
regmbc(0x229); regmbc(0x247); regmbc(0x1d92);
regmbc(0x1e15); regmbc(0x1e17); regmbc(0x1e19);
regmbc(0x1e1b); regmbc(0x1e1d); regmbc(0x1eb9);
regmbc(0x1ebb); regmbc(0x1ebd); regmbc(0x1ebf);
regmbc(0x1ec1); regmbc(0x1ec3); regmbc(0x1ec5);
regmbc(0x1ec7);
return;
case 'f': case 0x192: case 0x1d6e: case 0x1d82:
case 0x1e1f: case 0xa799:
regmbc('f'); regmbc(0x192); regmbc(0x1d6e);
regmbc(0x1d82); regmbc(0x1e1f); regmbc(0xa799);
return;
case 'g': case 0x11d: case 0x11f: case 0x121: case 0x123:
case 0x1e5: case 0x1e7: case 0x260: case 0x1f5: case 0x1d83:
case 0x1e21: case 0xa7a1:
regmbc('g'); regmbc(0x11d); regmbc(0x11f);
regmbc(0x121); regmbc(0x123); regmbc(0x1e5);
regmbc(0x1e7); regmbc(0x1f5); regmbc(0x260);
regmbc(0x1d83); regmbc(0x1e21); regmbc(0xa7a1);
return;
case 'h': case 0x125: case 0x127: case 0x21f: case 0x1e23:
case 0x1e25: case 0x1e27: case 0x1e29: case 0x1e2b:
case 0x1e96: case 0x2c68: case 0xa795:
regmbc('h'); regmbc(0x125); regmbc(0x127);
regmbc(0x21f); regmbc(0x1e23); regmbc(0x1e25);
regmbc(0x1e27); regmbc(0x1e29); regmbc(0x1e2b);
regmbc(0x1e96); regmbc(0x2c68); regmbc(0xa795);
return;
case 'i': case 0xec: case 0xed: case 0xee: case 0xef:
case 0x129: case 0x12b: case 0x12d: case 0x12f:
case 0x1d0: case 0x209: case 0x20b: case 0x268:
case 0x1d96: case 0x1e2d: case 0x1e2f: case 0x1ec9:
case 0x1ecb:
regmbc('i'); regmbc(0xec); regmbc(0xed);
regmbc(0xee); regmbc(0xef); regmbc(0x129);
regmbc(0x12b); regmbc(0x12d); regmbc(0x12f);
regmbc(0x1d0); regmbc(0x209); regmbc(0x20b);
regmbc(0x268); regmbc(0x1d96); regmbc(0x1e2d);
regmbc(0x1e2f); regmbc(0x1ec9); regmbc(0x1ecb);
return;
case 'j': case 0x135: case 0x1f0: case 0x249:
regmbc('j'); regmbc(0x135); regmbc(0x1f0);
regmbc(0x249);
return;
case 'k': case 0x137: case 0x199: case 0x1e9:
case 0x1d84: case 0x1e31: case 0x1e33: case 0x1e35:
case 0x2c6a: case 0xa741:
regmbc('k'); regmbc(0x137); regmbc(0x199);
regmbc(0x1e9); regmbc(0x1d84); regmbc(0x1e31);
regmbc(0x1e33); regmbc(0x1e35); regmbc(0x2c6a);
regmbc(0xa741);
return;
case 'l': case 0x13a: case 0x13c: case 0x13e:
case 0x140: case 0x142: case 0x19a: case 0x1e37:
case 0x1e39: case 0x1e3b: case 0x1e3d: case 0x2c61:
regmbc('l'); regmbc(0x13a); regmbc(0x13c);
regmbc(0x13e); regmbc(0x140); regmbc(0x142);
regmbc(0x19a); regmbc(0x1e37); regmbc(0x1e39);
regmbc(0x1e3b); regmbc(0x1e3d); regmbc(0x2c61);
return;
case 'm': case 0x1d6f: case 0x1e3f: case 0x1e41: case 0x1e43:
regmbc('m'); regmbc(0x1d6f); regmbc(0x1e3f);
regmbc(0x1e41); regmbc(0x1e43);
return;
case 'n': case 0xf1: case 0x144: case 0x146: case 0x148:
case 0x149: case 0x1f9: case 0x1d70: case 0x1d87:
case 0x1e45: case 0x1e47: case 0x1e49: case 0x1e4b:
case 0xa7a5:
regmbc('n'); regmbc(0xf1); regmbc(0x144);
regmbc(0x146); regmbc(0x148); regmbc(0x149);
regmbc(0x1f9); regmbc(0x1d70); regmbc(0x1d87);
regmbc(0x1e45); regmbc(0x1e47); regmbc(0x1e49);
regmbc(0x1e4b); regmbc(0xa7a5);
return;
case 'o': case 0xf2: case 0xf3: case 0xf4: case 0xf5:
case 0xf6: case 0xf8: case 0x14d: case 0x14f: case 0x151:
case 0x1a1: case 0x1d2: case 0x1eb: case 0x1ed: case 0x1ff:
case 0x20d: case 0x20f: case 0x22b: case 0x22d: case 0x22f:
case 0x231: case 0x275: case 0x1e4d: case 0x1e4f:
case 0x1e51: case 0x1e53: case 0x1ecd: case 0x1ecf:
case 0x1ed1: case 0x1ed3: case 0x1ed5: case 0x1ed7:
case 0x1ed9: case 0x1edb: case 0x1edd: case 0x1edf:
case 0x1ee1: case 0x1ee3:
regmbc('o'); regmbc(0xf2); regmbc(0xf3);
regmbc(0xf4); regmbc(0xf5); regmbc(0xf6);
regmbc(0xf8); regmbc(0x14d); regmbc(0x14f);
regmbc(0x151); regmbc(0x1a1); regmbc(0x1d2);
regmbc(0x1eb); regmbc(0x1ed); regmbc(0x1ff);
regmbc(0x20d); regmbc(0x20f); regmbc(0x22b);
regmbc(0x22d); regmbc(0x22f); regmbc(0x231);
regmbc(0x275); regmbc(0x1e4d); regmbc(0x1e4f);
regmbc(0x1e51); regmbc(0x1e53); regmbc(0x1ecd);
regmbc(0x1ecf); regmbc(0x1ed1); regmbc(0x1ed3);
regmbc(0x1ed5); regmbc(0x1ed7); regmbc(0x1ed9);
regmbc(0x1edb); regmbc(0x1edd); regmbc(0x1edf);
regmbc(0x1ee1); regmbc(0x1ee3);
return;
case 'p': case 0x1a5: case 0x1d71: case 0x1d88: case 0x1d7d:
case 0x1e55: case 0x1e57:
regmbc('p'); regmbc(0x1a5); regmbc(0x1d71);
regmbc(0x1d7d); regmbc(0x1d88); regmbc(0x1e55);
regmbc(0x1e57);
return;
case 'q': case 0x24b: case 0x2a0:
regmbc('q'); regmbc(0x24b); regmbc(0x2a0);
return;
case 'r': case 0x155: case 0x157: case 0x159: case 0x211:
case 0x213: case 0x24d: case 0x27d: case 0x1d72: case 0x1d73:
case 0x1d89: case 0x1e59: case 0x1e5b: case 0x1e5d: case 0x1e5f:
case 0xa7a7:
regmbc('r'); regmbc(0x155); regmbc(0x157);
regmbc(0x159); regmbc(0x211); regmbc(0x213);
regmbc(0x24d); regmbc(0x1d72); regmbc(0x1d73);
regmbc(0x1d89); regmbc(0x1e59); regmbc(0x27d);
regmbc(0x1e5b); regmbc(0x1e5d); regmbc(0x1e5f);
regmbc(0xa7a7);
return;
case 's': case 0x15b: case 0x15d: case 0x15f: case 0x161:
case 0x1e61: case 0x219: case 0x23f: case 0x1d74: case 0x1d8a:
case 0x1e63: case 0x1e65: case 0x1e67: case 0x1e69: case 0xa7a9:
regmbc('s'); regmbc(0x15b); regmbc(0x15d);
regmbc(0x15f); regmbc(0x161); regmbc(0x23f);
regmbc(0x219); regmbc(0x1d74); regmbc(0x1d8a);
regmbc(0x1e61); regmbc(0x1e63); regmbc(0x1e65);
regmbc(0x1e67); regmbc(0x1e69); regmbc(0xa7a9);
return;
case 't': case 0x163: case 0x165: case 0x167: case 0x1ab:
case 0x1ad: case 0x21b: case 0x288: case 0x1d75: case 0x1e6b:
case 0x1e6d: case 0x1e6f: case 0x1e71: case 0x1e97: case 0x2c66:
regmbc('t'); regmbc(0x163); regmbc(0x165);
regmbc(0x167); regmbc(0x1ab); regmbc(0x21b);
regmbc(0x1ad); regmbc(0x288); regmbc(0x1d75);
regmbc(0x1e6b); regmbc(0x1e6d); regmbc(0x1e6f);
regmbc(0x1e71); regmbc(0x1e97); regmbc(0x2c66);
return;
case 'u': case 0xf9: case 0xfa: case 0xfb: case 0xfc:
case 0x169: case 0x16b: case 0x16d: case 0x16f:
case 0x171: case 0x173: case 0x1b0: case 0x1d4:
case 0x1d6: case 0x1d8: case 0x1da: case 0x1dc:
case 0x215: case 0x217: case 0x289: case 0x1e73:
case 0x1d7e: case 0x1d99: case 0x1e75: case 0x1e77:
case 0x1e79: case 0x1e7b: case 0x1ee5: case 0x1ee7:
case 0x1ee9: case 0x1eeb: case 0x1eed: case 0x1eef:
case 0x1ef1:
regmbc('u'); regmbc(0xf9); regmbc(0xfa);
regmbc(0xfb); regmbc(0xfc); regmbc(0x169);
regmbc(0x16b); regmbc(0x16d); regmbc(0x16f);
regmbc(0x171); regmbc(0x173); regmbc(0x1d6);
regmbc(0x1d8); regmbc(0x1da); regmbc(0x1dc);
regmbc(0x215); regmbc(0x217); regmbc(0x1b0);
regmbc(0x1d4); regmbc(0x289); regmbc(0x1d7e);
regmbc(0x1d99); regmbc(0x1e73); regmbc(0x1e75);
regmbc(0x1e77); regmbc(0x1e79); regmbc(0x1e7b);
regmbc(0x1ee5); regmbc(0x1ee7); regmbc(0x1ee9);
regmbc(0x1eeb); regmbc(0x1eed); regmbc(0x1eef);
regmbc(0x1ef1);
return;
case 'v': case 0x28b: case 0x1d8c: case 0x1e7d: case 0x1e7f:
regmbc('v'); regmbc(0x28b); regmbc(0x1d8c);
regmbc(0x1e7d); regmbc(0x1e7f);
return;
case 'w': case 0x175: case 0x1e81: case 0x1e83:
case 0x1e85: case 0x1e87: case 0x1e89: case 0x1e98:
regmbc('w'); regmbc(0x175); regmbc(0x1e81);
regmbc(0x1e83); regmbc(0x1e85); regmbc(0x1e87);
regmbc(0x1e89); regmbc(0x1e98);
return;
case 'x': case 0x1e8b: case 0x1e8d:
regmbc('x'); regmbc(0x1e8b); regmbc(0x1e8d);
return;
case 'y': case 0xfd: case 0xff: case 0x177: case 0x1b4:
case 0x233: case 0x24f: case 0x1e8f: case 0x1e99: case 0x1ef3:
case 0x1ef5: case 0x1ef7: case 0x1ef9:
regmbc('y'); regmbc(0xfd); regmbc(0xff);
regmbc(0x177); regmbc(0x1b4); regmbc(0x233);
regmbc(0x24f); regmbc(0x1e8f); regmbc(0x1e99);
regmbc(0x1ef3); regmbc(0x1ef5); regmbc(0x1ef7);
regmbc(0x1ef9);
return;
case 'z': case 0x17a: case 0x17c: case 0x17e: case 0x1b6:
case 0x1d76: case 0x1d8e: case 0x1e91: case 0x1e93:
case 0x1e95: case 0x2c6c:
regmbc('z'); regmbc(0x17a); regmbc(0x17c);
regmbc(0x17e); regmbc(0x1b6); regmbc(0x1d76);
regmbc(0x1d8e); regmbc(0x1e91); regmbc(0x1e93);
regmbc(0x1e95); regmbc(0x2c6c);
return;
}
}
regmbc(c);
}
/*
* Emit a node.
* Return pointer to generated code.
*/
static char_u *
regnode(int op)
{
char_u *ret;
ret = regcode;
if (ret == JUST_CALC_SIZE)
regsize += 3;
else
{
*regcode++ = op;
*regcode++ = NUL; // Null "next" pointer.
*regcode++ = NUL;
}
return ret;
}
/*
* Write a long as four bytes at "p" and return pointer to the next char.
*/
static char_u *
re_put_long(char_u *p, long_u val)
{
*p++ = (char_u) ((val >> 24) & 0377);
*p++ = (char_u) ((val >> 16) & 0377);
*p++ = (char_u) ((val >> 8) & 0377);
*p++ = (char_u) (val & 0377);
return p;
}
/*
* regnext - dig the "next" pointer out of a node
* Returns NULL when calculating size, when there is no next item and when
* there is an error.
*/
static char_u *
regnext(char_u *p)
{
int offset;
if (p == JUST_CALC_SIZE || reg_toolong)
return NULL;
offset = NEXT(p);
if (offset == 0)
return NULL;
if (OP(p) == BACK)
return p - offset;
else
return p + offset;
}
/*
* Set the next-pointer at the end of a node chain.
*/
static void
regtail(char_u *p, char_u *val)
{
char_u *scan;
char_u *temp;
int offset;
if (p == JUST_CALC_SIZE)
return;
// Find last node.
scan = p;
for (;;)
{
temp = regnext(scan);
if (temp == NULL)
break;
scan = temp;
}
if (OP(scan) == BACK)
offset = (int)(scan - val);
else
offset = (int)(val - scan);
// When the offset uses more than 16 bits it can no longer fit in the two
// bytes available. Use a global flag to avoid having to check return
// values in too many places.
if (offset > 0xffff)
reg_toolong = TRUE;
else
{
*(scan + 1) = (char_u) (((unsigned)offset >> 8) & 0377);
*(scan + 2) = (char_u) (offset & 0377);
}
}
/*
* Like regtail, on item after a BRANCH; nop if none.
*/
static void
regoptail(char_u *p, char_u *val)
{
// When op is neither BRANCH nor BRACE_COMPLEX0-9, it is "operandless"
if (p == NULL || p == JUST_CALC_SIZE
|| (OP(p) != BRANCH
&& (OP(p) < BRACE_COMPLEX || OP(p) > BRACE_COMPLEX + 9)))
return;
regtail(OPERAND(p), val);
}
/*
* Insert an operator in front of already-emitted operand
*
* Means relocating the operand.
*/
static void
reginsert(int op, char_u *opnd)
{
char_u *src;
char_u *dst;
char_u *place;
if (regcode == JUST_CALC_SIZE)
{
regsize += 3;
return;
}
src = regcode;
regcode += 3;
dst = regcode;
while (src > opnd)
*--dst = *--src;
place = opnd; // Op node, where operand used to be.
*place++ = op;
*place++ = NUL;
*place = NUL;
}
/*
* Insert an operator in front of already-emitted operand.
* Add a number to the operator.
*/
static void
reginsert_nr(int op, long val, char_u *opnd)
{
char_u *src;
char_u *dst;
char_u *place;
if (regcode == JUST_CALC_SIZE)
{
regsize += 7;
return;
}
src = regcode;
regcode += 7;
dst = regcode;
while (src > opnd)
*--dst = *--src;
place = opnd; // Op node, where operand used to be.
*place++ = op;
*place++ = NUL;
*place++ = NUL;
re_put_long(place, (long_u)val);
}
/*
* Insert an operator in front of already-emitted operand.
* The operator has the given limit values as operands. Also set next pointer.
*
* Means relocating the operand.
*/
static void
reginsert_limits(
int op,
long minval,
long maxval,
char_u *opnd)
{
char_u *src;
char_u *dst;
char_u *place;
if (regcode == JUST_CALC_SIZE)
{
regsize += 11;
return;
}
src = regcode;
regcode += 11;
dst = regcode;
while (src > opnd)
*--dst = *--src;
place = opnd; // Op node, where operand used to be.
*place++ = op;
*place++ = NUL;
*place++ = NUL;
place = re_put_long(place, (long_u)minval);
place = re_put_long(place, (long_u)maxval);
regtail(opnd, place);
}
/*
* Return TRUE if the back reference is legal. We must have seen the close
* brace.
* TODO: Should also check that we don't refer to something that is repeated
* (+*=): what instance of the repetition should we match?
*/
static int
seen_endbrace(int refnum)
{
if (!had_endbrace[refnum])
{
char_u *p;
// Trick: check if "@<=" or "@<!" follows, in which case
// the \1 can appear before the referenced match.
for (p = regparse; *p != NUL; ++p)
if (p[0] == '@' && p[1] == '<' && (p[2] == '!' || p[2] == '='))
break;
if (*p == NUL)
{
emsg(_(e_illegal_back_reference));
rc_did_emsg = TRUE;
return FALSE;
}
}
return TRUE;
}
/*
* Parse the lowest level.
*
* Optimization: gobbles an entire sequence of ordinary characters so that
* it can turn them into a single node, which is smaller to store and
* faster to run. Don't do this when one_exactly is set.
*/
static char_u *
regatom(int *flagp)
{
char_u *ret;
int flags;
int c;
char_u *p;
int extra = 0;
int save_prev_at_start = prev_at_start;
*flagp = WORST; // Tentatively.
c = getchr();
switch (c)
{
case Magic('^'):
ret = regnode(BOL);
break;
case Magic('$'):
ret = regnode(EOL);
#if defined(FEAT_SYN_HL) || defined(PROTO)
had_eol = TRUE;
#endif
break;
case Magic('<'):
ret = regnode(BOW);
break;
case Magic('>'):
ret = regnode(EOW);
break;
case Magic('_'):
c = no_Magic(getchr());
if (c == '^') // "\_^" is start-of-line
{
ret = regnode(BOL);
break;
}
if (c == '$') // "\_$" is end-of-line
{
ret = regnode(EOL);
#if defined(FEAT_SYN_HL) || defined(PROTO)
had_eol = TRUE;
#endif
break;
}
extra = ADD_NL;
*flagp |= HASNL;
// "\_[" is character range plus newline
if (c == '[')
goto collection;
// "\_x" is character class plus newline
// FALLTHROUGH
// Character classes.
case Magic('.'):
case Magic('i'):
case Magic('I'):
case Magic('k'):
case Magic('K'):
case Magic('f'):
case Magic('F'):
case Magic('p'):
case Magic('P'):
case Magic('s'):
case Magic('S'):
case Magic('d'):
case Magic('D'):
case Magic('x'):
case Magic('X'):
case Magic('o'):
case Magic('O'):
case Magic('w'):
case Magic('W'):
case Magic('h'):
case Magic('H'):
case Magic('a'):
case Magic('A'):
case Magic('l'):
case Magic('L'):
case Magic('u'):
case Magic('U'):
p = vim_strchr(classchars, no_Magic(c));
if (p == NULL)
EMSG_RET_NULL(_(e_invalid_use_of_underscore));
// When '.' is followed by a composing char ignore the dot, so that
// the composing char is matched here.
if (enc_utf8 && c == Magic('.') && utf_iscomposing(peekchr()))
{
c = getchr();
goto do_multibyte;
}
ret = regnode(classcodes[p - classchars] + extra);
*flagp |= HASWIDTH | SIMPLE;
break;
case Magic('n'):
if (reg_string)
{
// In a string "\n" matches a newline character.
ret = regnode(EXACTLY);
regc(NL);
regc(NUL);
*flagp |= HASWIDTH | SIMPLE;
}
else
{
// In buffer text "\n" matches the end of a line.
ret = regnode(NEWL);
*flagp |= HASWIDTH | HASNL;
}
break;
case Magic('('):
if (one_exactly)
EMSG_ONE_RET_NULL;
ret = reg(REG_PAREN, &flags);
if (ret == NULL)
return NULL;
*flagp |= flags & (HASWIDTH | SPSTART | HASNL | HASLOOKBH);
break;
case NUL:
case Magic('|'):
case Magic('&'):
case Magic(')'):
if (one_exactly)
EMSG_ONE_RET_NULL;
// Supposed to be caught earlier.
IEMSG_RET_NULL(e_internal_error_in_regexp);
// NOTREACHED
case Magic('='):
case Magic('?'):
case Magic('+'):
case Magic('@'):
case Magic('{'):
case Magic('*'):
c = no_Magic(c);
EMSG3_RET_NULL(_(e_str_chr_follows_nothing),
(c == '*' ? reg_magic >= MAGIC_ON : reg_magic == MAGIC_ALL), c);
// NOTREACHED
case Magic('~'): // previous substitute pattern
if (reg_prev_sub != NULL)
{
char_u *lp;
ret = regnode(EXACTLY);
lp = reg_prev_sub;
while (*lp != NUL)
regc(*lp++);
regc(NUL);
if (*reg_prev_sub != NUL)
{
*flagp |= HASWIDTH;
if ((lp - reg_prev_sub) == 1)
*flagp |= SIMPLE;
}
}
else
EMSG_RET_NULL(_(e_no_previous_substitute_regular_expression));
break;
case Magic('1'):
case Magic('2'):
case Magic('3'):
case Magic('4'):
case Magic('5'):
case Magic('6'):
case Magic('7'):
case Magic('8'):
case Magic('9'):
{
int refnum;
refnum = c - Magic('0');
if (!seen_endbrace(refnum))
return NULL;
ret = regnode(BACKREF + refnum);
}
break;
case Magic('z'):
{
c = no_Magic(getchr());
switch (c)
{
#ifdef FEAT_SYN_HL
case '(': if ((reg_do_extmatch & REX_SET) == 0)
EMSG_RET_NULL(_(e_z_not_allowed_here));
if (one_exactly)
EMSG_ONE_RET_NULL;
ret = reg(REG_ZPAREN, &flags);
if (ret == NULL)
return NULL;
*flagp |= flags & (HASWIDTH|SPSTART|HASNL|HASLOOKBH);
re_has_z = REX_SET;
break;
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9': if ((reg_do_extmatch & REX_USE) == 0)
EMSG_RET_NULL(_(e_z1_z9_not_allowed_here));
ret = regnode(ZREF + c - '0');
re_has_z = REX_USE;
break;
#endif
case 's': ret = regnode(MOPEN + 0);
if (re_mult_next("\\zs") == FAIL)
return NULL;
break;
case 'e': ret = regnode(MCLOSE + 0);
if (re_mult_next("\\ze") == FAIL)
return NULL;
break;
default: EMSG_RET_NULL(_(e_invalid_character_after_bsl_z));
}
}
break;
case Magic('%'):
{
c = no_Magic(getchr());
switch (c)
{
// () without a back reference
case '(':
if (one_exactly)
EMSG_ONE_RET_NULL;
ret = reg(REG_NPAREN, &flags);
if (ret == NULL)
return NULL;
*flagp |= flags & (HASWIDTH | SPSTART | HASNL | HASLOOKBH);
break;
// Catch \%^ and \%$ regardless of where they appear in the
// pattern -- regardless of whether or not it makes sense.
case '^':
ret = regnode(RE_BOF);
break;
case '$':
ret = regnode(RE_EOF);
break;
case '#':
if (regparse[0] == '=' && regparse[1] >= 48
&& regparse[1] <= 50)
{
// misplaced \%#=1
semsg(_(e_atom_engine_must_be_at_start_of_pattern),
regparse[1]);
return FAIL;
}
ret = regnode(CURSOR);
break;
case 'V':
ret = regnode(RE_VISUAL);
break;
case 'C':
ret = regnode(RE_COMPOSING);
break;
// \%[abc]: Emit as a list of branches, all ending at the last
// branch which matches nothing.
case '[':
if (one_exactly) // doesn't nest
EMSG_ONE_RET_NULL;
{
char_u *lastbranch;
char_u *lastnode = NULL;
char_u *br;
ret = NULL;
while ((c = getchr()) != ']')
{
if (c == NUL)
EMSG2_RET_NULL(_(e_missing_sb_after_str),
reg_magic == MAGIC_ALL);
br = regnode(BRANCH);
if (ret == NULL)
ret = br;
else
{
regtail(lastnode, br);
if (reg_toolong)
return NULL;
}
ungetchr();
one_exactly = TRUE;
lastnode = regatom(flagp);
one_exactly = FALSE;
if (lastnode == NULL)
return NULL;
}
if (ret == NULL)
EMSG2_RET_NULL(_(e_empty_str_brackets),
reg_magic == MAGIC_ALL);
lastbranch = regnode(BRANCH);
br = regnode(NOTHING);
if (ret != JUST_CALC_SIZE)
{
regtail(lastnode, br);
regtail(lastbranch, br);
// connect all branches to the NOTHING
// branch at the end
for (br = ret; br != lastnode; )
{
if (OP(br) == BRANCH)
{
regtail(br, lastbranch);
if (reg_toolong)
return NULL;
br = OPERAND(br);
}
else
br = regnext(br);
}
}
*flagp &= ~(HASWIDTH | SIMPLE);
break;
}
case 'd': // %d123 decimal
case 'o': // %o123 octal
case 'x': // %xab hex 2
case 'u': // %uabcd hex 4
case 'U': // %U1234abcd hex 8
{
long i;
switch (c)
{
case 'd': i = getdecchrs(); break;
case 'o': i = getoctchrs(); break;
case 'x': i = gethexchrs(2); break;
case 'u': i = gethexchrs(4); break;
case 'U': i = gethexchrs(8); break;
default: i = -1; break;
}
if (i < 0 || i > INT_MAX)
EMSG2_RET_NULL(
_(e_invalid_character_after_str_2),
reg_magic == MAGIC_ALL);
if (use_multibytecode(i))
ret = regnode(MULTIBYTECODE);
else
ret = regnode(EXACTLY);
if (i == 0)
regc(0x0a);
else
regmbc(i);
regc(NUL);
*flagp |= HASWIDTH;
break;
}
default:
if (VIM_ISDIGIT(c) || c == '<' || c == '>'
|| c == '\'' || c == '.')
{
long_u n = 0;
int cmp;
int cur = FALSE;
int got_digit = FALSE;
cmp = c;
if (cmp == '<' || cmp == '>')
c = getchr();
if (no_Magic(c) == '.')
{
cur = TRUE;
c = getchr();
}
while (VIM_ISDIGIT(c))
{
got_digit = TRUE;
n = n * 10 + (c - '0');
c = getchr();
}
if (c == '\'' && n == 0)
{
// "\%'m", "\%<'m" and "\%>'m": Mark
c = getchr();
ret = regnode(RE_MARK);
if (ret == JUST_CALC_SIZE)
regsize += 2;
else
{
*regcode++ = c;
*regcode++ = cmp;
}
break;
}
else if ((c == 'l' || c == 'c' || c == 'v')
&& (cur || got_digit))
{
if (cur && n)
{
semsg(_(e_regexp_number_after_dot_pos_search_chr),
no_Magic(c));
rc_did_emsg = TRUE;
return NULL;
}
if (c == 'l')
{
if (cur)
n = curwin->w_cursor.lnum;
ret = regnode(RE_LNUM);
if (save_prev_at_start)
at_start = TRUE;
}
else if (c == 'c')
{
if (cur)
{
n = curwin->w_cursor.col;
n++;
}
ret = regnode(RE_COL);
}
else
{
if (cur)
{
colnr_T vcol = 0;
getvvcol(curwin, &curwin->w_cursor,
NULL, NULL, &vcol);
++vcol;
n = vcol;
}
ret = regnode(RE_VCOL);
}
if (ret == JUST_CALC_SIZE)
regsize += 5;
else
{
// put the number and the optional
// comparator after the opcode
regcode = re_put_long(regcode, n);
*regcode++ = cmp;
}
break;
}
}
EMSG2_RET_NULL(_(e_invalid_character_after_str),
reg_magic == MAGIC_ALL);
}
}
break;
case Magic('['):
collection:
{
char_u *lp;
// If there is no matching ']', we assume the '[' is a normal
// character. This makes 'incsearch' and ":help [" work.
lp = skip_anyof(regparse);
if (*lp == ']') // there is a matching ']'
{
int startc = -1; // > 0 when next '-' is a range
int endc;
// In a character class, different parsing rules apply.
// Not even \ is special anymore, nothing is.
if (*regparse == '^') // Complement of range.
{
ret = regnode(ANYBUT + extra);
regparse++;
}
else
ret = regnode(ANYOF + extra);
// At the start ']' and '-' mean the literal character.
if (*regparse == ']' || *regparse == '-')
{
startc = *regparse;
regc(*regparse++);
}
while (*regparse != NUL && *regparse != ']')
{
if (*regparse == '-')
{
++regparse;
// The '-' is not used for a range at the end and
// after or before a '\n'.
if (*regparse == ']' || *regparse == NUL
|| startc == -1
|| (regparse[0] == '\\' && regparse[1] == 'n'))
{
regc('-');
startc = '-'; // [--x] is a range
}
else
{
// Also accept "a-[.z.]"
endc = 0;
if (*regparse == '[')
endc = get_coll_element(&regparse);
if (endc == 0)
{
if (has_mbyte)
endc = mb_ptr2char_adv(&regparse);
else
endc = *regparse++;
}
// Handle \o40, \x20 and \u20AC style sequences
if (endc == '\\' && !reg_cpo_lit && !reg_cpo_bsl)
endc = coll_get_char();
if (startc > endc)
EMSG_RET_NULL(_(e_reverse_range_in_character_class));
if (has_mbyte && ((*mb_char2len)(startc) > 1
|| (*mb_char2len)(endc) > 1))
{
// Limit to a range of 256 chars.
if (endc > startc + 256)
EMSG_RET_NULL(_(e_range_too_large_in_character_class));
while (++startc <= endc)
regmbc(startc);
}
else
{
while (++startc <= endc)
regc(startc);
}
startc = -1;
}
}
// Only "\]", "\^", "\]" and "\\" are special in Vi. Vim
// accepts "\t", "\e", etc., but only when the 'l' flag in
// 'cpoptions' is not included.
// Posix doesn't recognize backslash at all.
else if (*regparse == '\\'
&& !reg_cpo_bsl
&& (vim_strchr(REGEXP_INRANGE, regparse[1]) != NULL
|| (!reg_cpo_lit
&& vim_strchr(REGEXP_ABBR,
regparse[1]) != NULL)))
{
regparse++;
if (*regparse == 'n')
{
// '\n' in range: also match NL
if (ret != JUST_CALC_SIZE)
{
// Using \n inside [^] does not change what
// matches. "[^\n]" is the same as ".".
if (*ret == ANYOF)
{
*ret = ANYOF + ADD_NL;
*flagp |= HASNL;
}
// else: must have had a \n already
}
regparse++;
startc = -1;
}
else if (*regparse == 'd'
|| *regparse == 'o'
|| *regparse == 'x'
|| *regparse == 'u'
|| *regparse == 'U')
{
startc = coll_get_char();
if (startc == 0)
regc(0x0a);
else
regmbc(startc);
}
else
{
startc = backslash_trans(*regparse++);
regc(startc);
}
}
else if (*regparse == '[')
{
int c_class;
int cu;
c_class = get_char_class(&regparse);
startc = -1;
// Characters assumed to be 8 bits!
switch (c_class)
{
case CLASS_NONE:
c_class = get_equi_class(&regparse);
if (c_class != 0)
{
// produce equivalence class
reg_equi_class(c_class);
}
else if ((c_class =
get_coll_element(&regparse)) != 0)
{
// produce a collating element
regmbc(c_class);
}
else
{
// literal '[', allow [[-x] as a range
startc = *regparse++;
regc(startc);
}
break;
case CLASS_ALNUM:
for (cu = 1; cu < 128; cu++)
if (isalnum(cu))
regmbc(cu);
break;
case CLASS_ALPHA:
for (cu = 1; cu < 128; cu++)
if (isalpha(cu))
regmbc(cu);
break;
case CLASS_BLANK:
regc(' ');
regc('\t');
break;
case CLASS_CNTRL:
for (cu = 1; cu <= 127; cu++)
if (iscntrl(cu))
regmbc(cu);
break;
case CLASS_DIGIT:
for (cu = 1; cu <= 127; cu++)
if (VIM_ISDIGIT(cu))
regmbc(cu);
break;
case CLASS_GRAPH:
for (cu = 1; cu <= 127; cu++)
if (isgraph(cu))
regmbc(cu);
break;
case CLASS_LOWER:
for (cu = 1; cu <= 255; cu++)
if (MB_ISLOWER(cu) && cu != 170
&& cu != 186)
regmbc(cu);
break;
case CLASS_PRINT:
for (cu = 1; cu <= 255; cu++)
if (vim_isprintc(cu))
regmbc(cu);
break;
case CLASS_PUNCT:
for (cu = 1; cu < 128; cu++)
if (ispunct(cu))
regmbc(cu);
break;
case CLASS_SPACE:
for (cu = 9; cu <= 13; cu++)
regc(cu);
regc(' ');
break;
case CLASS_UPPER:
for (cu = 1; cu <= 255; cu++)
if (MB_ISUPPER(cu))
regmbc(cu);
break;
case CLASS_XDIGIT:
for (cu = 1; cu <= 255; cu++)
if (vim_isxdigit(cu))
regmbc(cu);
break;
case CLASS_TAB:
regc('\t');
break;
case CLASS_RETURN:
regc('\r');
break;
case CLASS_BACKSPACE:
regc('\b');
break;
case CLASS_ESCAPE:
regc('\033');
break;
case CLASS_IDENT:
for (cu = 1; cu <= 255; cu++)
if (vim_isIDc(cu))
regmbc(cu);
break;
case CLASS_KEYWORD:
for (cu = 1; cu <= 255; cu++)
if (reg_iswordc(cu))
regmbc(cu);
break;
case CLASS_FNAME:
for (cu = 1; cu <= 255; cu++)
if (vim_isfilec(cu))
regmbc(cu);
break;
}
}
else
{
if (has_mbyte)
{
int len;
// produce a multibyte character, including any
// following composing characters
startc = mb_ptr2char(regparse);
len = (*mb_ptr2len)(regparse);
if (enc_utf8 && utf_char2len(startc) != len)
startc = -1; // composing chars
while (--len >= 0)
regc(*regparse++);
}
else
{
startc = *regparse++;
regc(startc);
}
}
}
regc(NUL);
prevchr_len = 1; // last char was the ']'
if (*regparse != ']')
EMSG_RET_NULL(_(e_too_many_brackets)); // Cannot happen?
skipchr(); // let's be friends with the lexer again
*flagp |= HASWIDTH | SIMPLE;
break;
}
else if (reg_strict)
EMSG2_RET_NULL(_(e_missing_rsb_after_str_lsb),
reg_magic > MAGIC_OFF);
}
// FALLTHROUGH
default:
{
int len;
// A multi-byte character is handled as a separate atom if it's
// before a multi and when it's a composing char.
if (use_multibytecode(c))
{
do_multibyte:
ret = regnode(MULTIBYTECODE);
regmbc(c);
*flagp |= HASWIDTH | SIMPLE;
break;
}
ret = regnode(EXACTLY);
// Append characters as long as:
// - there is no following multi, we then need the character in
// front of it as a single character operand
// - not running into a Magic character
// - "one_exactly" is not set
// But always emit at least one character. Might be a Multi,
// e.g., a "[" without matching "]".
for (len = 0; c != NUL && (len == 0
|| (re_multi_type(peekchr()) == NOT_MULTI
&& !one_exactly
&& !is_Magic(c))); ++len)
{
c = no_Magic(c);
if (has_mbyte)
{
regmbc(c);
if (enc_utf8)
{
int l;
// Need to get composing character too.
for (;;)
{
l = utf_ptr2len(regparse);
if (!UTF_COMPOSINGLIKE(regparse, regparse + l))
break;
regmbc(utf_ptr2char(regparse));
skipchr();
}
}
}
else
regc(c);
c = getchr();
}
ungetchr();
regc(NUL);
*flagp |= HASWIDTH;
if (len == 1)
*flagp |= SIMPLE;
}
break;
}
return ret;
}
/*
* Parse something followed by possible [*+=].
*
* Note that the branching code sequences used for = and the general cases
* of * and + are somewhat optimized: they use the same NOTHING node as
* both the endmarker for their branch list and the body of the last branch.
* It might seem that this node could be dispensed with entirely, but the
* endmarker role is not redundant.
*/
static char_u *
regpiece(int *flagp)
{
char_u *ret;
int op;
char_u *next;
int flags;
long minval;
long maxval;
ret = regatom(&flags);
if (ret == NULL)
return NULL;
op = peekchr();
if (re_multi_type(op) == NOT_MULTI)
{
*flagp = flags;
return ret;
}
// default flags
*flagp = (WORST | SPSTART | (flags & (HASNL | HASLOOKBH)));
skipchr();
switch (op)
{
case Magic('*'):
if (flags & SIMPLE)
reginsert(STAR, ret);
else
{
// Emit x* as (x&|), where & means "self".
reginsert(BRANCH, ret); // Either x
regoptail(ret, regnode(BACK)); // and loop
regoptail(ret, ret); // back
regtail(ret, regnode(BRANCH)); // or
regtail(ret, regnode(NOTHING)); // null.
}
break;
case Magic('+'):
if (flags & SIMPLE)
reginsert(PLUS, ret);
else
{
// Emit x+ as x(&|), where & means "self".
next = regnode(BRANCH); // Either
regtail(ret, next);
regtail(regnode(BACK), ret); // loop back
regtail(next, regnode(BRANCH)); // or
regtail(ret, regnode(NOTHING)); // null.
}
*flagp = (WORST | HASWIDTH | (flags & (HASNL | HASLOOKBH)));
break;
case Magic('@'):
{
int lop = END;
long nr;
nr = getdecchrs();
switch (no_Magic(getchr()))
{
case '=': lop = MATCH; break; // \@=
case '!': lop = NOMATCH; break; // \@!
case '>': lop = SUBPAT; break; // \@>
case '<': switch (no_Magic(getchr()))
{
case '=': lop = BEHIND; break; // \@<=
case '!': lop = NOBEHIND; break; // \@<!
}
}
if (lop == END)
EMSG2_RET_NULL(_(e_invalid_character_after_str_at),
reg_magic == MAGIC_ALL);
// Look behind must match with behind_pos.
if (lop == BEHIND || lop == NOBEHIND)
{
regtail(ret, regnode(BHPOS));
*flagp |= HASLOOKBH;
}
regtail(ret, regnode(END)); // operand ends
if (lop == BEHIND || lop == NOBEHIND)
{
if (nr < 0)
nr = 0; // no limit is same as zero limit
reginsert_nr(lop, nr, ret);
}
else
reginsert(lop, ret);
break;
}
case Magic('?'):
case Magic('='):
// Emit x= as (x|)
reginsert(BRANCH, ret); // Either x
regtail(ret, regnode(BRANCH)); // or
next = regnode(NOTHING); // null.
regtail(ret, next);
regoptail(ret, next);
break;
case Magic('{'):
if (!read_limits(&minval, &maxval))
return NULL;
if (flags & SIMPLE)
{
reginsert(BRACE_SIMPLE, ret);
reginsert_limits(BRACE_LIMITS, minval, maxval, ret);
}
else
{
if (num_complex_braces >= 10)
EMSG2_RET_NULL(_(e_too_many_complex_str_curly),
reg_magic == MAGIC_ALL);
reginsert(BRACE_COMPLEX + num_complex_braces, ret);
regoptail(ret, regnode(BACK));
regoptail(ret, ret);
reginsert_limits(BRACE_LIMITS, minval, maxval, ret);
++num_complex_braces;
}
if (minval > 0 && maxval > 0)
*flagp = (HASWIDTH | (flags & (HASNL | HASLOOKBH)));
break;
}
if (re_multi_type(peekchr()) != NOT_MULTI)
{
// Can't have a multi follow a multi.
if (peekchr() == Magic('*'))
EMSG2_RET_NULL(_(e_nested_str), reg_magic >= MAGIC_ON);
EMSG3_RET_NULL(_(e_nested_str_chr), reg_magic == MAGIC_ALL,
no_Magic(peekchr()));
}
return ret;
}
/*
* Parse one alternative of an | or & operator.
* Implements the concatenation operator.
*/
static char_u *
regconcat(int *flagp)
{
char_u *first = NULL;
char_u *chain = NULL;
char_u *latest;
int flags;
int cont = TRUE;
*flagp = WORST; // Tentatively.
while (cont)
{
switch (peekchr())
{
case NUL:
case Magic('|'):
case Magic('&'):
case Magic(')'):
cont = FALSE;
break;
case Magic('Z'):
regflags |= RF_ICOMBINE;
skipchr_keepstart();
break;
case Magic('c'):
regflags |= RF_ICASE;
skipchr_keepstart();
break;
case Magic('C'):
regflags |= RF_NOICASE;
skipchr_keepstart();
break;
case Magic('v'):
reg_magic = MAGIC_ALL;
skipchr_keepstart();
curchr = -1;
break;
case Magic('m'):
reg_magic = MAGIC_ON;
skipchr_keepstart();
curchr = -1;
break;
case Magic('M'):
reg_magic = MAGIC_OFF;
skipchr_keepstart();
curchr = -1;
break;
case Magic('V'):
reg_magic = MAGIC_NONE;
skipchr_keepstart();
curchr = -1;
break;
default:
latest = regpiece(&flags);
if (latest == NULL || reg_toolong)
return NULL;
*flagp |= flags & (HASWIDTH | HASNL | HASLOOKBH);
if (chain == NULL) // First piece.
*flagp |= flags & SPSTART;
else
regtail(chain, latest);
chain = latest;
if (first == NULL)
first = latest;
break;
}
}
if (first == NULL) // Loop ran zero times.
first = regnode(NOTHING);
return first;
}
/*
* Parse one alternative of an | operator.
* Implements the & operator.
*/
static char_u *
regbranch(int *flagp)
{
char_u *ret;
char_u *chain = NULL;
char_u *latest;
int flags;
*flagp = WORST | HASNL; // Tentatively.
ret = regnode(BRANCH);
for (;;)
{
latest = regconcat(&flags);
if (latest == NULL)
return NULL;
// If one of the branches has width, the whole thing has. If one of
// the branches anchors at start-of-line, the whole thing does.
// If one of the branches uses look-behind, the whole thing does.
*flagp |= flags & (HASWIDTH | SPSTART | HASLOOKBH);
// If one of the branches doesn't match a line-break, the whole thing
// doesn't.
*flagp &= ~HASNL | (flags & HASNL);
if (chain != NULL)
regtail(chain, latest);
if (peekchr() != Magic('&'))
break;
skipchr();
regtail(latest, regnode(END)); // operand ends
if (reg_toolong)
break;
reginsert(MATCH, latest);
chain = latest;
}
return ret;
}
/*
* Parse regular expression, i.e. main body or parenthesized thing.
*
* Caller must absorb opening parenthesis.
*
* Combining parenthesis handling with the base level of regular expression
* is a trifle forced, but the need to tie the tails of the branches to what
* follows makes it hard to avoid.
*/
static char_u *
reg(
int paren, // REG_NOPAREN, REG_PAREN, REG_NPAREN or REG_ZPAREN
int *flagp)
{
char_u *ret;
char_u *br;
char_u *ender;
int parno = 0;
int flags;
*flagp = HASWIDTH; // Tentatively.
#ifdef FEAT_SYN_HL
if (paren == REG_ZPAREN)
{
// Make a ZOPEN node.
if (regnzpar >= NSUBEXP)
EMSG_RET_NULL(_(e_too_many_z));
parno = regnzpar;
regnzpar++;
ret = regnode(ZOPEN + parno);
}
else
#endif
if (paren == REG_PAREN)
{
// Make a MOPEN node.
if (regnpar >= NSUBEXP)
EMSG2_RET_NULL(_(e_too_many_str_open), reg_magic == MAGIC_ALL);
parno = regnpar;
++regnpar;
ret = regnode(MOPEN + parno);
}
else if (paren == REG_NPAREN)
{
// Make a NOPEN node.
ret = regnode(NOPEN);
}
else
ret = NULL;
// Pick up the branches, linking them together.
br = regbranch(&flags);
if (br == NULL)
return NULL;
if (ret != NULL)
regtail(ret, br); // [MZ]OPEN -> first.
else
ret = br;
// If one of the branches can be zero-width, the whole thing can.
// If one of the branches has * at start or matches a line-break, the
// whole thing can.
if (!(flags & HASWIDTH))
*flagp &= ~HASWIDTH;
*flagp |= flags & (SPSTART | HASNL | HASLOOKBH);
while (peekchr() == Magic('|'))
{
skipchr();
br = regbranch(&flags);
if (br == NULL || reg_toolong)
return NULL;
regtail(ret, br); // BRANCH -> BRANCH.
if (!(flags & HASWIDTH))
*flagp &= ~HASWIDTH;
*flagp |= flags & (SPSTART | HASNL | HASLOOKBH);
}
// Make a closing node, and hook it on the end.
ender = regnode(
#ifdef FEAT_SYN_HL
paren == REG_ZPAREN ? ZCLOSE + parno :
#endif
paren == REG_PAREN ? MCLOSE + parno :
paren == REG_NPAREN ? NCLOSE : END);
regtail(ret, ender);
// Hook the tails of the branches to the closing node.
for (br = ret; br != NULL; br = regnext(br))
regoptail(br, ender);
// Check for proper termination.
if (paren != REG_NOPAREN && getchr() != Magic(')'))
{
#ifdef FEAT_SYN_HL
if (paren == REG_ZPAREN)
EMSG_RET_NULL(_(e_unmatched_z));
else
#endif
if (paren == REG_NPAREN)
EMSG2_RET_NULL(_(e_unmatched_str_percent_open), reg_magic == MAGIC_ALL);
else
EMSG2_RET_NULL(_(e_unmatched_str_open), reg_magic == MAGIC_ALL);
}
else if (paren == REG_NOPAREN && peekchr() != NUL)
{
if (curchr == Magic(')'))
EMSG2_RET_NULL(_(e_unmatched_str_close), reg_magic == MAGIC_ALL);
else
EMSG_RET_NULL(_(e_trailing_characters)); // "Can't happen".
// NOTREACHED
}
// Here we set the flag allowing back references to this set of
// parentheses.
if (paren == REG_PAREN)
had_endbrace[parno] = TRUE; // have seen the close paren
return ret;
}
/*
* bt_regcomp() - compile a regular expression into internal code for the
* traditional back track matcher.
* Returns the program in allocated space. Returns NULL for an error.
*
* We can't allocate space until we know how big the compiled form will be,
* but we can't compile it (and thus know how big it is) until we've got a
* place to put the code. So we cheat: we compile it twice, once with code
* generation turned off and size counting turned on, and once "for real".
* This also means that we don't allocate space until we are sure that the
* thing really will compile successfully, and we never have to move the
* code and thus invalidate pointers into it. (Note that it has to be in
* one piece because vim_free() must be able to free it all.)
*
* Whether upper/lower case is to be ignored is decided when executing the
* program, it does not matter here.
*
* Beware that the optimization-preparation code in here knows about some
* of the structure of the compiled regexp.
* "re_flags": RE_MAGIC and/or RE_STRING.
*/
static regprog_T *
bt_regcomp(char_u *expr, int re_flags)
{
bt_regprog_T *r;
char_u *scan;
char_u *longest;
int len;
int flags;
if (expr == NULL)
IEMSG_RET_NULL(e_null_argument);
init_class_tab();
// First pass: determine size, legality.
regcomp_start(expr, re_flags);
regcode = JUST_CALC_SIZE;
regc(REGMAGIC);
if (reg(REG_NOPAREN, &flags) == NULL)
return NULL;
// Allocate space.
r = alloc(offsetof(bt_regprog_T, program) + regsize);
if (r == NULL)
return NULL;
r->re_in_use = FALSE;
// Second pass: emit code.
regcomp_start(expr, re_flags);
regcode = r->program;
regc(REGMAGIC);
if (reg(REG_NOPAREN, &flags) == NULL || reg_toolong)
{
vim_free(r);
if (reg_toolong)
EMSG_RET_NULL(_(e_pattern_too_long));
return NULL;
}
// Dig out information for optimizations.
r->regstart = NUL; // Worst-case defaults.
r->reganch = 0;
r->regmust = NULL;
r->regmlen = 0;
r->regflags = regflags;
if (flags & HASNL)
r->regflags |= RF_HASNL;
if (flags & HASLOOKBH)
r->regflags |= RF_LOOKBH;
#ifdef FEAT_SYN_HL
// Remember whether this pattern has any \z specials in it.
r->reghasz = re_has_z;
#endif
scan = r->program + 1; // First BRANCH.
if (OP(regnext(scan)) == END) // Only one top-level choice.
{
scan = OPERAND(scan);
// Starting-point info.
if (OP(scan) == BOL || OP(scan) == RE_BOF)
{
r->reganch++;
scan = regnext(scan);
}
if (OP(scan) == EXACTLY)
{
if (has_mbyte)
r->regstart = (*mb_ptr2char)(OPERAND(scan));
else
r->regstart = *OPERAND(scan);
}
else if ((OP(scan) == BOW
|| OP(scan) == EOW
|| OP(scan) == NOTHING
|| OP(scan) == MOPEN + 0 || OP(scan) == NOPEN
|| OP(scan) == MCLOSE + 0 || OP(scan) == NCLOSE)
&& OP(regnext(scan)) == EXACTLY)
{
if (has_mbyte)
r->regstart = (*mb_ptr2char)(OPERAND(regnext(scan)));
else
r->regstart = *OPERAND(regnext(scan));
}
// If there's something expensive in the r.e., find the longest
// literal string that must appear and make it the regmust. Resolve
// ties in favor of later strings, since the regstart check works
// with the beginning of the r.e. and avoiding duplication
// strengthens checking. Not a strong reason, but sufficient in the
// absence of others.
// When the r.e. starts with BOW, it is faster to look for a regmust
// first. Used a lot for "#" and "*" commands. (Added by mool).
if ((flags & SPSTART || OP(scan) == BOW || OP(scan) == EOW)
&& !(flags & HASNL))
{
longest = NULL;
len = 0;
for (; scan != NULL; scan = regnext(scan))
if (OP(scan) == EXACTLY && STRLEN(OPERAND(scan)) >= (size_t)len)
{
longest = OPERAND(scan);
len = (int)STRLEN(OPERAND(scan));
}
r->regmust = longest;
r->regmlen = len;
}
}
#ifdef BT_REGEXP_DUMP
regdump(expr, r);
#endif
r->engine = &bt_regengine;
return (regprog_T *)r;
}
#if defined(FEAT_SYN_HL) || defined(PROTO)
/*
* Check if during the previous call to vim_regcomp the EOL item "$" has been
* found. This is messy, but it works fine.
*/
int
vim_regcomp_had_eol(void)
{
return had_eol;
}
#endif
/*
* Get a number after a backslash that is inside [].
* When nothing is recognized return a backslash.
*/
static int
coll_get_char(void)
{
long nr = -1;
switch (*regparse++)
{
case 'd': nr = getdecchrs(); break;
case 'o': nr = getoctchrs(); break;
case 'x': nr = gethexchrs(2); break;
case 'u': nr = gethexchrs(4); break;
case 'U': nr = gethexchrs(8); break;
}
if (nr < 0 || nr > INT_MAX)
{
// If getting the number fails be backwards compatible: the character
// is a backslash.
--regparse;
nr = '\\';
}
return nr;
}
/*
* Free a compiled regexp program, returned by bt_regcomp().
*/
static void
bt_regfree(regprog_T *prog)
{
vim_free(prog);
}
#define ADVANCE_REGINPUT() MB_PTR_ADV(rex.input)
/*
* The arguments from BRACE_LIMITS are stored here. They are actually local
* to regmatch(), but they are here to reduce the amount of stack space used
* (it can be called recursively many times).
*/
static long bl_minval;
static long bl_maxval;
/*
* Save the input line and position in a regsave_T.
*/
static void
reg_save(regsave_T *save, garray_T *gap)
{
if (REG_MULTI)
{
save->rs_u.pos.col = (colnr_T)(rex.input - rex.line);
save->rs_u.pos.lnum = rex.lnum;
}
else
save->rs_u.ptr = rex.input;
save->rs_len = gap->ga_len;
}
/*
* Restore the input line and position from a regsave_T.
*/
static void
reg_restore(regsave_T *save, garray_T *gap)
{
if (REG_MULTI)
{
if (rex.lnum != save->rs_u.pos.lnum)
{
// only call reg_getline() when the line number changed to save
// a bit of time
rex.lnum = save->rs_u.pos.lnum;
rex.line = reg_getline(rex.lnum);
}
rex.input = rex.line + save->rs_u.pos.col;
}
else
rex.input = save->rs_u.ptr;
gap->ga_len = save->rs_len;
}
/*
* Return TRUE if current position is equal to saved position.
*/
static int
reg_save_equal(regsave_T *save)
{
if (REG_MULTI)
return rex.lnum == save->rs_u.pos.lnum
&& rex.input == rex.line + save->rs_u.pos.col;
return rex.input == save->rs_u.ptr;
}
// Save the sub-expressions before attempting a match.
#define save_se(savep, posp, pp) \
REG_MULTI ? save_se_multi((savep), (posp)) : save_se_one((savep), (pp))
// After a failed match restore the sub-expressions.
#define restore_se(savep, posp, pp) \
{ \
if (REG_MULTI) \
*(posp) = (savep)->se_u.pos; \
else \
*(pp) = (savep)->se_u.ptr; \
}
/*
* Tentatively set the sub-expression start to the current position (after
* calling regmatch() they will have changed). Need to save the existing
* values for when there is no match.
* Use se_save() to use pointer (save_se_multi()) or position (save_se_one()),
* depending on REG_MULTI.
*/
static void
save_se_multi(save_se_T *savep, lpos_T *posp)
{
savep->se_u.pos = *posp;
posp->lnum = rex.lnum;
posp->col = (colnr_T)(rex.input - rex.line);
}
static void
save_se_one(save_se_T *savep, char_u **pp)
{
savep->se_u.ptr = *pp;
*pp = rex.input;
}
/*
* regrepeat - repeatedly match something simple, return how many.
* Advances rex.input (and rex.lnum) to just after the matched chars.
*/
static int
regrepeat(
char_u *p,
long maxcount) // maximum number of matches allowed
{
long count = 0;
char_u *scan;
char_u *opnd;
int mask;
int testval = 0;
scan = rex.input; // Make local copy of rex.input for speed.
opnd = OPERAND(p);
switch (OP(p))
{
case ANY:
case ANY + ADD_NL:
while (count < maxcount)
{
// Matching anything means we continue until end-of-line (or
// end-of-file for ANY + ADD_NL), only limited by maxcount.
while (*scan != NUL && count < maxcount)
{
++count;
MB_PTR_ADV(scan);
}
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|| rex.reg_line_lbr || count == maxcount)
break;
++count; // count the line-break
reg_nextline();
scan = rex.input;
if (got_int)
break;
}
break;
case IDENT:
case IDENT + ADD_NL:
testval = TRUE;
// FALLTHROUGH
case SIDENT:
case SIDENT + ADD_NL:
while (count < maxcount)
{
if (vim_isIDc(PTR2CHAR(scan)) && (testval || !VIM_ISDIGIT(*scan)))
{
MB_PTR_ADV(scan);
}
else if (*scan == NUL)
{
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|| rex.reg_line_lbr)
break;
reg_nextline();
scan = rex.input;
if (got_int)
break;
}
else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p)))
++scan;
else
break;
++count;
}
break;
case KWORD:
case KWORD + ADD_NL:
testval = TRUE;
// FALLTHROUGH
case SKWORD:
case SKWORD + ADD_NL:
while (count < maxcount)
{
if (vim_iswordp_buf(scan, rex.reg_buf)
&& (testval || !VIM_ISDIGIT(*scan)))
{
MB_PTR_ADV(scan);
}
else if (*scan == NUL)
{
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|| rex.reg_line_lbr)
break;
reg_nextline();
scan = rex.input;
if (got_int)
break;
}
else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p)))
++scan;
else
break;
++count;
}
break;
case FNAME:
case FNAME + ADD_NL:
testval = TRUE;
// FALLTHROUGH
case SFNAME:
case SFNAME + ADD_NL:
while (count < maxcount)
{
if (vim_isfilec(PTR2CHAR(scan)) && (testval || !VIM_ISDIGIT(*scan)))
{
MB_PTR_ADV(scan);
}
else if (*scan == NUL)
{
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|| rex.reg_line_lbr)
break;
reg_nextline();
scan = rex.input;
if (got_int)
break;
}
else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p)))
++scan;
else
break;
++count;
}
break;
case PRINT:
case PRINT + ADD_NL:
testval = TRUE;
// FALLTHROUGH
case SPRINT:
case SPRINT + ADD_NL:
while (count < maxcount)
{
if (*scan == NUL)
{
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|| rex.reg_line_lbr)
break;
reg_nextline();
scan = rex.input;
if (got_int)
break;
}
else if (vim_isprintc(PTR2CHAR(scan)) == 1
&& (testval || !VIM_ISDIGIT(*scan)))
{
MB_PTR_ADV(scan);
}
else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p)))
++scan;
else
break;
++count;
}
break;
case WHITE:
case WHITE + ADD_NL:
testval = mask = RI_WHITE;
do_class:
while (count < maxcount)
{
int l;
if (*scan == NUL)
{
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|| rex.reg_line_lbr)
break;
reg_nextline();
scan = rex.input;
if (got_int)
break;
}
else if (has_mbyte && (l = (*mb_ptr2len)(scan)) > 1)
{
if (testval != 0)
break;
scan += l;
}
else if ((class_tab[*scan] & mask) == testval)
++scan;
else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p)))
++scan;
else
break;
++count;
}
break;
case NWHITE:
case NWHITE + ADD_NL:
mask = RI_WHITE;
goto do_class;
case DIGIT:
case DIGIT + ADD_NL:
testval = mask = RI_DIGIT;
goto do_class;
case NDIGIT:
case NDIGIT + ADD_NL:
mask = RI_DIGIT;
goto do_class;
case HEX:
case HEX + ADD_NL:
testval = mask = RI_HEX;
goto do_class;
case NHEX:
case NHEX + ADD_NL:
mask = RI_HEX;
goto do_class;
case OCTAL:
case OCTAL + ADD_NL:
testval = mask = RI_OCTAL;
goto do_class;
case NOCTAL:
case NOCTAL + ADD_NL:
mask = RI_OCTAL;
goto do_class;
case WORD:
case WORD + ADD_NL:
testval = mask = RI_WORD;
goto do_class;
case NWORD:
case NWORD + ADD_NL:
mask = RI_WORD;
goto do_class;
case HEAD:
case HEAD + ADD_NL:
testval = mask = RI_HEAD;
goto do_class;
case NHEAD:
case NHEAD + ADD_NL:
mask = RI_HEAD;
goto do_class;
case ALPHA:
case ALPHA + ADD_NL:
testval = mask = RI_ALPHA;
goto do_class;
case NALPHA:
case NALPHA + ADD_NL:
mask = RI_ALPHA;
goto do_class;
case LOWER:
case LOWER + ADD_NL:
testval = mask = RI_LOWER;
goto do_class;
case NLOWER:
case NLOWER + ADD_NL:
mask = RI_LOWER;
goto do_class;
case UPPER:
case UPPER + ADD_NL:
testval = mask = RI_UPPER;
goto do_class;
case NUPPER:
case NUPPER + ADD_NL:
mask = RI_UPPER;
goto do_class;
case EXACTLY:
{
int cu, cl;
// This doesn't do a multi-byte character, because a MULTIBYTECODE
// would have been used for it. It does handle single-byte
// characters, such as latin1.
if (rex.reg_ic)
{
cu = MB_TOUPPER(*opnd);
cl = MB_TOLOWER(*opnd);
while (count < maxcount && (*scan == cu || *scan == cl))
{
count++;
scan++;
}
}
else
{
cu = *opnd;
while (count < maxcount && *scan == cu)
{
count++;
scan++;
}
}
break;
}
case MULTIBYTECODE:
{
int i, len, cf = 0;
// Safety check (just in case 'encoding' was changed since
// compiling the program).
if ((len = (*mb_ptr2len)(opnd)) > 1)
{
if (rex.reg_ic && enc_utf8)
cf = utf_fold(utf_ptr2char(opnd));
while (count < maxcount && (*mb_ptr2len)(scan) >= len)
{
for (i = 0; i < len; ++i)
if (opnd[i] != scan[i])
break;
if (i < len && (!rex.reg_ic || !enc_utf8
|| utf_fold(utf_ptr2char(scan)) != cf))
break;
scan += len;
++count;
}
}
}
break;
case ANYOF:
case ANYOF + ADD_NL:
testval = TRUE;
// FALLTHROUGH
case ANYBUT:
case ANYBUT + ADD_NL:
while (count < maxcount)
{
int len;
if (*scan == NUL)
{
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|| rex.reg_line_lbr)
break;
reg_nextline();
scan = rex.input;
if (got_int)
break;
}
else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p)))
++scan;
else if (has_mbyte && (len = (*mb_ptr2len)(scan)) > 1)
{
if ((cstrchr(opnd, (*mb_ptr2char)(scan)) == NULL) == testval)
break;
scan += len;
}
else
{
if ((cstrchr(opnd, *scan) == NULL) == testval)
break;
++scan;
}
++count;
}
break;
case NEWL:
while (count < maxcount
&& ((*scan == NUL && rex.lnum <= rex.reg_maxline
&& !rex.reg_line_lbr && REG_MULTI)
|| (*scan == '\n' && rex.reg_line_lbr)))
{
count++;
if (rex.reg_line_lbr)
ADVANCE_REGINPUT();
else
reg_nextline();
scan = rex.input;
if (got_int)
break;
}
break;
default: // Oh dear. Called inappropriately.
iemsg(e_corrupted_regexp_program);
#ifdef DEBUG
printf("Called regrepeat with op code %d\n", OP(p));
#endif
break;
}
rex.input = scan;
return (int)count;
}
/*
* Push an item onto the regstack.
* Returns pointer to new item. Returns NULL when out of memory.
*/
static regitem_T *
regstack_push(regstate_T state, char_u *scan)
{
regitem_T *rp;
if ((long)((unsigned)regstack.ga_len >> 10) >= p_mmp)
{
emsg(_(e_pattern_uses_more_memory_than_maxmempattern));
return NULL;
}
if (ga_grow(&regstack, sizeof(regitem_T)) == FAIL)
return NULL;
rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len);
rp->rs_state = state;
rp->rs_scan = scan;
regstack.ga_len += sizeof(regitem_T);
return rp;
}
/*
* Pop an item from the regstack.
*/
static void
regstack_pop(char_u **scan)
{
regitem_T *rp;
rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len) - 1;
*scan = rp->rs_scan;
regstack.ga_len -= sizeof(regitem_T);
}
#ifdef FEAT_RELTIME
/*
* Check if the timer expired, return TRUE if so.
*/
static int
bt_did_time_out(int *timed_out)
{
if (*timeout_flag)
{
if (timed_out != NULL)
{
# ifdef FEAT_EVAL
if (!*timed_out)
ch_log(NULL, "BT regexp timed out");
# endif
*timed_out = TRUE;
}
return TRUE;
}
return FALSE;
}
#endif
/*
* Save the current subexpr to "bp", so that they can be restored
* later by restore_subexpr().
*/
static void
save_subexpr(regbehind_T *bp)
{
int i;
// When "rex.need_clear_subexpr" is set we don't need to save the values,
// only remember that this flag needs to be set again when restoring.
bp->save_need_clear_subexpr = rex.need_clear_subexpr;
if (rex.need_clear_subexpr)
return;
for (i = 0; i < NSUBEXP; ++i)
{
if (REG_MULTI)
{
bp->save_start[i].se_u.pos = rex.reg_startpos[i];
bp->save_end[i].se_u.pos = rex.reg_endpos[i];
}
else
{
bp->save_start[i].se_u.ptr = rex.reg_startp[i];
bp->save_end[i].se_u.ptr = rex.reg_endp[i];
}
}
}
/*
* Restore the subexpr from "bp".
*/
static void
restore_subexpr(regbehind_T *bp)
{
int i;
// Only need to restore saved values when they are not to be cleared.
rex.need_clear_subexpr = bp->save_need_clear_subexpr;
if (rex.need_clear_subexpr)
return;
for (i = 0; i < NSUBEXP; ++i)
{
if (REG_MULTI)
{
rex.reg_startpos[i] = bp->save_start[i].se_u.pos;
rex.reg_endpos[i] = bp->save_end[i].se_u.pos;
}
else
{
rex.reg_startp[i] = bp->save_start[i].se_u.ptr;
rex.reg_endp[i] = bp->save_end[i].se_u.ptr;
}
}
}
/*
* regmatch - main matching routine
*
* Conceptually the strategy is simple: Check to see whether the current node
* matches, push an item onto the regstack and loop to see whether the rest
* matches, and then act accordingly. In practice we make some effort to
* avoid using the regstack, in particular by going through "ordinary" nodes
* (that don't need to know whether the rest of the match failed) by a nested
* loop.
*
* Returns TRUE when there is a match. Leaves rex.input and rex.lnum just after
* the last matched character.
* Returns FALSE when there is no match. Leaves rex.input and rex.lnum in an
* undefined state!
*/
static int
regmatch(
char_u *scan, // Current node.
int *timed_out UNUSED) // flag set on timeout or NULL
{
char_u *next; // Next node.
int op;
int c;
regitem_T *rp;
int no;
int status; // one of the RA_ values:
// Make "regstack" and "backpos" empty. They are allocated and freed in
// bt_regexec_both() to reduce malloc()/free() calls.
regstack.ga_len = 0;
backpos.ga_len = 0;
// Repeat until "regstack" is empty.
for (;;)
{
// Some patterns may take a long time to match, e.g., "\([a-z]\+\)\+Q".
// Allow interrupting them with CTRL-C.
fast_breakcheck();
#ifdef DEBUG
if (scan != NULL && regnarrate)
{
mch_errmsg((char *)regprop(scan));
mch_errmsg("(\n");
}
#endif
// Repeat for items that can be matched sequentially, without using the
// regstack.
for (;;)
{
if (got_int || scan == NULL)
{
status = RA_FAIL;
break;
}
#ifdef FEAT_RELTIME
if (bt_did_time_out(timed_out))
{
status = RA_FAIL;
break;
}
#endif
status = RA_CONT;
#ifdef DEBUG
if (regnarrate)
{
mch_errmsg((char *)regprop(scan));
mch_errmsg("...\n");
# ifdef FEAT_SYN_HL
if (re_extmatch_in != NULL)
{
int i;
mch_errmsg(_("External submatches:\n"));
for (i = 0; i < NSUBEXP; i++)
{
mch_errmsg(" \"");
if (re_extmatch_in->matches[i] != NULL)
mch_errmsg((char *)re_extmatch_in->matches[i]);
mch_errmsg("\"\n");
}
}
# endif
}
#endif
next = regnext(scan);
op = OP(scan);
// Check for character class with NL added.
if (!rex.reg_line_lbr && WITH_NL(op) && REG_MULTI
&& *rex.input == NUL && rex.lnum <= rex.reg_maxline)
{
reg_nextline();
}
else if (rex.reg_line_lbr && WITH_NL(op) && *rex.input == '\n')
{
ADVANCE_REGINPUT();
}
else
{
if (WITH_NL(op))
op -= ADD_NL;
if (has_mbyte)
c = (*mb_ptr2char)(rex.input);
else
c = *rex.input;
switch (op)
{
case BOL:
if (rex.input != rex.line)
status = RA_NOMATCH;
break;
case EOL:
if (c != NUL)
status = RA_NOMATCH;
break;
case RE_BOF:
// We're not at the beginning of the file when below the first
// line where we started, not at the start of the line or we
// didn't start at the first line of the buffer.
if (rex.lnum != 0 || rex.input != rex.line
|| (REG_MULTI && rex.reg_firstlnum > 1))
status = RA_NOMATCH;
break;
case RE_EOF:
if (rex.lnum != rex.reg_maxline || c != NUL)
status = RA_NOMATCH;
break;
case CURSOR:
// Check if the buffer is in a window and compare the
// rex.reg_win->w_cursor position to the match position.
if (rex.reg_win == NULL
|| (rex.lnum + rex.reg_firstlnum
!= rex.reg_win->w_cursor.lnum)
|| ((colnr_T)(rex.input - rex.line)
!= rex.reg_win->w_cursor.col))
status = RA_NOMATCH;
break;
case RE_MARK:
// Compare the mark position to the match position.
{
int mark = OPERAND(scan)[0];
int cmp = OPERAND(scan)[1];
pos_T *pos;
size_t col = REG_MULTI ? rex.input - rex.line : 0;
pos = getmark_buf(rex.reg_buf, mark, FALSE);
// Line may have been freed, get it again.
if (REG_MULTI)
{
rex.line = reg_getline(rex.lnum);
rex.input = rex.line + col;
}
if (pos == NULL // mark doesn't exist
|| pos->lnum <= 0) // mark isn't set in reg_buf
{
status = RA_NOMATCH;
}
else
{
colnr_T pos_col = pos->lnum == rex.lnum + rex.reg_firstlnum
&& pos->col == MAXCOL
? (colnr_T)STRLEN(reg_getline(
pos->lnum - rex.reg_firstlnum))
: pos->col;
if ((pos->lnum == rex.lnum + rex.reg_firstlnum
? (pos_col == (colnr_T)(rex.input - rex.line)
? (cmp == '<' || cmp == '>')
: (pos_col < (colnr_T)(rex.input - rex.line)
? cmp != '>'
: cmp != '<'))
: (pos->lnum < rex.lnum + rex.reg_firstlnum
? cmp != '>'
: cmp != '<')))
status = RA_NOMATCH;
}
}
break;
case RE_VISUAL:
if (!reg_match_visual())
status = RA_NOMATCH;
break;
case RE_LNUM:
if (!REG_MULTI || !re_num_cmp((long_u)(rex.lnum + rex.reg_firstlnum),
scan))
status = RA_NOMATCH;
break;
case RE_COL:
if (!re_num_cmp((long_u)(rex.input - rex.line) + 1, scan))
status = RA_NOMATCH;
break;
case RE_VCOL:
{
win_T *wp = rex.reg_win == NULL ? curwin : rex.reg_win;
linenr_T lnum = REG_MULTI ? rex.reg_firstlnum + rex.lnum : 1;
long_u vcol;
if (REG_MULTI && (lnum <= 0
|| lnum > wp->w_buffer->b_ml.ml_line_count))
lnum = 1;
vcol = (long_u)win_linetabsize(wp, lnum, rex.line,
(colnr_T)(rex.input - rex.line));
if (!re_num_cmp(vcol + 1, scan))
status = RA_NOMATCH;
}
break;
case BOW: // \<word; rex.input points to w
if (c == NUL) // Can't match at end of line
status = RA_NOMATCH;
else if (has_mbyte)
{
int this_class;
// Get class of current and previous char (if it exists).
this_class = mb_get_class_buf(rex.input, rex.reg_buf);
if (this_class <= 1)
status = RA_NOMATCH; // not on a word at all
else if (reg_prev_class() == this_class)
status = RA_NOMATCH; // previous char is in same word
}
else
{
if (!vim_iswordc_buf(c, rex.reg_buf) || (rex.input > rex.line
&& vim_iswordc_buf(rex.input[-1], rex.reg_buf)))
status = RA_NOMATCH;
}
break;
case EOW: // word\>; rex.input points after d
if (rex.input == rex.line) // Can't match at start of line
status = RA_NOMATCH;
else if (has_mbyte)
{
int this_class, prev_class;
// Get class of current and previous char (if it exists).
this_class = mb_get_class_buf(rex.input, rex.reg_buf);
prev_class = reg_prev_class();
if (this_class == prev_class
|| prev_class == 0 || prev_class == 1)
status = RA_NOMATCH;
}
else
{
if (!vim_iswordc_buf(rex.input[-1], rex.reg_buf)
|| (rex.input[0] != NUL
&& vim_iswordc_buf(c, rex.reg_buf)))
status = RA_NOMATCH;
}
break; // Matched with EOW
case ANY:
// ANY does not match new lines.
if (c == NUL)
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case IDENT:
if (!vim_isIDc(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case SIDENT:
if (VIM_ISDIGIT(*rex.input) || !vim_isIDc(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case KWORD:
if (!vim_iswordp_buf(rex.input, rex.reg_buf))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case SKWORD:
if (VIM_ISDIGIT(*rex.input)
|| !vim_iswordp_buf(rex.input, rex.reg_buf))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case FNAME:
if (!vim_isfilec(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case SFNAME:
if (VIM_ISDIGIT(*rex.input) || !vim_isfilec(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case PRINT:
if (!vim_isprintc(PTR2CHAR(rex.input)))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case SPRINT:
if (VIM_ISDIGIT(*rex.input) || !vim_isprintc(PTR2CHAR(rex.input)))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case WHITE:
if (!VIM_ISWHITE(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case NWHITE:
if (c == NUL || VIM_ISWHITE(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case DIGIT:
if (!ri_digit(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case NDIGIT:
if (c == NUL || ri_digit(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case HEX:
if (!ri_hex(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case NHEX:
if (c == NUL || ri_hex(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case OCTAL:
if (!ri_octal(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case NOCTAL:
if (c == NUL || ri_octal(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case WORD:
if (!ri_word(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case NWORD:
if (c == NUL || ri_word(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case HEAD:
if (!ri_head(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case NHEAD:
if (c == NUL || ri_head(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case ALPHA:
if (!ri_alpha(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case NALPHA:
if (c == NUL || ri_alpha(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case LOWER:
if (!ri_lower(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case NLOWER:
if (c == NUL || ri_lower(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case UPPER:
if (!ri_upper(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case NUPPER:
if (c == NUL || ri_upper(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case EXACTLY:
{
int len;
char_u *opnd;
opnd = OPERAND(scan);
// Inline the first byte, for speed.
if (*opnd != *rex.input
&& (!rex.reg_ic
|| (!enc_utf8
&& MB_TOLOWER(*opnd) != MB_TOLOWER(*rex.input))))
status = RA_NOMATCH;
else if (*opnd == NUL)
{
// match empty string always works; happens when "~" is
// empty.
}
else
{
if (opnd[1] == NUL && !(enc_utf8 && rex.reg_ic))
{
len = 1; // matched a single byte above
}
else
{
// Need to match first byte again for multi-byte.
len = (int)STRLEN(opnd);
if (cstrncmp(opnd, rex.input, &len) != 0)
status = RA_NOMATCH;
}
// Check for following composing character, unless %C
// follows (skips over all composing chars).
if (status != RA_NOMATCH
&& enc_utf8
&& UTF_COMPOSINGLIKE(rex.input, rex.input + len)
&& !rex.reg_icombine
&& OP(next) != RE_COMPOSING)
{
// raaron: This code makes a composing character get
// ignored, which is the correct behavior (sometimes)
// for voweled Hebrew texts.
status = RA_NOMATCH;
}
if (status != RA_NOMATCH)
rex.input += len;
}
}
break;
case ANYOF:
case ANYBUT:
if (c == NUL)
status = RA_NOMATCH;
else if ((cstrchr(OPERAND(scan), c) == NULL) == (op == ANYOF))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case MULTIBYTECODE:
if (has_mbyte)
{
int i, len;
char_u *opnd;
int opndc = 0, inpc;
opnd = OPERAND(scan);
// Safety check (just in case 'encoding' was changed since
// compiling the program).
if ((len = (*mb_ptr2len)(opnd)) < 2)
{
status = RA_NOMATCH;
break;
}
if (enc_utf8)
opndc = utf_ptr2char(opnd);
if (enc_utf8 && utf_iscomposing(opndc))
{
// When only a composing char is given match at any
// position where that composing char appears.
status = RA_NOMATCH;
for (i = 0; rex.input[i] != NUL;
i += utf_ptr2len(rex.input + i))
{
inpc = utf_ptr2char(rex.input + i);
if (!utf_iscomposing(inpc))
{
if (i > 0)
break;
}
else if (opndc == inpc)
{
// Include all following composing chars.
len = i + utfc_ptr2len(rex.input + i);
status = RA_MATCH;
break;
}
}
}
else
for (i = 0; i < len; ++i)
if (opnd[i] != rex.input[i])
{
status = RA_NOMATCH;
break;
}
rex.input += len;
}
else
status = RA_NOMATCH;
break;
case RE_COMPOSING:
if (enc_utf8)
{
// Skip composing characters.
while (utf_iscomposing(utf_ptr2char(rex.input)))
MB_CPTR_ADV(rex.input);
}
break;
case NOTHING:
break;
case BACK:
{
int i;
backpos_T *bp;
// When we run into BACK we need to check if we don't keep
// looping without matching any input. The second and later
// times a BACK is encountered it fails if the input is still
// at the same position as the previous time.
// The positions are stored in "backpos" and found by the
// current value of "scan", the position in the RE program.
bp = (backpos_T *)backpos.ga_data;
for (i = 0; i < backpos.ga_len; ++i)
if (bp[i].bp_scan == scan)
break;
if (i == backpos.ga_len)
{
// First time at this BACK, make room to store the pos.
if (ga_grow(&backpos, 1) == FAIL)
status = RA_FAIL;
else
{
// get "ga_data" again, it may have changed
bp = (backpos_T *)backpos.ga_data;
bp[i].bp_scan = scan;
++backpos.ga_len;
}
}
else if (reg_save_equal(&bp[i].bp_pos))
// Still at same position as last time, fail.
status = RA_NOMATCH;
if (status != RA_FAIL && status != RA_NOMATCH)
reg_save(&bp[i].bp_pos, &backpos);
}
break;
case MOPEN + 0: // Match start: \zs
case MOPEN + 1: // \(
case MOPEN + 2:
case MOPEN + 3:
case MOPEN + 4:
case MOPEN + 5:
case MOPEN + 6:
case MOPEN + 7:
case MOPEN + 8:
case MOPEN + 9:
{
no = op - MOPEN;
cleanup_subexpr();
rp = regstack_push(RS_MOPEN, scan);
if (rp == NULL)
status = RA_FAIL;
else
{
rp->rs_no = no;
save_se(&rp->rs_un.sesave, &rex.reg_startpos[no],
&rex.reg_startp[no]);
// We simply continue and handle the result when done.
}
}
break;
case NOPEN: // \%(
case NCLOSE: // \) after \%(
if (regstack_push(RS_NOPEN, scan) == NULL)
status = RA_FAIL;
// We simply continue and handle the result when done.
break;
#ifdef FEAT_SYN_HL
case ZOPEN + 1:
case ZOPEN + 2:
case ZOPEN + 3:
case ZOPEN + 4:
case ZOPEN + 5:
case ZOPEN + 6:
case ZOPEN + 7:
case ZOPEN + 8:
case ZOPEN + 9:
{
no = op - ZOPEN;
cleanup_zsubexpr();
rp = regstack_push(RS_ZOPEN, scan);
if (rp == NULL)
status = RA_FAIL;
else
{
rp->rs_no = no;
save_se(&rp->rs_un.sesave, &reg_startzpos[no],
&reg_startzp[no]);
// We simply continue and handle the result when done.
}
}
break;
#endif
case MCLOSE + 0: // Match end: \ze
case MCLOSE + 1: // \)
case MCLOSE + 2:
case MCLOSE + 3:
case MCLOSE + 4:
case MCLOSE + 5:
case MCLOSE + 6:
case MCLOSE + 7:
case MCLOSE + 8:
case MCLOSE + 9:
{
no = op - MCLOSE;
cleanup_subexpr();
rp = regstack_push(RS_MCLOSE, scan);
if (rp == NULL)
status = RA_FAIL;
else
{
rp->rs_no = no;
save_se(&rp->rs_un.sesave, &rex.reg_endpos[no],
&rex.reg_endp[no]);
// We simply continue and handle the result when done.
}
}
break;
#ifdef FEAT_SYN_HL
case ZCLOSE + 1: // \) after \z(
case ZCLOSE + 2:
case ZCLOSE + 3:
case ZCLOSE + 4:
case ZCLOSE + 5:
case ZCLOSE + 6:
case ZCLOSE + 7:
case ZCLOSE + 8:
case ZCLOSE + 9:
{
no = op - ZCLOSE;
cleanup_zsubexpr();
rp = regstack_push(RS_ZCLOSE, scan);
if (rp == NULL)
status = RA_FAIL;
else
{
rp->rs_no = no;
save_se(&rp->rs_un.sesave, &reg_endzpos[no],
&reg_endzp[no]);
// We simply continue and handle the result when done.
}
}
break;
#endif
case BACKREF + 1:
case BACKREF + 2:
case BACKREF + 3:
case BACKREF + 4:
case BACKREF + 5:
case BACKREF + 6:
case BACKREF + 7:
case BACKREF + 8:
case BACKREF + 9:
{
int len;
no = op - BACKREF;
cleanup_subexpr();
if (!REG_MULTI) // Single-line regexp
{
if (rex.reg_startp[no] == NULL || rex.reg_endp[no] == NULL)
{
// Backref was not set: Match an empty string.
len = 0;
}
else
{
// Compare current input with back-ref in the same
// line.
len = (int)(rex.reg_endp[no] - rex.reg_startp[no]);
if (cstrncmp(rex.reg_startp[no], rex.input, &len) != 0)
status = RA_NOMATCH;
}
}
else // Multi-line regexp
{
if (rex.reg_startpos[no].lnum < 0
|| rex.reg_endpos[no].lnum < 0)
{
// Backref was not set: Match an empty string.
len = 0;
}
else
{
if (rex.reg_startpos[no].lnum == rex.lnum
&& rex.reg_endpos[no].lnum == rex.lnum)
{
// Compare back-ref within the current line.
len = rex.reg_endpos[no].col
- rex.reg_startpos[no].col;
if (cstrncmp(rex.line + rex.reg_startpos[no].col,
rex.input, &len) != 0)
status = RA_NOMATCH;
}
else
{
// Messy situation: Need to compare between two
// lines.
int r = match_with_backref(
rex.reg_startpos[no].lnum,
rex.reg_startpos[no].col,
rex.reg_endpos[no].lnum,
rex.reg_endpos[no].col,
&len);
if (r != RA_MATCH)
status = r;
}
}
}
// Matched the backref, skip over it.
rex.input += len;
}
break;
#ifdef FEAT_SYN_HL
case ZREF + 1:
case ZREF + 2:
case ZREF + 3:
case ZREF + 4:
case ZREF + 5:
case ZREF + 6:
case ZREF + 7:
case ZREF + 8:
case ZREF + 9:
{
int len;
cleanup_zsubexpr();
no = op - ZREF;
if (re_extmatch_in != NULL
&& re_extmatch_in->matches[no] != NULL)
{
len = (int)STRLEN(re_extmatch_in->matches[no]);
if (cstrncmp(re_extmatch_in->matches[no],
rex.input, &len) != 0)
status = RA_NOMATCH;
else
rex.input += len;
}
else
{
// Backref was not set: Match an empty string.
}
}
break;
#endif
case BRANCH:
{
if (OP(next) != BRANCH) // No choice.
next = OPERAND(scan); // Avoid recursion.
else
{
rp = regstack_push(RS_BRANCH, scan);
if (rp == NULL)
status = RA_FAIL;
else
status = RA_BREAK; // rest is below
}
}
break;
case BRACE_LIMITS:
{
if (OP(next) == BRACE_SIMPLE)
{
bl_minval = OPERAND_MIN(scan);
bl_maxval = OPERAND_MAX(scan);
}
else if (OP(next) >= BRACE_COMPLEX
&& OP(next) < BRACE_COMPLEX + 10)
{
no = OP(next) - BRACE_COMPLEX;
brace_min[no] = OPERAND_MIN(scan);
brace_max[no] = OPERAND_MAX(scan);
brace_count[no] = 0;
}
else
{
internal_error("BRACE_LIMITS");
status = RA_FAIL;
}
}
break;
case BRACE_COMPLEX + 0:
case BRACE_COMPLEX + 1:
case BRACE_COMPLEX + 2:
case BRACE_COMPLEX + 3:
case BRACE_COMPLEX + 4:
case BRACE_COMPLEX + 5:
case BRACE_COMPLEX + 6:
case BRACE_COMPLEX + 7:
case BRACE_COMPLEX + 8:
case BRACE_COMPLEX + 9:
{
no = op - BRACE_COMPLEX;
++brace_count[no];
// If not matched enough times yet, try one more
if (brace_count[no] <= (brace_min[no] <= brace_max[no]
? brace_min[no] : brace_max[no]))
{
rp = regstack_push(RS_BRCPLX_MORE, scan);
if (rp == NULL)
status = RA_FAIL;
else
{
rp->rs_no = no;
reg_save(&rp->rs_un.regsave, &backpos);
next = OPERAND(scan);
// We continue and handle the result when done.
}
break;
}
// If matched enough times, may try matching some more
if (brace_min[no] <= brace_max[no])
{
// Range is the normal way around, use longest match
if (brace_count[no] <= brace_max[no])
{
rp = regstack_push(RS_BRCPLX_LONG, scan);
if (rp == NULL)
status = RA_FAIL;
else
{
rp->rs_no = no;
reg_save(&rp->rs_un.regsave, &backpos);
next = OPERAND(scan);
// We continue and handle the result when done.
}
}
}
else
{
// Range is backwards, use shortest match first
if (brace_count[no] <= brace_min[no])
{
rp = regstack_push(RS_BRCPLX_SHORT, scan);
if (rp == NULL)
status = RA_FAIL;
else
{
reg_save(&rp->rs_un.regsave, &backpos);
// We continue and handle the result when done.
}
}
}
}
break;
case BRACE_SIMPLE:
case STAR:
case PLUS:
{
regstar_T rst;
// Lookahead to avoid useless match attempts when we know
// what character comes next.
if (OP(next) == EXACTLY)
{
rst.nextb = *OPERAND(next);
if (rex.reg_ic)
{
if (MB_ISUPPER(rst.nextb))
rst.nextb_ic = MB_TOLOWER(rst.nextb);
else
rst.nextb_ic = MB_TOUPPER(rst.nextb);
}
else
rst.nextb_ic = rst.nextb;
}
else
{
rst.nextb = NUL;
rst.nextb_ic = NUL;
}
if (op != BRACE_SIMPLE)
{
rst.minval = (op == STAR) ? 0 : 1;
rst.maxval = MAX_LIMIT;
}
else
{
rst.minval = bl_minval;
rst.maxval = bl_maxval;
}
// When maxval > minval, try matching as much as possible, up
// to maxval. When maxval < minval, try matching at least the
// minimal number (since the range is backwards, that's also
// maxval!).
rst.count = regrepeat(OPERAND(scan), rst.maxval);
if (got_int)
{
status = RA_FAIL;
break;
}
if (rst.minval <= rst.maxval
? rst.count >= rst.minval : rst.count >= rst.maxval)
{
// It could match. Prepare for trying to match what
// follows. The code is below. Parameters are stored in
// a regstar_T on the regstack.
if ((long)((unsigned)regstack.ga_len >> 10) >= p_mmp)
{
emsg(_(e_pattern_uses_more_memory_than_maxmempattern));
status = RA_FAIL;
}
else if (ga_grow(&regstack, sizeof(regstar_T)) == FAIL)
status = RA_FAIL;
else
{
regstack.ga_len += sizeof(regstar_T);
rp = regstack_push(rst.minval <= rst.maxval
? RS_STAR_LONG : RS_STAR_SHORT, scan);
if (rp == NULL)
status = RA_FAIL;
else
{
*(((regstar_T *)rp) - 1) = rst;
status = RA_BREAK; // skip the restore bits
}
}
}
else
status = RA_NOMATCH;
}
break;
case NOMATCH:
case MATCH:
case SUBPAT:
rp = regstack_push(RS_NOMATCH, scan);
if (rp == NULL)
status = RA_FAIL;
else
{
rp->rs_no = op;
reg_save(&rp->rs_un.regsave, &backpos);
next = OPERAND(scan);
// We continue and handle the result when done.
}
break;
case BEHIND:
case NOBEHIND:
// Need a bit of room to store extra positions.
if ((long)((unsigned)regstack.ga_len >> 10) >= p_mmp)
{
emsg(_(e_pattern_uses_more_memory_than_maxmempattern));
status = RA_FAIL;
}
else if (ga_grow(&regstack, sizeof(regbehind_T)) == FAIL)
status = RA_FAIL;
else
{
regstack.ga_len += sizeof(regbehind_T);
rp = regstack_push(RS_BEHIND1, scan);
if (rp == NULL)
status = RA_FAIL;
else
{
// Need to save the subexpr to be able to restore them
// when there is a match but we don't use it.
save_subexpr(((regbehind_T *)rp) - 1);
rp->rs_no = op;
reg_save(&rp->rs_un.regsave, &backpos);
// First try if what follows matches. If it does then we
// check the behind match by looping.
}
}
break;
case BHPOS:
if (REG_MULTI)
{
if (behind_pos.rs_u.pos.col != (colnr_T)(rex.input - rex.line)
|| behind_pos.rs_u.pos.lnum != rex.lnum)
status = RA_NOMATCH;
}
else if (behind_pos.rs_u.ptr != rex.input)
status = RA_NOMATCH;
break;
case NEWL:
if ((c != NUL || !REG_MULTI || rex.lnum > rex.reg_maxline
|| rex.reg_line_lbr)
&& (c != '\n' || !rex.reg_line_lbr))
status = RA_NOMATCH;
else if (rex.reg_line_lbr)
ADVANCE_REGINPUT();
else
reg_nextline();
break;
case END:
status = RA_MATCH; // Success!
break;
default:
iemsg(e_corrupted_regexp_program);
#ifdef DEBUG
printf("Illegal op code %d\n", op);
#endif
status = RA_FAIL;
break;
}
}
// If we can't continue sequentially, break the inner loop.
if (status != RA_CONT)
break;
// Continue in inner loop, advance to next item.
scan = next;
} // end of inner loop
// If there is something on the regstack execute the code for the state.
// If the state is popped then loop and use the older state.
while (regstack.ga_len > 0 && status != RA_FAIL)
{
rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len) - 1;
switch (rp->rs_state)
{
case RS_NOPEN:
// Result is passed on as-is, simply pop the state.
regstack_pop(&scan);
break;
case RS_MOPEN:
// Pop the state. Restore pointers when there is no match.
if (status == RA_NOMATCH)
restore_se(&rp->rs_un.sesave, &rex.reg_startpos[rp->rs_no],
&rex.reg_startp[rp->rs_no]);
regstack_pop(&scan);
break;
#ifdef FEAT_SYN_HL
case RS_ZOPEN:
// Pop the state. Restore pointers when there is no match.
if (status == RA_NOMATCH)
restore_se(&rp->rs_un.sesave, &reg_startzpos[rp->rs_no],
&reg_startzp[rp->rs_no]);
regstack_pop(&scan);
break;
#endif
case RS_MCLOSE:
// Pop the state. Restore pointers when there is no match.
if (status == RA_NOMATCH)
restore_se(&rp->rs_un.sesave, &rex.reg_endpos[rp->rs_no],
&rex.reg_endp[rp->rs_no]);
regstack_pop(&scan);
break;
#ifdef FEAT_SYN_HL
case RS_ZCLOSE:
// Pop the state. Restore pointers when there is no match.
if (status == RA_NOMATCH)
restore_se(&rp->rs_un.sesave, &reg_endzpos[rp->rs_no],
&reg_endzp[rp->rs_no]);
regstack_pop(&scan);
break;
#endif
case RS_BRANCH:
if (status == RA_MATCH)
// this branch matched, use it
regstack_pop(&scan);
else
{
if (status != RA_BREAK)
{
// After a non-matching branch: try next one.
reg_restore(&rp->rs_un.regsave, &backpos);
scan = rp->rs_scan;
}
if (scan == NULL || OP(scan) != BRANCH)
{
// no more branches, didn't find a match
status = RA_NOMATCH;
regstack_pop(&scan);
}
else
{
// Prepare to try a branch.
rp->rs_scan = regnext(scan);
reg_save(&rp->rs_un.regsave, &backpos);
scan = OPERAND(scan);
}
}
break;
case RS_BRCPLX_MORE:
// Pop the state. Restore pointers when there is no match.
if (status == RA_NOMATCH)
{
reg_restore(&rp->rs_un.regsave, &backpos);
--brace_count[rp->rs_no]; // decrement match count
}
regstack_pop(&scan);
break;
case RS_BRCPLX_LONG:
// Pop the state. Restore pointers when there is no match.
if (status == RA_NOMATCH)
{
// There was no match, but we did find enough matches.
reg_restore(&rp->rs_un.regsave, &backpos);
--brace_count[rp->rs_no];
// continue with the items after "\{}"
status = RA_CONT;
}
regstack_pop(&scan);
if (status == RA_CONT)
scan = regnext(scan);
break;
case RS_BRCPLX_SHORT:
// Pop the state. Restore pointers when there is no match.
if (status == RA_NOMATCH)
// There was no match, try to match one more item.
reg_restore(&rp->rs_un.regsave, &backpos);
regstack_pop(&scan);
if (status == RA_NOMATCH)
{
scan = OPERAND(scan);
status = RA_CONT;
}
break;
case RS_NOMATCH:
// Pop the state. If the operand matches for NOMATCH or
// doesn't match for MATCH/SUBPAT, we fail. Otherwise backup,
// except for SUBPAT, and continue with the next item.
if (status == (rp->rs_no == NOMATCH ? RA_MATCH : RA_NOMATCH))
status = RA_NOMATCH;
else
{
status = RA_CONT;
if (rp->rs_no != SUBPAT) // zero-width
reg_restore(&rp->rs_un.regsave, &backpos);
}
regstack_pop(&scan);
if (status == RA_CONT)
scan = regnext(scan);
break;
case RS_BEHIND1:
if (status == RA_NOMATCH)
{
regstack_pop(&scan);
regstack.ga_len -= sizeof(regbehind_T);
}
else
{
// The stuff after BEHIND/NOBEHIND matches. Now try if
// the behind part does (not) match before the current
// position in the input. This must be done at every
// position in the input and checking if the match ends at
// the current position.
// save the position after the found match for next
reg_save(&(((regbehind_T *)rp) - 1)->save_after, &backpos);
// Start looking for a match with operand at the current
// position. Go back one character until we find the
// result, hitting the start of the line or the previous
// line (for multi-line matching).
// Set behind_pos to where the match should end, BHPOS
// will match it. Save the current value.
(((regbehind_T *)rp) - 1)->save_behind = behind_pos;
behind_pos = rp->rs_un.regsave;
rp->rs_state = RS_BEHIND2;
reg_restore(&rp->rs_un.regsave, &backpos);
scan = OPERAND(rp->rs_scan) + 4;
}
break;
case RS_BEHIND2:
// Looping for BEHIND / NOBEHIND match.
if (status == RA_MATCH && reg_save_equal(&behind_pos))
{
// found a match that ends where "next" started
behind_pos = (((regbehind_T *)rp) - 1)->save_behind;
if (rp->rs_no == BEHIND)
reg_restore(&(((regbehind_T *)rp) - 1)->save_after,
&backpos);
else
{
// But we didn't want a match. Need to restore the
// subexpr, because what follows matched, so they have
// been set.
status = RA_NOMATCH;
restore_subexpr(((regbehind_T *)rp) - 1);
}
regstack_pop(&scan);
regstack.ga_len -= sizeof(regbehind_T);
}
else
{
long limit;
// No match or a match that doesn't end where we want it: Go
// back one character. May go to previous line once.
no = OK;
limit = OPERAND_MIN(rp->rs_scan);
if (REG_MULTI)
{
if (limit > 0
&& ((rp->rs_un.regsave.rs_u.pos.lnum
< behind_pos.rs_u.pos.lnum
? (colnr_T)STRLEN(rex.line)
: behind_pos.rs_u.pos.col)
- rp->rs_un.regsave.rs_u.pos.col >= limit))
no = FAIL;
else if (rp->rs_un.regsave.rs_u.pos.col == 0)
{
if (rp->rs_un.regsave.rs_u.pos.lnum
< behind_pos.rs_u.pos.lnum
|| reg_getline(
--rp->rs_un.regsave.rs_u.pos.lnum)
== NULL)
no = FAIL;
else
{
reg_restore(&rp->rs_un.regsave, &backpos);
rp->rs_un.regsave.rs_u.pos.col =
(colnr_T)STRLEN(rex.line);
}
}
else
{
if (has_mbyte)
{
char_u *line =
reg_getline(rp->rs_un.regsave.rs_u.pos.lnum);
rp->rs_un.regsave.rs_u.pos.col -=
(*mb_head_off)(line, line
+ rp->rs_un.regsave.rs_u.pos.col - 1) + 1;
}
else
--rp->rs_un.regsave.rs_u.pos.col;
}
}
else
{
if (rp->rs_un.regsave.rs_u.ptr == rex.line)
no = FAIL;
else
{
MB_PTR_BACK(rex.line, rp->rs_un.regsave.rs_u.ptr);
if (limit > 0 && (long)(behind_pos.rs_u.ptr
- rp->rs_un.regsave.rs_u.ptr) > limit)
no = FAIL;
}
}
if (no == OK)
{
// Advanced, prepare for finding match again.
reg_restore(&rp->rs_un.regsave, &backpos);
scan = OPERAND(rp->rs_scan) + 4;
if (status == RA_MATCH)
{
// We did match, so subexpr may have been changed,
// need to restore them for the next try.
status = RA_NOMATCH;
restore_subexpr(((regbehind_T *)rp) - 1);
}
}
else
{
// Can't advance. For NOBEHIND that's a match.
behind_pos = (((regbehind_T *)rp) - 1)->save_behind;
if (rp->rs_no == NOBEHIND)
{
reg_restore(&(((regbehind_T *)rp) - 1)->save_after,
&backpos);
status = RA_MATCH;
}
else
{
// We do want a proper match. Need to restore the
// subexpr if we had a match, because they may have
// been set.
if (status == RA_MATCH)
{
status = RA_NOMATCH;
restore_subexpr(((regbehind_T *)rp) - 1);
}
}
regstack_pop(&scan);
regstack.ga_len -= sizeof(regbehind_T);
}
}
break;
case RS_STAR_LONG:
case RS_STAR_SHORT:
{
regstar_T *rst = ((regstar_T *)rp) - 1;
if (status == RA_MATCH)
{
regstack_pop(&scan);
regstack.ga_len -= sizeof(regstar_T);
break;
}
// Tried once already, restore input pointers.
if (status != RA_BREAK)
reg_restore(&rp->rs_un.regsave, &backpos);
// Repeat until we found a position where it could match.
for (;;)
{
if (status != RA_BREAK)
{
// Tried first position already, advance.
if (rp->rs_state == RS_STAR_LONG)
{
// Trying for longest match, but couldn't or
// didn't match -- back up one char.
if (--rst->count < rst->minval)
break;
if (rex.input == rex.line)
{
// backup to last char of previous line
if (rex.lnum == 0)
{
status = RA_NOMATCH;
break;
}
--rex.lnum;
rex.line = reg_getline(rex.lnum);
// Just in case regrepeat() didn't count
// right.
if (rex.line == NULL)
break;
rex.input = rex.line + STRLEN(rex.line);
fast_breakcheck();
}
else
MB_PTR_BACK(rex.line, rex.input);
}
else
{
// Range is backwards, use shortest match first.
// Careful: maxval and minval are exchanged!
// Couldn't or didn't match: try advancing one
// char.
if (rst->count == rst->minval
|| regrepeat(OPERAND(rp->rs_scan), 1L) == 0)
break;
++rst->count;
}
if (got_int)
break;
}
else
status = RA_NOMATCH;
// If it could match, try it.
if (rst->nextb == NUL || *rex.input == rst->nextb
|| *rex.input == rst->nextb_ic)
{
reg_save(&rp->rs_un.regsave, &backpos);
scan = regnext(rp->rs_scan);
status = RA_CONT;
break;
}
}
if (status != RA_CONT)
{
// Failed.
regstack_pop(&scan);
regstack.ga_len -= sizeof(regstar_T);
status = RA_NOMATCH;
}
}
break;
}
// If we want to continue the inner loop or didn't pop a state
// continue matching loop
if (status == RA_CONT || rp == (regitem_T *)
((char *)regstack.ga_data + regstack.ga_len) - 1)
break;
#ifdef FEAT_RELTIME
if (bt_did_time_out(timed_out))
{
status = RA_FAIL;
break;
}
#endif
}
// May need to continue with the inner loop, starting at "scan".
if (status == RA_CONT)
continue;
// If the regstack is empty or something failed we are done.
if (regstack.ga_len == 0 || status == RA_FAIL)
{
if (scan == NULL)
{
// We get here only if there's trouble -- normally "case END" is
// the terminating point.
iemsg(e_corrupted_regexp_program);
#ifdef DEBUG
printf("Premature EOL\n");
#endif
}
return (status == RA_MATCH);
}
} // End of loop until the regstack is empty.
// NOTREACHED
}
/*
* regtry - try match of "prog" with at rex.line["col"].
* Returns 0 for failure, number of lines contained in the match otherwise.
*/
static long
regtry(
bt_regprog_T *prog,
colnr_T col,
int *timed_out) // flag set on timeout or NULL
{
rex.input = rex.line + col;
rex.need_clear_subexpr = TRUE;
#ifdef FEAT_SYN_HL
// Clear the external match subpointers if necessary.
rex.need_clear_zsubexpr = (prog->reghasz == REX_SET);
#endif
if (regmatch(prog->program + 1, timed_out) == 0)
return 0;
cleanup_subexpr();
if (REG_MULTI)
{
if (rex.reg_startpos[0].lnum < 0)
{
rex.reg_startpos[0].lnum = 0;
rex.reg_startpos[0].col = col;
}
if (rex.reg_endpos[0].lnum < 0)
{
rex.reg_endpos[0].lnum = rex.lnum;
rex.reg_endpos[0].col = (int)(rex.input - rex.line);
}
else
// Use line number of "\ze".
rex.lnum = rex.reg_endpos[0].lnum;
}
else
{
if (rex.reg_startp[0] == NULL)
rex.reg_startp[0] = rex.line + col;
if (rex.reg_endp[0] == NULL)
rex.reg_endp[0] = rex.input;
}
#ifdef FEAT_SYN_HL
// Package any found \z(...\) matches for export. Default is none.
unref_extmatch(re_extmatch_out);
re_extmatch_out = NULL;
if (prog->reghasz == REX_SET)
{
int i;
cleanup_zsubexpr();
re_extmatch_out = make_extmatch();
if (re_extmatch_out == NULL)
return 0;
for (i = 0; i < NSUBEXP; i++)
{
if (REG_MULTI)
{
// Only accept single line matches.
if (reg_startzpos[i].lnum >= 0
&& reg_endzpos[i].lnum == reg_startzpos[i].lnum
&& reg_endzpos[i].col >= reg_startzpos[i].col)
re_extmatch_out->matches[i] =
vim_strnsave(reg_getline(reg_startzpos[i].lnum)
+ reg_startzpos[i].col,
reg_endzpos[i].col - reg_startzpos[i].col);
}
else
{
if (reg_startzp[i] != NULL && reg_endzp[i] != NULL)
re_extmatch_out->matches[i] =
vim_strnsave(reg_startzp[i],
reg_endzp[i] - reg_startzp[i]);
}
}
}
#endif
return 1 + rex.lnum;
}
/*
* Match a regexp against a string ("line" points to the string) or multiple
* lines (if "line" is NULL, use reg_getline()).
* Returns 0 for failure, number of lines contained in the match otherwise.
*/
static long
bt_regexec_both(
char_u *line,
colnr_T startcol, // column to start looking for match
int *timed_out) // flag set on timeout or NULL
{
bt_regprog_T *prog;
char_u *s;
colnr_T col = startcol;
long retval = 0L;
// Create "regstack" and "backpos" if they are not allocated yet.
// We allocate *_INITIAL amount of bytes first and then set the grow size
// to much bigger value to avoid many malloc calls in case of deep regular
// expressions.
if (regstack.ga_data == NULL)
{
// Use an item size of 1 byte, since we push different things
// onto the regstack.
ga_init2(&regstack, 1, REGSTACK_INITIAL);
(void)ga_grow(&regstack, REGSTACK_INITIAL);
regstack.ga_growsize = REGSTACK_INITIAL * 8;
}
if (backpos.ga_data == NULL)
{
ga_init2(&backpos, sizeof(backpos_T), BACKPOS_INITIAL);
(void)ga_grow(&backpos, BACKPOS_INITIAL);
backpos.ga_growsize = BACKPOS_INITIAL * 8;
}
if (REG_MULTI)
{
prog = (bt_regprog_T *)rex.reg_mmatch->regprog;
line = reg_getline((linenr_T)0);
rex.reg_startpos = rex.reg_mmatch->startpos;
rex.reg_endpos = rex.reg_mmatch->endpos;
}
else
{
prog = (bt_regprog_T *)rex.reg_match->regprog;
rex.reg_startp = rex.reg_match->startp;
rex.reg_endp = rex.reg_match->endp;
}
// Be paranoid...
if (prog == NULL || line == NULL)
{
iemsg(e_null_argument);
goto theend;
}
// Check validity of program.
if (prog_magic_wrong())
goto theend;
// If the start column is past the maximum column: no need to try.
if (rex.reg_maxcol > 0 && col >= rex.reg_maxcol)
goto theend;
// If pattern contains "\c" or "\C": overrule value of rex.reg_ic
if (prog->regflags & RF_ICASE)
rex.reg_ic = TRUE;
else if (prog->regflags & RF_NOICASE)
rex.reg_ic = FALSE;
// If pattern contains "\Z" overrule value of rex.reg_icombine
if (prog->regflags & RF_ICOMBINE)
rex.reg_icombine = TRUE;
// If there is a "must appear" string, look for it.
if (prog->regmust != NULL)
{
int c;
if (has_mbyte)
c = (*mb_ptr2char)(prog->regmust);
else
c = *prog->regmust;
s = line + col;
// This is used very often, esp. for ":global". Use three versions of
// the loop to avoid overhead of conditions.
if (!rex.reg_ic && !has_mbyte)
while ((s = vim_strbyte(s, c)) != NULL)
{
if (cstrncmp(s, prog->regmust, &prog->regmlen) == 0)
break; // Found it.
++s;
}
else if (!rex.reg_ic || (!enc_utf8 && mb_char2len(c) > 1))
while ((s = vim_strchr(s, c)) != NULL)
{
if (cstrncmp(s, prog->regmust, &prog->regmlen) == 0)
break; // Found it.
MB_PTR_ADV(s);
}
else
while ((s = cstrchr(s, c)) != NULL)
{
if (cstrncmp(s, prog->regmust, &prog->regmlen) == 0)
break; // Found it.
MB_PTR_ADV(s);
}
if (s == NULL) // Not present.
goto theend;
}
rex.line = line;
rex.lnum = 0;
reg_toolong = FALSE;
// Simplest case: Anchored match need be tried only once.
if (prog->reganch)
{
int c;
if (has_mbyte)
c = (*mb_ptr2char)(rex.line + col);
else
c = rex.line[col];
if (prog->regstart == NUL
|| prog->regstart == c
|| (rex.reg_ic
&& (((enc_utf8 && utf_fold(prog->regstart) == utf_fold(c)))
|| (c < 255 && prog->regstart < 255 &&
MB_TOLOWER(prog->regstart) == MB_TOLOWER(c)))))
retval = regtry(prog, col, timed_out);
else
retval = 0;
}
else
{
// Messy cases: unanchored match.
while (!got_int)
{
if (prog->regstart != NUL)
{
// Skip until the char we know it must start with.
// Used often, do some work to avoid call overhead.
if (!rex.reg_ic && !has_mbyte)
s = vim_strbyte(rex.line + col, prog->regstart);
else
s = cstrchr(rex.line + col, prog->regstart);
if (s == NULL)
{
retval = 0;
break;
}
col = (int)(s - rex.line);
}
// Check for maximum column to try.
if (rex.reg_maxcol > 0 && col >= rex.reg_maxcol)
{
retval = 0;
break;
}
retval = regtry(prog, col, timed_out);
if (retval > 0)
break;
// if not currently on the first line, get it again
if (rex.lnum != 0)
{
rex.lnum = 0;
rex.line = reg_getline((linenr_T)0);
}
if (rex.line[col] == NUL)
break;
if (has_mbyte)
col += (*mb_ptr2len)(rex.line + col);
else
++col;
#ifdef FEAT_RELTIME
if (bt_did_time_out(timed_out))
break;
#endif
}
}
theend:
// Free "reg_tofree" when it's a bit big.
// Free regstack and backpos if they are bigger than their initial size.
if (reg_tofreelen > 400)
VIM_CLEAR(reg_tofree);
if (regstack.ga_maxlen > REGSTACK_INITIAL)
ga_clear(&regstack);
if (backpos.ga_maxlen > BACKPOS_INITIAL)
ga_clear(&backpos);
if (retval > 0)
{
// Make sure the end is never before the start. Can happen when \zs
// and \ze are used.
if (REG_MULTI)
{
lpos_T *start = &rex.reg_mmatch->startpos[0];
lpos_T *end = &rex.reg_mmatch->endpos[0];
if (end->lnum < start->lnum
|| (end->lnum == start->lnum && end->col < start->col))
rex.reg_mmatch->endpos[0] = rex.reg_mmatch->startpos[0];
// startpos[0] may be set by "\zs", also return the column where
// the whole pattern matched.
rex.reg_mmatch->rmm_matchcol = col;
}
else
{
if (rex.reg_match->endp[0] < rex.reg_match->startp[0])
rex.reg_match->endp[0] = rex.reg_match->startp[0];
// startpos[0] may be set by "\zs", also return the column where
// the whole pattern matched.
rex.reg_match->rm_matchcol = col;
}
}
return retval;
}
/*
* Match a regexp against a string.
* "rmp->regprog" is a compiled regexp as returned by vim_regcomp().
* Uses curbuf for line count and 'iskeyword'.
* if "line_lbr" is TRUE consider a "\n" in "line" to be a line break.
*
* Returns 0 for failure, number of lines contained in the match otherwise.
*/
static int
bt_regexec_nl(
regmatch_T *rmp,
char_u *line, // string to match against
colnr_T col, // column to start looking for match
int line_lbr)
{
rex.reg_match = rmp;
rex.reg_mmatch = NULL;
rex.reg_maxline = 0;
rex.reg_line_lbr = line_lbr;
rex.reg_buf = curbuf;
rex.reg_win = NULL;
rex.reg_ic = rmp->rm_ic;
rex.reg_icombine = FALSE;
rex.reg_maxcol = 0;
return bt_regexec_both(line, col, NULL);
}
/*
* Match a regexp against multiple lines.
* "rmp->regprog" is a compiled regexp as returned by vim_regcomp().
* Uses curbuf for line count and 'iskeyword'.
*
* Return zero if there is no match. Return number of lines contained in the
* match otherwise.
*/
static long
bt_regexec_multi(
regmmatch_T *rmp,
win_T *win, // window in which to search or NULL
buf_T *buf, // buffer in which to search
linenr_T lnum, // nr of line to start looking for match
colnr_T col, // column to start looking for match
int *timed_out) // flag set on timeout or NULL
{
init_regexec_multi(rmp, win, buf, lnum);
return bt_regexec_both(NULL, col, timed_out);
}
/*
* Compare a number with the operand of RE_LNUM, RE_COL or RE_VCOL.
*/
static int
re_num_cmp(long_u val, char_u *scan)
{
long_u n = OPERAND_MIN(scan);
if (OPERAND_CMP(scan) == '>')
return val > n;
if (OPERAND_CMP(scan) == '<')
return val < n;
return val == n;
}
#ifdef BT_REGEXP_DUMP
/*
* regdump - dump a regexp onto stdout in vaguely comprehensible form
*/
static void
regdump(char_u *pattern, bt_regprog_T *r)
{
char_u *s;
int op = EXACTLY; // Arbitrary non-END op.
char_u *next;
char_u *end = NULL;
FILE *f;
#ifdef BT_REGEXP_LOG
f = fopen("bt_regexp_log.log", "a");
#else
f = stdout;
#endif
if (f == NULL)
return;
fprintf(f, "-------------------------------------\n\r\nregcomp(%s):\r\n", pattern);
s = r->program + 1;
// Loop until we find the END that isn't before a referred next (an END
// can also appear in a NOMATCH operand).
while (op != END || s <= end)
{
op = OP(s);
fprintf(f, "%2d%s", (int)(s - r->program), regprop(s)); // Where, what.
next = regnext(s);
if (next == NULL) // Next ptr.
fprintf(f, "(0)");
else
fprintf(f, "(%d)", (int)((s - r->program) + (next - s)));
if (end < next)
end = next;
if (op == BRACE_LIMITS)
{
// Two ints
fprintf(f, " minval %ld, maxval %ld", OPERAND_MIN(s), OPERAND_MAX(s));
s += 8;
}
else if (op == BEHIND || op == NOBEHIND)
{
// one int
fprintf(f, " count %ld", OPERAND_MIN(s));
s += 4;
}
else if (op == RE_LNUM || op == RE_COL || op == RE_VCOL)
{
// one int plus comparator
fprintf(f, " count %ld", OPERAND_MIN(s));
s += 5;
}
s += 3;
if (op == ANYOF || op == ANYOF + ADD_NL
|| op == ANYBUT || op == ANYBUT + ADD_NL
|| op == EXACTLY)
{
// Literal string, where present.
fprintf(f, "\nxxxxxxxxx\n");
while (*s != NUL)
fprintf(f, "%c", *s++);
fprintf(f, "\nxxxxxxxxx\n");
s++;
}
fprintf(f, "\r\n");
}
// Header fields of interest.
if (r->regstart != NUL)
fprintf(f, "start `%s' 0x%x; ", r->regstart < 256
? (char *)transchar(r->regstart)
: "multibyte", r->regstart);
if (r->reganch)
fprintf(f, "anchored; ");
if (r->regmust != NULL)
fprintf(f, "must have \"%s\"", r->regmust);
fprintf(f, "\r\n");
#ifdef BT_REGEXP_LOG
fclose(f);
#endif
}
#endif // BT_REGEXP_DUMP
#ifdef DEBUG
/*
* regprop - printable representation of opcode
*/
static char_u *
regprop(char_u *op)
{
char *p;
static char buf[50];
STRCPY(buf, ":");
switch ((int) OP(op))
{
case BOL:
p = "BOL";
break;
case EOL:
p = "EOL";
break;
case RE_BOF:
p = "BOF";
break;
case RE_EOF:
p = "EOF";
break;
case CURSOR:
p = "CURSOR";
break;
case RE_VISUAL:
p = "RE_VISUAL";
break;
case RE_LNUM:
p = "RE_LNUM";
break;
case RE_MARK:
p = "RE_MARK";
break;
case RE_COL:
p = "RE_COL";
break;
case RE_VCOL:
p = "RE_VCOL";
break;
case BOW:
p = "BOW";
break;
case EOW:
p = "EOW";
break;
case ANY:
p = "ANY";
break;
case ANY + ADD_NL:
p = "ANY+NL";
break;
case ANYOF:
p = "ANYOF";
break;
case ANYOF + ADD_NL:
p = "ANYOF+NL";
break;
case ANYBUT:
p = "ANYBUT";
break;
case ANYBUT + ADD_NL:
p = "ANYBUT+NL";
break;
case IDENT:
p = "IDENT";
break;
case IDENT + ADD_NL:
p = "IDENT+NL";
break;
case SIDENT:
p = "SIDENT";
break;
case SIDENT + ADD_NL:
p = "SIDENT+NL";
break;
case KWORD:
p = "KWORD";
break;
case KWORD + ADD_NL:
p = "KWORD+NL";
break;
case SKWORD:
p = "SKWORD";
break;
case SKWORD + ADD_NL:
p = "SKWORD+NL";
break;
case FNAME:
p = "FNAME";
break;
case FNAME + ADD_NL:
p = "FNAME+NL";
break;
case SFNAME:
p = "SFNAME";
break;
case SFNAME + ADD_NL:
p = "SFNAME+NL";
break;
case PRINT:
p = "PRINT";
break;
case PRINT + ADD_NL:
p = "PRINT+NL";
break;
case SPRINT:
p = "SPRINT";
break;
case SPRINT + ADD_NL:
p = "SPRINT+NL";
break;
case WHITE:
p = "WHITE";
break;
case WHITE + ADD_NL:
p = "WHITE+NL";
break;
case NWHITE:
p = "NWHITE";
break;
case NWHITE + ADD_NL:
p = "NWHITE+NL";
break;
case DIGIT:
p = "DIGIT";
break;
case DIGIT + ADD_NL:
p = "DIGIT+NL";
break;
case NDIGIT:
p = "NDIGIT";
break;
case NDIGIT + ADD_NL:
p = "NDIGIT+NL";
break;
case HEX:
p = "HEX";
break;
case HEX + ADD_NL:
p = "HEX+NL";
break;
case NHEX:
p = "NHEX";
break;
case NHEX + ADD_NL:
p = "NHEX+NL";
break;
case OCTAL:
p = "OCTAL";
break;
case OCTAL + ADD_NL:
p = "OCTAL+NL";
break;
case NOCTAL:
p = "NOCTAL";
break;
case NOCTAL + ADD_NL:
p = "NOCTAL+NL";
break;
case WORD:
p = "WORD";
break;
case WORD + ADD_NL:
p = "WORD+NL";
break;
case NWORD:
p = "NWORD";
break;
case NWORD + ADD_NL:
p = "NWORD+NL";
break;
case HEAD:
p = "HEAD";
break;
case HEAD + ADD_NL:
p = "HEAD+NL";
break;
case NHEAD:
p = "NHEAD";
break;
case NHEAD + ADD_NL:
p = "NHEAD+NL";
break;
case ALPHA:
p = "ALPHA";
break;
case ALPHA + ADD_NL:
p = "ALPHA+NL";
break;
case NALPHA:
p = "NALPHA";
break;
case NALPHA + ADD_NL:
p = "NALPHA+NL";
break;
case LOWER:
p = "LOWER";
break;
case LOWER + ADD_NL:
p = "LOWER+NL";
break;
case NLOWER:
p = "NLOWER";
break;
case NLOWER + ADD_NL:
p = "NLOWER+NL";
break;
case UPPER:
p = "UPPER";
break;
case UPPER + ADD_NL:
p = "UPPER+NL";
break;
case NUPPER:
p = "NUPPER";
break;
case NUPPER + ADD_NL:
p = "NUPPER+NL";
break;
case BRANCH:
p = "BRANCH";
break;
case EXACTLY:
p = "EXACTLY";
break;
case NOTHING:
p = "NOTHING";
break;
case BACK:
p = "BACK";
break;
case END:
p = "END";
break;
case MOPEN + 0:
p = "MATCH START";
break;
case MOPEN + 1:
case MOPEN + 2:
case MOPEN + 3:
case MOPEN + 4:
case MOPEN + 5:
case MOPEN + 6:
case MOPEN + 7:
case MOPEN + 8:
case MOPEN + 9:
sprintf(buf + STRLEN(buf), "MOPEN%d", OP(op) - MOPEN);
p = NULL;
break;
case MCLOSE + 0:
p = "MATCH END";
break;
case MCLOSE + 1:
case MCLOSE + 2:
case MCLOSE + 3:
case MCLOSE + 4:
case MCLOSE + 5:
case MCLOSE + 6:
case MCLOSE + 7:
case MCLOSE + 8:
case MCLOSE + 9:
sprintf(buf + STRLEN(buf), "MCLOSE%d", OP(op) - MCLOSE);
p = NULL;
break;
case BACKREF + 1:
case BACKREF + 2:
case BACKREF + 3:
case BACKREF + 4:
case BACKREF + 5:
case BACKREF + 6:
case BACKREF + 7:
case BACKREF + 8:
case BACKREF + 9:
sprintf(buf + STRLEN(buf), "BACKREF%d", OP(op) - BACKREF);
p = NULL;
break;
case NOPEN:
p = "NOPEN";
break;
case NCLOSE:
p = "NCLOSE";
break;
#ifdef FEAT_SYN_HL
case ZOPEN + 1:
case ZOPEN + 2:
case ZOPEN + 3:
case ZOPEN + 4:
case ZOPEN + 5:
case ZOPEN + 6:
case ZOPEN + 7:
case ZOPEN + 8:
case ZOPEN + 9:
sprintf(buf + STRLEN(buf), "ZOPEN%d", OP(op) - ZOPEN);
p = NULL;
break;
case ZCLOSE + 1:
case ZCLOSE + 2:
case ZCLOSE + 3:
case ZCLOSE + 4:
case ZCLOSE + 5:
case ZCLOSE + 6:
case ZCLOSE + 7:
case ZCLOSE + 8:
case ZCLOSE + 9:
sprintf(buf + STRLEN(buf), "ZCLOSE%d", OP(op) - ZCLOSE);
p = NULL;
break;
case ZREF + 1:
case ZREF + 2:
case ZREF + 3:
case ZREF + 4:
case ZREF + 5:
case ZREF + 6:
case ZREF + 7:
case ZREF + 8:
case ZREF + 9:
sprintf(buf + STRLEN(buf), "ZREF%d", OP(op) - ZREF);
p = NULL;
break;
#endif
case STAR:
p = "STAR";
break;
case PLUS:
p = "PLUS";
break;
case NOMATCH:
p = "NOMATCH";
break;
case MATCH:
p = "MATCH";
break;
case BEHIND:
p = "BEHIND";
break;
case NOBEHIND:
p = "NOBEHIND";
break;
case SUBPAT:
p = "SUBPAT";
break;
case BRACE_LIMITS:
p = "BRACE_LIMITS";
break;
case BRACE_SIMPLE:
p = "BRACE_SIMPLE";
break;
case BRACE_COMPLEX + 0:
case BRACE_COMPLEX + 1:
case BRACE_COMPLEX + 2:
case BRACE_COMPLEX + 3:
case BRACE_COMPLEX + 4:
case BRACE_COMPLEX + 5:
case BRACE_COMPLEX + 6:
case BRACE_COMPLEX + 7:
case BRACE_COMPLEX + 8:
case BRACE_COMPLEX + 9:
sprintf(buf + STRLEN(buf), "BRACE_COMPLEX%d", OP(op) - BRACE_COMPLEX);
p = NULL;
break;
case MULTIBYTECODE:
p = "MULTIBYTECODE";
break;
case NEWL:
p = "NEWL";
break;
default:
sprintf(buf + STRLEN(buf), "corrupt %d", OP(op));
p = NULL;
break;
}
if (p != NULL)
STRCAT(buf, p);
return (char_u *)buf;
}
#endif // DEBUG