ubitx-v5x/TeensyDSP/Sensors.h

343 lines
8.7 KiB
C++

#ifndef __Sensor_h__
#define __Sensor_h__
#include <ADC.h>
#include "Debug.h"
#include "HamFuncs.h"
/**********************************************************************/
#ifndef UBITX_SENSORS_S_METER_PIN
#define UBITX_SENSORS_S_METER_PIN 27
#endif
#ifndef UBITX_SENSORS_FWD_PWR_PIN
#define UBITX_SENSORS_FWD_PWR_PIN 20
#endif
#ifndef UBITX_SENSORS_REV_PWR_PIN
#define UBITX_SENSORS_REV_PWR_PIN 28
#endif
#ifndef UBITX_SENSORS_SUPPLY_PIN
#define UBITX_SENSORS_SUPPLY_PIN 21
#endif
#ifndef UBITX_SENSORS_AVG_SAMPLES
#define UBITX_SENSORS_AVG_SAMPLES 16
#endif
#ifndef UBITX_SENSORS_S_METER_R1
#define UBITX_SENSORS_S_METER_R1 22000.0
#endif
#ifndef UBITX_SENSORS_S_METER_R2
#define UBITX_SENSORS_S_METER_R2 33000.0
#endif
#ifndef UBITX_SENSORS_FWD_PWR_R1
#define UBITX_SENSORS_FWD_PWR_R1 22000.0
#endif
#ifndef UBITX_SENSORS_FWD_PWR_R2
#define UBITX_SENSORS_FWD_PWR_R2 33000.0
#endif
#ifndef UBITX_SENSORS_REV_PWR_R1
#define UBITX_SENSORS_REV_PWR_R1 22000.0
#endif
#ifndef UBITX_SENSORS_REV_PWR_R2
#define UBITX_SENSORS_REV_PWR_R2 33000.0
#endif
#ifndef UBITX_SENSORS_SUPPLY_R1
#define UBITX_SENSORS_SUPPLY_R1 56000.0
#endif
#ifndef UBITX_SENSORS_SUPPLY_R2
#define UBITX_SENSORS_SUPPLY_R2 10000.0
#endif
#ifndef UBITX_SENSORS_S_METER_LVL0
#define UBITX_SENSORS_S_METER_LVL0 2
#endif
#ifndef UBITX_SENSORS_S_METER_LVL1
#define UBITX_SENSORS_S_METER_LVL1 4
#endif
#ifndef UBITX_SENSORS_S_METER_LVL2
#define UBITX_SENSORS_S_METER_LVL2 8
#endif
#ifndef UBITX_SENSORS_S_METER_LVL3
#define UBITX_SENSORS_S_METER_LVL3 16
#endif
#ifndef UBITX_SENSORS_S_METER_LVL4
#define UBITX_SENSORS_S_METER_LVL4 32
#endif
#ifndef UBITX_SENSORS_S_METER_LVL5
#define UBITX_SENSORS_S_METER_LVL5 64
#endif
#ifndef UBITX_SENSORS_S_METER_LVL6
#define UBITX_SENSORS_S_METER_LVL6 128
#endif
#ifndef UBITX_SENSORS_S_METER_LVL7
#define UBITX_SENSORS_S_METER_LVL7 256
#endif
#ifndef UBITX_SENSORS_S_METER_LVL8
#define UBITX_SENSORS_S_METER_LVL8 512
#endif
/**********************************************************************/
const int uBitxSensorsSMeterPin = UBITX_SENSORS_S_METER_PIN;
const int uBitxSensorsFwdPwrPin = UBITX_SENSORS_FWD_PWR_PIN;
const int uBitxSensorsRevPwrPin = UBITX_SENSORS_REV_PWR_PIN;
const int uBitxSensorsSupplyPin = UBITX_SENSORS_SUPPLY_PIN;
const int uBitxSensorsAvgSamples = UBITX_SENSORS_AVG_SAMPLES;
const float uBitxSensorsSMeterR1 = UBITX_SENSORS_S_METER_R1;
const float uBitxSensorsSMeterR2 = UBITX_SENSORS_S_METER_R2;
const float uBitxSensorsFwdPwrR1 = UBITX_SENSORS_FWD_PWR_R1;
const float uBitxSensorsFwdPwrR2 = UBITX_SENSORS_FWD_PWR_R2;
const float uBitxSensorsRevPwrR1 = UBITX_SENSORS_REV_PWR_R1;
const float uBitxSensorsRevPwrR2 = UBITX_SENSORS_REV_PWR_R2;
const float uBitxSensorsSupplyR1 = UBITX_SENSORS_SUPPLY_R1;
const float uBitxSensorsSupplyR2 = UBITX_SENSORS_SUPPLY_R2;
const int uBitxSensorsSMeterValues[] = {
UBITX_SENSORS_S_METER_LVL0,
UBITX_SENSORS_S_METER_LVL1,
UBITX_SENSORS_S_METER_LVL2,
UBITX_SENSORS_S_METER_LVL3,
UBITX_SENSORS_S_METER_LVL4,
UBITX_SENSORS_S_METER_LVL5,
UBITX_SENSORS_S_METER_LVL6,
UBITX_SENSORS_S_METER_LVL7,
UBITX_SENSORS_S_METER_LVL8
};
const int uBitxSensorsSMeterLevels = sizeof(uBitxSensorsSMeterValues) /
sizeof(uBitxSensorsSMeterValues[0]);
extern ADC adc;
/**********************************************************************/
/*!
* @brief Class that maintains a "trailing average" of the last X
* samples provided. It is a template that can be instantiated
* with both the (numeric) data type that is being stored and
* averaged, as well as the number of samples to maintain the
* trailing average across.
*/
template <typename T, int N>
class TrailingAverage {
public:
/*!
* @brief Create a new TrailingAverage object. Data type averaged,
* and number of elements to average, are determined when the
* template is instantiated.
*/
TrailingAverage():
average(T(0)),
current(0),
divisor(T(N))
{
for (int i = 0; i < N; i++) {
data[i] = T(0);
}
}
/*!
* @brief Add a new element to the average. The current last (Nth)
* element is removed, and the new element is added.
* @param val
* The new element/value to incorporate into the average.
*/
inline void add(T val) {
int last = (current - 1) % N;
average -= data[last];
current = (current + 1) % N;
average += data[current] / divisor;
}
/*!
* @brief Read the current value of the average.
* @return The current average.
*/
inline T read() {
return average;
}
private:
T data[N];
T average;
int current;
T divisor;
};
/**********************************************************************/
/*!
* @brief Class that handles the various sensors in the uBitx:
* S-Meter, forward/reverse power and SWR, and supply voltage.
*/
class UBitxSensors {
public:
/*!
* @brief Create a new UBitxSensors object. It uses the default
* S-Meter, Forward Power, Reverse Power, and Supply Voltage
* ADC pins.
*/
UBitxSensors():
sMeterPin(uBitxSensorsSMeterPin),
fwdPwrPin(uBitxSensorsFwdPwrPin),
revPwrPin(uBitxSensorsRevPwrPin),
supplyPin(uBitxSensorsSupplyPin)
{
pinMode(sMeterPin, INPUT); // analog
pinMode(fwdPwrPin, INPUT); // analog
pinMode(revPwrPin, INPUT); // analog
pinMode(supplyPin, INPUT); // analog
}
/*!
* @brief Update the value of the S-Meter by reading the associated
* ADC pin.
*/
inline void updateSMeter() {
int value = adc.analogRead(sMeterPin);
sMeter.add(value);
}
/*!
* @brief Update the value of the Forward and Reverse Power
* measurements by reading the associated ADC pin.
*/
void updatePower() {
ADC::Sync_result value = adc.analogSyncRead(fwdPwrPin, revPwrPin);
float fwdV = HF::adcIn(value.result_adc0);
float revV = HF::adcIn(value.result_adc1);
fwdV = HF::divIn(fwdV, uBitxSensorsFwdPwrR1, uBitxSensorsFwdPwrR2);
fwdV = HF::bridgeFwd(fwdV);
revV = HF::divIn(revV, uBitxSensorsRevPwrR1, uBitxSensorsRevPwrR2);
revV = HF::bridgeFwd(revV);
fwdPwr.add(HF::P(fwdV));
revPwr.add(HF::P(revV));
vswr.add(HF::VSWR(fwdV, revV));
}
/*!
* @brief Update the value of the Supply Voltage measurement by
* reading the associated ADC pin.
*/
inline void updateSupply() {
float value = HF::adcIn(adc.analogRead(supplyPin));
value = HF::divIn(value, uBitxSensorsSupplyR1, uBitxSensorsSupplyR2);
supply.add(value);
}
/*!
* @brief Return the unscaled value of the S-Meter reading.
* @return Unscaled S-Meter reading.
*/
inline int sMeterUnscaled() {
return sMeter.read();
}
/*!
* @brief Return the scaled value of the S-Meter reading. This
* is the value that is used to directly control the S-Meter
* display on the Nextion LCD.
* @return Scaled S-Meter reading.
*/
int sMeterScaled() {
float sig = sMeter.read();
// small number of elements; just doing a linear search
for (int i = uBitxSensorsSMeterLevels; i > 0; i--) {
if (sig > uBitxSensorsSMeterValues[i - 1]) {
return i;
}
}
return 0;
}
/*!
* @brief Return the current Forward Power measurement.
* @return Forward Power measurement.
*/
inline float Pfwd() {
return fwdPwr.read();
}
/*!
* @brief Return the current Reverse Power measurement.
* @return Reverse Power measurement.
*/
inline float Prev() {
return revPwr.read();
}
/*!
* @brief Return the current Voltage Standing Wave Ration (VSWR).
* @return Current VSWR calculation.
*/
inline float VSWR() {
return vswr.read();
}
/*!
* @brief Return the current Voltage Standing Wave Ration (VSWR),
* scaled for the Nextion display protocol.
* @return Current VSWR calculation (scaled).
*/
float scaledVSWR() {
int val = int(vswr.read());
if (val < 0) {
return 0;
} else if (val > uBitxSensorsSMeterLevels) {
return uBitxSensorsSMeterLevels;
} else {
return val;
}
}
/*!
* @brief Return the current Supply Voltage measurement.
* @return Current Supply Voltage.
*/
inline float supplyVoltage() {
return supply.read();
}
private:
// Pins
int sMeterPin;
int fwdPwrPin;
int revPwrPin;
int supplyPin;
// Buffers for averages
TrailingAverage<int, uBitxSensorsAvgSamples> sMeter;
TrailingAverage<float, uBitxSensorsAvgSamples> fwdPwr;
TrailingAverage<float, uBitxSensorsAvgSamples> revPwr;
TrailingAverage<float, uBitxSensorsAvgSamples> vswr;
TrailingAverage<float, uBitxSensorsAvgSamples> supply;
};
extern UBitxSensors Sensors;
#endif