58 Commits

Author SHA1 Message Date
295b99ef36 making sure any outstanding updates are committed 2025-02-15 09:48:00 -06:00
Rob French
e6009989db Reorganizing DSP and TR. Thoroughly broken ATM, just committing for backup. 2021-03-30 12:31:44 -05:00
Rob French
1f3585d8e4 Various changes. Compiles. Hasn't been tested. 2021-03-19 15:30:30 -05:00
Rob French
c8aecdfb0d Further updates to DSP, and significant changes to TS590. Implementing templated CAT commands using the delegate template from the ETL. Compiles, but not tested. 2021-03-16 23:11:17 -05:00
Rob French
f724142fca Updated DSP. Compiles, no warnings/errors. Going to do some work on CAT. 2021-03-16 18:37:14 -05:00
Rob French
869e47d430 Significant updates to DSP. Compiles. Likely doesn't work at the moment. Next step should be to get it running again on the rig, NOT to try any more fancy updates to CAT etc. 2021-03-14 23:18:24 -05:00
Rob French
20b475dace Updates to the DSP. One issue that needs to be resolved: in order to use the VOX the way it is currently setup, muting of the overall TX chain needs to be at the END, not the beginning; whatever is setup as the default TX audio source, needs to be unmuted even during RX. 2021-03-04 23:12:41 -06:00
Rob French
962a3ce80f Revert "Updated with some of the changes I made on travel. Will probably break everything..."
This reverts commit 86ae1ddb2f.
2021-03-04 07:16:14 -06:00
Rob French
86ae1ddb2f Updated with some of the changes I made on travel. Will probably break everything... 2021-03-03 10:44:25 -06:00
Rob French
119902b1e0 Significant updates. Compiles and works, though not test significantly nor assumed to be particularly robust. I2C comms between Raduino and TeensyDSP. Some amount of functioning CAT. Haven't tried with any applications e.g. WSJT-X. 2021-02-19 01:39:25 -06:00
Rob French
1bca18c3e1 Updates to RigState. 2021-02-17 11:05:09 -06:00
Rob French
f3887e7950 commit before I totally change the RigState architecture 2021-02-15 22:38:05 -06:00
Rob French
2cbc9abae8 Updated files list. 2021-02-15 08:06:31 -06:00
Rob French
8a416608a1 Long way from being compilable on either the Raduino or the TeensyDSP. Lot of changes in progress. 2021-02-14 23:04:29 -06:00
Rob French
e5de516633 Significant revamp of RigState to only send changes. Not done yet. 2021-02-14 00:35:38 -06:00
Rob French
5b395cd922 Added multiple new audio (DSP) functions. Minor updates to the rig. Added additional CAT command (filter hi- and lo-cut frequencies, SH/SL). 2021-02-12 22:19:14 -06:00
Rob French
47840e09dd Forgot to add the Keyer on the previous commit. 2021-02-11 23:56:08 -06:00
Rob French
d2213e34ff Raduino: Disabled CAT in the Raduino main loop. Fixed some split freq setting via I2C. TeensyDSP: Added a Keyer. Works ok, but I have to disable ADC during transmit (or all of CW?) in order to keep the timing good... need to use interrupts and/or continuous ADC at some point. Added the MD CAT command, and fixed other CAT commands. Split seems to work, but don't do split when using the keyer! Halted the Raduino. 2021-02-11 23:55:41 -06:00
Rob French
814fe6c733 Did add some code for updating the RigState architecture. Not ready to swap it out yet, however. 2021-02-11 22:00:24 -06:00
Rob French
c3cc9a7cf7 Got basic 3-way comm (CAT-Teensy-Raduino) working. CAT commands are received via Serial by the Teensy. Data is passed on to the Raduino via I2C. Had to add an intermediate step in the protocol in order for the Raduino to request a byte as a flag for whether or not any changed data was coming, and then if so, request the changed data. There are certainly some optimizations that could be made on this number. Currently, the Raduino code is very clunky. In addition, the Rig and RigState classes have deteriorated somewhat. 2021-02-10 00:10:24 -06:00
Rob French
aeeec69daf Raduino changes are getting to TeensyDSP over I2C. TeensyDSP successfully receiving some CAT. 2021-02-09 22:58:07 -06:00
Rob French
702f370d1b Heavily modified the TS590 class. 2021-02-07 17:12:08 -06:00
Rob French
b9be616361 More scary updates. Implemented some basic CAT control via USB serial, for the TeensyDSP. More fully fleshed out a RigState and Rig types. Compiles. Still MAY need to update the Raduino to match the TeensyDSP (it may actually be okay, because right now only the RIGINF command is being sent. 2021-02-06 23:45:19 -06:00
Rob French
4186fdcdd4 Scary commit. I've taken baby steps toward passing rig status between the Raduino and the TeensyDSP using I2C. Compiles, but has not been tested. Need to create a branch. 2021-02-05 22:59:31 -06:00
Rob French
e62e3ef548 Since integration seems to be proceeding well, started documenting some of the circuits via schematic (KiCad). 2021-02-02 16:29:09 -06:00
Rob French
deb0aca5fe removed some leftover instrumentation 2021-02-02 08:57:37 -06:00
Rob French
04d5f3ba12 Sensors are now functioning more-or-less correctly. Calibration isn't quite right, but the basics are correct. 2021-02-02 08:54:27 -06:00
Rob French
ba744f5b7a Miscellaneous fixes on the integration branch. Next up on hardware: swap the FWD and REV PWR lines (or switch them in software, duh...). Then in software--verify that S-Meter, FWD/REV PWR, and VSWR signals are working correctly. 2021-01-31 22:46:43 -06:00
Rob French
4e818b6a89 Merge branch 'meter-to-teensy' into integration 2021-01-30 07:56:48 -06:00
Rob French
b2cb1a26ba Merge branch 'combined-cw-ptt' into integration 2021-01-30 07:56:29 -06:00
Rob French
da58606409 Added some more debug code. Compiles. 2021-01-30 07:49:19 -06:00
Rob French
091f414409 Update to include basic audio functionality. Compiles. Need to add more debug checking. 2021-01-30 00:02:57 -06:00
Rob French
6b365beac0 Added Schematics folder and picture of the I/O board (specifically the ADC buffer). 2021-01-27 22:03:08 -06:00
Rob French
87b6e3fbde compiles successfully 2021-01-26 22:49:07 -06:00
Rob French
48cb6cf304 Additional missing files. 2021-01-26 22:22:23 -06:00
Rob French
c59d53fb9e Lots of updates prior to first compile. 2021-01-26 22:22:02 -06:00
Rob French
16b350cb0f More reorg changes in the DSP code. Working towards creating a separate ADC 'process' that will continually update the applicable variables, and then they'll be reported upon request via I2C or Serial as applicable. 2021-01-21 22:00:35 -06:00
Rob French
bb31ccfbe4 Additional modifications to retarget the code for Teensy with the Audio Adapter. 2021-01-21 11:37:27 -06:00
Rob French
c1c4dd3f19 Some code realignment, including changing from millis to elapsedMillis. 2021-01-21 09:44:06 -06:00
Rob French
88143f57a2 Updated Raduino code with some old code from the ubitx-v5d repository, in order to suppress the key line (prevent inadvertant transmitting when I first start working this). 2021-01-20 23:54:28 -06:00
Rob French
d97f282f7b Merge branch 'master' of ssh://git.sdf.org:2222/kc4upr/ubitx-v5x 2021-01-20 23:30:13 -06:00
Rob French
c93e191dfd More reorg. 2021-01-20 23:26:38 -06:00
Rob French
b50ad3275a Initial commit 2021-01-21 05:08:16 +00:00
Rob French
04b70450ae Reorganized. 2021-01-20 20:50:27 -06:00
Rob French
3364cb78d5 Merge remote-tracking branch 'teensydsp/master' 2021-01-20 20:43:32 -06:00
Rob French
cfa6f8699d Move raduino files into subdir 2021-01-20 20:42:20 -06:00
Rob French
48344923cc Merge remote-tracking branch 'raduino/master' 2021-01-20 20:36:04 -06:00
Rob French
dec1d1edec Initial commit before I start merging in other projects. 2021-01-20 20:31:27 -06:00
phdlee
e77a3715a8 Update README.md 2020-09-08 17:46:57 +09:00
phdlee
1a60adaf2f Merge pull request #2 from phdlee/version0.8
added SWR, PWR sensor
2019-04-11 22:38:52 +09:00
phdlee
02c0066df4 added SWR, PWR sensor 2019-04-11 22:37:24 +09:00
phdlee
262ef3947a Merge pull request #46 from phdlee/version1.20
changed version number for nextion lcd protocol
2019-04-06 16:38:44 +09:00
phdlee
a4d9f6e6c5 changed version number for nextion lcd protocol 2019-04-06 16:35:46 +09:00
phdlee
265188dc86 Merge pull request #1 from phdlee/version0.7
added delay time at startup
2018-08-06 12:11:41 +09:00
phdlee
aee410fd19 added delay time at startup 2018-08-06 11:58:41 +09:00
phdlee
16e173b109 add Init version files 2018-08-04 11:23:20 +09:00
phdlee
d5db04ff0e Init and add comment for licnese 2018-08-04 11:04:51 +09:00
phdlee
0586bb75a7 Initial commit 2018-08-04 10:55:39 +09:00
59 changed files with 8453 additions and 367 deletions

237
README.md
View File

@@ -1,236 +1,3 @@
#NOTICE
----------------------------------------------------------------------------
- Now Release Version 1.20 on my blog (http://www.hamskey.com)
- You can download and compiled hex file and uBITX Manager application on release section (https://github.com/phdlee/ubitx/releases)
- For more information, see my blog (http://www.hamskey.com)
# ubitx-v5x
http://www.hamskey.com
Ian KD8CEC
kd8cec@gmail.com
#uBITX
uBITX firmware, written for the Raduino/Arduino control of uBITX transceivers
This project is based on https://github.com/afarhan/ubitx and all copyright is inherited.
The copyright information of the original is below.
KD8CEC
----------------------------------------------------------------------------
Prepared or finished tasks for the next version
- Add TTS module
- Direct control for Student
----------------------------------------------------------------------------
## REVISION RECORD
1.20
- Support uBITX V5
- Change to SDR Frequency (Remove just RTL-SDR's error Frequency (2390Hz))
1.12
- Support Custom LPF Control
- Other Minor Bugs
1.1
- Support Nextion LCD, TJC LCD
- Read & Backup uBITX, ADC Monitoring, ATT, IF-Shift and more on Nextion LCD (TJC LCD)
- Factory Reset (Both Character LCD and Nextion LCD are applicable)
- Support Signal Meter using ADC (A7 Port)
- Supoort I2C Signal Meter
- Spectrum
- Band Scan
- Memory Control on Nextion LCD (TJC LCD)
- Speed Change CW-Option on Nextion LCD
- Fixed Band Change Bug (Both Character LCD and Nextion LCD are applicable)
- uBITX Manager removed the Encode and Decode buttons. The procedure has become a bit easier.
- I2C Device Scan on uBITX Manager ( Both Character LCD and Nextion LCD are applicable)
- Si5351 I2C Address can be changed
- Recovery using QR-Code Data from Server
- Nextion LCD and TJC LCD can display Spectrum and CW Decode (using Stand alone S-Meter)
- Other Minor Bugs
1.09 (Beta)
- include 1.094 beta, 1.095 beta, 1.097 beta
1.08
- Receive performance is improved compared to the original firmware or version 1.061
- ATT function has been added to reduce RF gain (Shift 45Mhz IF)
- Added the ability to connect SDR. (Low cost RTL-SDR available)
- Added a protocol to ADC Monitoring in CAT communications
- Various LCD support, 16x02 Parallel LCD - It is the LCD equipped with uBITX, 16x02 I2C LCD, 20x04 Parallel LCD, 20x04 I2C LCD, 16x02 I2C Dual LCD
- Added Extended Switch Support
- Support S Meter
- Added S-Meter setting assistant to uBITX Manager
- Add recovery mode (such as Factory Reset)
- There have been many other improvements and fixes. More information is available on the blog. (http://www.hamskey.com)
1.07 (Beta)
- include 1.071 beta, 1.073 beta, 1.075 beta
- Features implemented in the beta version have been applied to Version 1.08 above.
1.061
- Added WSPR
You only need uBITX to use WSPR. No external devices are required.
Added Si5351 module for WSPR
- Update uBITX Manager to Version 1.0
- Reduce program size
for WSPR
for other Module
- Fixed IF Shift Bug
Disable IF Shift on TX
IF shift available in USB mode
Fixed cat routine in IF Shift setup
- Bugs fixed
cw start delay option
Auto key Bug
(found bug : LZ1LDO)
Message selection when Auto Key is used in RIT mode
(found bug : gerald)
- Improve CW Keying (start TX)
1.05
- include 1.05W, 1.051, 1.051W
- for WSPR Beta Test Version
1.04
- Optimized from Version1.03
- Reduce program size (97% -> 95%)
1.03
- Change eBFO Calibration Step (50 to 5)
- Change CW Frequency Display type
1.02
- Applied CW Start Delay to New CW Key logic (This is my mistake when applying the new CW Key Logic.Since uBITX operations are not significantly affected, this does not create a separate Release, It will be reflected in the next release.) - complete
- Modified CW Key Logic for Auto Key, (available AutoKey function by any cw keytype) - complete
- reduce cpu use usage (working)
- reduce (working)
1.01
- Fixed Cat problem with (IAMBIC A or B Selected)
1.0
- rename 0.30 to 1.0
0.35
- vfo to channel bug fixed (not saved mode -> fixed, channel has frequency and mode)
- add Channel tag (ch.1 ~ 10) by uBITX Manager
- add VFO to Channel, Channel To VFO
0.34
- TX Status check in auto Keysend logic
- optimize codes
- change default tune step size, and fixed bug
- change IF shift step (1Hz -> 50Hz)
0.33
- Added CWL, CWU Mode, (dont complete test yet)
- fixed VFO changed bug.
- Added Additional BFO for CWL, CWL
- Added IF Shift
- Change confirmation key PTT -> function key (not critical menus)
- Change CW Key Select type, (toggle -> select by dial)
0.32
- Added function Scroll Frequencty on upper line
- Added Example code for Draw meter and remarked (you can see and use this code in source codes)
- Added Split function, just toggle VFOs when TX/RX
0.31
- Fixed CW ADC Range error
- Display Message on Upper Line (anothor VFO Frequency, Tune Step, Selected Key Type)
0.30
- implemented the function to monitor the value of all analog inputs. This allows you to monitor the status of the CW keys connected to your uBITX.
- possible to set the ADC range for CW Keying. If no setting is made, it will have the same range as the original code. If you set the CW Keying ADC Values using uBITX Manager 0.3, you can reduce the key error.
- Added the function to select Straight Key, IAMBICA, IAMBICB key from the menu.
- default Band select is Ham Band mode, if you want common type, long press function key at band select menu, uBITX Manager can be used to modify frequencies to suit your country.
0.29
- Remove the use of initialization values in BFO settings - using crruent value, if factory reset
- Select Tune Step, default 0, 20, 50, 100, 200, Use the uBITX Manager to set the steps value you want. You can select Step by pressing and holding the Function Key (1sec ~ 2sec).
- Modify Dial Lock Function, Press the Function key for more than 3 seconds to toggle dial lock.
- created a new frequency tune method. remove original source codes, Threshold has been applied to reduce malfunction. checked the continuity of the user operating to make natural tune possible.
- stabilize and remove many warning messages - by Pullrequest and merge
- Changed cw keying method. removed the original code and applied Ron's code and Improved compatibility with original hardware and CAT commnication. It can be used without modification of hardware.
0.28
- Fixed CAT problem with hamlib on Linux
- restore Protocol autorecovery logic
0.27
(First alpha test version, This will be renamed to the major version 1.0)
- Dual VFO Dial Lock (vfoA Dial lock)
- Support Ham band on uBITX
default Hamband is regeion1 but customize by uBITX Manager Software
- Advanced ham band options (Tx control) for use in all countries. You can adjust it yourself.
- Convenience of band movement
0.26
- only Beta tester released & source code share
- find a bug on none initial eeprom uBITX - Fixed (Check -> initialized & compatible original source code)
- change the version number 0.26 -> 0.27
- Prevent overflow bugs
- bug with linux based Hamlib (raspberry pi), It was perfect for the 0.224 version, but there was a problem for the 0.25 version.
On Windows, ham deluxe, wsjt-x, jt65-hf, and fldigi were successfully run. Problem with Raspberry pi.
0.25
- Beta Version Released
http://www.hamskey.com/2018/01/release-beta-version-of-cat-support.html
- Added CAT Protocol for uBITX
- Modified the default usb carrier value used when the setting is wrong.
- Fixed a routine to repair when the CAT protocol was interrupted.
0.24
- Program optimization
reduce usage ram rate (string with M() optins)
- Optimized CAT protocol for wsjt-x, fldigi
0.23
- added delay_background() , replace almost delay() to delay_background for prevent timeout
- cat library compatible with FT-817 Command
switch VFOA / VFOB,
Read Write CW Speed
Read Write CW Delay Time
Read Write CW Pitch (with sidetone)
All of these can be controlled by Hamradio deluxe.
- modified cat libray function for protocol for CAT communication is not broken in CW or TX mode
- Ability to change CW Delay
- Added Dial Lock function
- Add functions CW Start dely (TX -> CW interval)
- Automatic storage of VFO frequency
It was implemented by storing it only once when the frequency stays 10 seconds or more after the change.
(protect eeprom life)
0.22
- fixed screen Update Problem
- Frequency Display Problem - Problems occur below 1Mhz
- added function Enhanced CAT communication
- replace ubitx_cat.ino to cat_libs.ino
- Save mode when switching to VFOA / VFOB
0.21
- fixed the cw side tone configuration.
- Fix the error that the frequency is over.
- fixed frequency display (alignment, point)
0.20
- original uBITX software (Ashhar Farhan)
## Original README.md
uBITX firmware, written for the Raduino/Arduino control of uBITX transceigers
Copyright (C) 2017, Ashhar Farhan
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"Extended" version of the uBITX v5, including both a Teensy-based DSP as well as a Nextion 3.2" display.

0
Raduino/Debug.h Executable file
View File

View File

@@ -122,7 +122,8 @@ char vfoActive = VFO_A;
int8_t meter_reading = 0; // a -1 on meter makes it invisible
unsigned long vfoA=7150000L, vfoB=14200000L, sideTone=800, usbCarrier, cwmCarrier;
unsigned long vfoA_eeprom, vfoB_eeprom; //for protect eeprom life
unsigned long frequency, ritRxFrequency, ritTxFrequency; //frequency is the current frequency on the dial
unsigned long frequency;
unsigned long ritRxFrequency, ritTxFrequency; //frequency is the current frequency on the dial
unsigned int cwSpeed = 100; //this is actuall the dot period in milliseconds
extern int32_t calibration;
@@ -316,6 +317,17 @@ unsigned long delayBeforeTime = 0;
byte delay_background(unsigned delayTime, byte fromType){ //fromType : 4 autoCWKey -> Check Paddle
delayBeforeTime = millis();
/*
* KC4UPR - IOP review, 2020-05-03
*
* I don't see anything in here that is either important to, or will adversely affect, IOP
* operation. I'm not planning on using the uBITX autokeyer (since all keying will be in the
* IOP), so neither getPaddle() nor autoSendPTTCheck() will be issues. I do need to look into
* overall CAT operation, in general.
*
* UPDATE: Fixed getPaddle() to be compatible.
*/
while (millis() - delayBeforeTime <= delayTime) {
if (fromType == 4)
@@ -325,14 +337,14 @@ byte delay_background(unsigned delayTime, byte fromType){ //fromType : 4 autoCWK
return 1;
//Check PTT while auto Sending
autoSendPTTCheck();
//autoSendPTTCheck();
Check_Cat(3);
//Check_Cat(3);
}
else
{
//Background Work
Check_Cat(fromType);
//Check_Cat(fromType);
}
}
@@ -678,6 +690,10 @@ void ritDisable(){
*/
void checkPTT(){
/*
* KC4UPR - note that some of this is superfluous now that checkPTT() is only executed
* in SSB mode, and cwKeyer is only executed in CW mode...
*/
//we don't check for ptt when transmitting cw
if (cwTimeout > 0)
return;
@@ -790,7 +806,7 @@ void checkButton(){
//wait for the button to go up again
while(keyStatus == getBtnStatus()) {
delay(10);
Check_Cat(0);
//Check_Cat(0);
}
//delay(50);//debounce
}
@@ -809,7 +825,7 @@ void checkButton(){
//wait for the button to go up again
while(btnDown()) {
delay(10);
Check_Cat(0);
//Check_Cat(0);
}
//delay(50);//debounce
}
@@ -1386,7 +1402,8 @@ void setup()
//printLineF(1, FIRMWARE_VERSION_INFO);
DisplayVersionInfo(FIRMWARE_VERSION_INFO);
Init_Cat(38400, SERIAL_8N1);
//Init_Cat(38400, SERIAL_8N1);
Serial.begin(38400);
initSettings();
initPorts();
@@ -1432,6 +1449,7 @@ void setup()
factory_alignment();
#endif
rigState.begin();
}
//Auto save Frequency and Mode with Protected eeprom life by KD8CEC
@@ -1459,15 +1477,35 @@ void checkAutoSaveFreqMode()
}
void loop(){
if (isCWAutoMode == 0){ //when CW AutoKey Mode, disable this process
if (!txCAT)
/*
* KC4UPR - IOP update, 2020-05-03
*
* Getting rid of the autokeyer code... not planning on using, since any autokeying
* would actually be done by the IOP. We'll check the PTT, but only in SSB mode
* (same line as CW, so it would be caught by cwKeyer() in CW mode).
*
* Only check the CW keyer if we are in one of the CW modes. Why? Because we
* are using the same input for PTT and CW.
*/
// if (isCWAutoMode == 0){ //when CW AutoKey Mode, disable this process
// if (!txCAT)
// checkPTT();
// checkButton();
// }
// else
// controlAutoCW();
// KC4UPR: Note, implementation below leaves no manual way to abort TX due to CAT. May
// want to add in a way to interrupt CAT transmission with a PTT/CW event.
//if (!txCAT) {
if (cwMode == 0) {
checkPTT();
checkButton();
}
else
controlAutoCW();
} else {
cwKeyer();
}
checkButton();
//}
//cwKeyer();
//tune only when not tranmsitting
if (!inTx){
@@ -1487,7 +1525,7 @@ void loop(){
} //end of check TX Status
//we check CAT after the encoder as it might put the radio into TX
Check_Cat(inTx? 1 : 0);
//Check_Cat(inTx? 1 : 0);
//for SEND SW Serial
#ifdef USE_SW_SERIAL

0
Raduino/RigState.cpp Executable file
View File

0
Raduino/RigState.h Executable file
View File

View File

@@ -19,6 +19,8 @@
#include <Arduino.h> //for Linux, On Linux it is case sensitive.
#include "RigState.h"
//==============================================================================
// Compile Option
//==============================================================================
@@ -27,12 +29,12 @@
//Depending on the type of LCD mounted on the uBITX, uncomment one of the options below.
//You must select only one.
#define UBITX_DISPLAY_LCD1602P //LCD mounted on unmodified uBITX (Parallel)
//#define UBITX_DISPLAY_LCD1602P //LCD mounted on unmodified uBITX (Parallel)
//#define UBITX_DISPLAY_LCD1602I //I2C type 16 x 02 LCD
//#define UBITX_DISPLAY_LCD1602I_DUAL //I2C type 16 x02 LCD Dual
//#define UBITX_DISPLAY_LCD2004P //24 x 04 LCD (Parallel)
//#define UBITX_DISPLAY_LCD2004I //I2C type 24 x 04 LCD
//#define UBITX_DISPLAY_NEXTION //NEXTION LCD
#define UBITX_DISPLAY_NEXTION //NEXTION LCD
//#define UBITX_DISPLAY_NEXTION_SAFE //Only EEProm Write 770~775
#define I2C_LCD_MASTER_ADDRESS_DEFAULT 0x27 //0x27 //DEFAULT, if Set I2C Address by uBITX Manager, read from EEProm
@@ -48,8 +50,8 @@
//#define USE_CUSTOM_LPF_FILTER //LPF FILTER MOD
//#define ENABLE_FACTORYALIGN
#define FACTORY_RECOVERY_BOOTUP //Whether to enter Factory Recovery mode by pressing FKey and turning on power
#define ENABLE_ADCMONITOR //Starting with Version 1.07, you can read ADC values directly from uBITX Manager. So this function is not necessary.
//#define FACTORY_RECOVERY_BOOTUP //Whether to enter Factory Recovery mode by pressing FKey and turning on power
//#define ENABLE_ADCMONITOR //Starting with Version 1.07, you can read ADC values directly from uBITX Manager. So this function is not necessary.
extern byte I2C_LCD_MASTER_ADDRESS; //0x27 //if Set I2C Address by uBITX Manager, read from EEProm
extern byte I2C_LCD_SECOND_ADDRESS; //only using Dual LCD Mode
@@ -253,6 +255,12 @@ extern byte I2C_LCD_SECOND_ADDRESS; //only using Dual LCD Mode
#define I2CMETER_CALCR 0x55 //Calculated SWR Meter
#define I2CMETER_UNCALCR 0x54 //Uncalculated SWR Meter
// Raduino<=>TeensyDSP data exchange
#define I2CMETER_RIGINF 0x50
// Raduino requests any CAT updates from TeensyDSP
//#define I2CMETER_REQCAT 0x51
//==============================================================================
// for public, Variable, functions
//==============================================================================

View File

@@ -39,6 +39,22 @@ char lastPaddle = 0;
//reads the analog keyer pin and reports the paddle
byte getPaddle(){
/*
* KC4UPR - IOP update, 2020-05-03
*
* Modifying this for the uBITX IOP. Big picture:
*
* (1) It uses the PTT input line.
*
* (2) It's always "straight key" mode (the IOP provides the keyer).
*/
if (digitalRead(PTT) == 1) // key/PTT is up
return 0;
else
return PADDLE_STRAIGHT;
/*
int paddle = analogRead(ANALOG_KEYER);
if (paddle > 800) // above 4v is up
@@ -52,6 +68,7 @@ byte getPaddle(){
return PADDLE_BOTH; //both are between 1 and 2v
else
return PADDLE_STRAIGHT; //less than 1v is the straight key
*/
}
/**
@@ -96,6 +113,17 @@ unsigned char keyerState = IDLE;
//Below is a test to reduce the keying error. do not delete lines
//create by KD8CEC for compatible with new CW Logic
char update_PaddleLatch(byte isUpdateKeyState) {
/*
* KC4UPR - IOP update, 2020-05-03
*
* Modifying this for the uBITX IOP. Big picture:
*
* No iambic keyer. It's always "straight key" based on the IOP.
*
* It uses the PTT line.
*/
return (digitalRead(PTT) ? 0 : DIT_L);
/*
unsigned char tmpKeyerControl = 0;
int paddle = analogRead(ANALOG_KEYER);
@@ -119,6 +147,7 @@ char update_PaddleLatch(byte isUpdateKeyState) {
keyerControl |= tmpKeyerControl;
return tmpKeyerControl;
*/
}
/*****************************************************************************
@@ -126,106 +155,113 @@ char update_PaddleLatch(byte isUpdateKeyState) {
// modified by KD8CEC
******************************************************************************/
void cwKeyer(void){
lastPaddle = 0;
bool continue_loop = true;
unsigned tmpKeyControl = 0;
if( Iambic_Key ) {
while(continue_loop) {
switch (keyerState) {
case IDLE:
tmpKeyControl = update_PaddleLatch(0);
if ( tmpKeyControl == DAH_L || tmpKeyControl == DIT_L ||
tmpKeyControl == (DAH_L | DIT_L) || (keyerControl & 0x03)) {
update_PaddleLatch(1);
keyerState = CHK_DIT;
}else{
if (0 < cwTimeout && cwTimeout < millis()){
cwTimeout = 0;
stopTx();
}
continue_loop = false;
}
break;
case CHK_DIT:
if (keyerControl & DIT_L) {
keyerControl |= DIT_PROC;
ktimer = cwSpeed;
keyerState = KEYED_PREP;
}else{
keyerState = CHK_DAH;
}
break;
case CHK_DAH:
if (keyerControl & DAH_L) {
ktimer = cwSpeed*3;
keyerState = KEYED_PREP;
}else{
keyerState = IDLE;
}
break;
case KEYED_PREP:
//modified KD8CEC
/*
ktimer += millis(); // set ktimer to interval end time
keyerControl &= ~(DIT_L + DAH_L); // clear both paddle latch bits
keyerState = KEYED; // next state
if (!inTx){
//DelayTime Option
delay_background(delayBeforeCWStartTime * 2, 2);
keyDown = 0;
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
startTx(TX_CW, 1);
}
* KC4UPR - IOP update, 2020-05-03
*
* Modifying this for the uBITX IOP. Big picture:
*
* No iambic keyer. It's always "straight key" based on the IOP.
*/
if (!inTx){
//DelayTime Option
delay_background(delayBeforeCWStartTime * 2, 2);
keyDown = 0;
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
startTx(TX_CW, 1);
}
ktimer += millis(); // set ktimer to interval end time
keyerControl &= ~(DIT_L + DAH_L); // clear both paddle latch bits
keyerState = KEYED; // next state
cwKeydown();
break;
case KEYED:
if (millis() > ktimer) { // are we at end of key down ?
cwKeyUp();
ktimer = millis() + cwSpeed; // inter-element time
keyerState = INTER_ELEMENT; // next state
}else if (keyerControl & IAMBICB) {
update_PaddleLatch(1); // early paddle latch in Iambic B mode
}
break;
case INTER_ELEMENT:
// Insert time between dits/dahs
update_PaddleLatch(1); // latch paddle state
if (millis() > ktimer) { // are we at end of inter-space ?
if (keyerControl & DIT_PROC) { // was it a dit or dah ?
keyerControl &= ~(DIT_L + DIT_PROC); // clear two bits
keyerState = CHK_DAH; // dit done, check for dah
}else{
keyerControl &= ~(DAH_L); // clear dah latch
keyerState = IDLE; // go idle
}
}
break;
}
Check_Cat(2);
} //end of while
}
else{
// lastPaddle = 0;
// bool continue_loop = true;
// unsigned tmpKeyControl = 0;
//
// if( Iambic_Key ) {
// while(continue_loop) {
// switch (keyerState) {
// case IDLE:
// tmpKeyControl = update_PaddleLatch(0);
// if ( tmpKeyControl == DAH_L || tmpKeyControl == DIT_L ||
// tmpKeyControl == (DAH_L | DIT_L) || (keyerControl & 0x03)) {
// update_PaddleLatch(1);
// keyerState = CHK_DIT;
// }else{
// if (0 < cwTimeout && cwTimeout < millis()){
// cwTimeout = 0;
// stopTx();
// }
// continue_loop = false;
// }
// break;
//
// case CHK_DIT:
// if (keyerControl & DIT_L) {
// keyerControl |= DIT_PROC;
// ktimer = cwSpeed;
// keyerState = KEYED_PREP;
// }else{
// keyerState = CHK_DAH;
// }
// break;
//
// case CHK_DAH:
// if (keyerControl & DAH_L) {
// ktimer = cwSpeed*3;
// keyerState = KEYED_PREP;
// }else{
// keyerState = IDLE;
// }
// break;
//
// case KEYED_PREP:
// //modified KD8CEC
// /*
// ktimer += millis(); // set ktimer to interval end time
// keyerControl &= ~(DIT_L + DAH_L); // clear both paddle latch bits
// keyerState = KEYED; // next state
// if (!inTx){
// //DelayTime Option
// delay_background(delayBeforeCWStartTime * 2, 2);
//
// keyDown = 0;
// cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
// startTx(TX_CW, 1);
// }
// */
// if (!inTx){
// //DelayTime Option
// delay_background(delayBeforeCWStartTime * 2, 2);
//
// keyDown = 0;
// cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
// startTx(TX_CW, 1);
// }
// ktimer += millis(); // set ktimer to interval end time
// keyerControl &= ~(DIT_L + DAH_L); // clear both paddle latch bits
// keyerState = KEYED; // next state
//
// cwKeydown();
// break;
//
// case KEYED:
// if (millis() > ktimer) { // are we at end of key down ?
// cwKeyUp();
// ktimer = millis() + cwSpeed; // inter-element time
// keyerState = INTER_ELEMENT; // next state
// }else if (keyerControl & IAMBICB) {
// update_PaddleLatch(1); // early paddle latch in Iambic B mode
// }
// break;
//
// case INTER_ELEMENT:
// // Insert time between dits/dahs
// update_PaddleLatch(1); // latch paddle state
// if (millis() > ktimer) { // are we at end of inter-space ?
// if (keyerControl & DIT_PROC) { // was it a dit or dah ?
// keyerControl &= ~(DIT_L + DIT_PROC); // clear two bits
// keyerState = CHK_DAH; // dit done, check for dah
// }else{
// keyerControl &= ~(DAH_L); // clear dah latch
// keyerState = IDLE; // go idle
// }
// }
// break;
// }
//
// Check_Cat(2);
// } //end of while
// }
// else{
while(1){
if (update_PaddleLatch(0) == DIT_L) {
// if we are here, it is only because the key is pressed
@@ -260,9 +296,9 @@ void cwKeyer(void){
return; //Tx stop control by Main Loop
}
Check_Cat(2);
//Check_Cat(2);
} //end of while
} //end of elese
// } //end of elese
}
@@ -365,5 +401,3 @@ void cwKeyer(){
}
}
*/

View File

@@ -993,6 +993,14 @@ char checkCountSMeter = 0;
//execute interval : 0.25sec
void idle_process()
{
// KC4UPR 2021-02-05 added update process for Raduino-TeensyDSP coordination
rigState.send_RIGINF();
delay(1);
rigState.receive_RIGINF();
//updateStateFromRaduino(rigState);
//doRaduinoToTeensy(&rigState);
//updateRaduinoFromState(rigState);
//S-Meter Display
if (((displayOption1 & 0x08) == 0x08 && (sdrModeOn == 0)) && (++checkCountSMeter > SMeterLatency))
{
@@ -1041,7 +1049,7 @@ void SendUbitxData(void)
EEPROM.get(EXTERNAL_DEVICE_OPT1, nextionDisplayOption);
SendCommandUL(CMD_DISP_OPTION2, nextionDisplayOption);
SendCommandStr(CMD_VERSION, (char *)("+v1.122")); //Version
SendCommandStr(CMD_VERSION, (char *)("+v1.200")); //Version
SendEEPromData(CMD_CALLSIGN, 0, userCallsignLength -1, 0);
/*

View File

@@ -263,7 +263,7 @@ void menuCHMemory(int btn, byte isMemoryToVfo){
}
}
Check_Cat(0); //To prevent disconnections
//Check_Cat(0); //To prevent disconnections
} //end of while (knob)
if (selectChannel < 20 && selectChannel >= 0)
@@ -697,7 +697,7 @@ int getValueByKnob(int valueType, int targetValue, int minKnobValue, int maxKnob
}
}
Check_Cat(0); //To prevent disconnections
//Check_Cat(0); //To prevent disconnections
}
return targetValue;
@@ -1290,7 +1290,7 @@ void doMenu(){
default :
menuExit(btnState); break;
} //end of switch
Check_Cat(0); //To prevent disconnections
//Check_Cat(0); //To prevent disconnections
} //end of while
//****************************************************************************
@@ -1690,7 +1690,7 @@ void menuSetupCarrier(int btn){
si5351bx_setfreq(0, usbCarrier);
printCarrierFreq(usbCarrier);
Check_Cat(0); //To prevent disconnections
//Check_Cat(0); //To prevent disconnections
delay(100);
}

View File

@@ -18,6 +18,8 @@ const PROGMEM uint8_t meters_bitmap[] = {
};
*/
//#include "RigState.h"
//SWR GRAPH, DrawMeter and drawingMeter Logic function by VK2ETA
#ifdef OPTION_SKINNYBARS //We want skninny bars with more text
@@ -296,4 +298,4 @@ int GetI2CSmeterValue(int valueType)
}
}
//======================================================================

BIN
References/B5A-0180-20.pdf Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@@ -0,0 +1,342 @@
EESchema-LIBRARY Version 2.4
#encoding utf-8
#
# Amplifier_Operational_LM324A
#
DEF Amplifier_Operational_LM324A U 0 5 Y Y 5 L N
F0 "U" 0 200 50 H V L CNN
F1 "Amplifier_Operational_LM324A" 0 -200 50 H V L CNN
F2 "" -50 100 50 H I C CNN
F3 "" 50 200 50 H I C CNN
ALIAS LM324 TLC274 TLC279 TL074 LM324A MCP6004 TL084 TL064 LMV324 LMC6484 MCP604 MC33079 MC33174 MC33179 OPA1604 OPA1679 OPA4134 OPA4340UA OPA4376 MCP6L94 TSV914 ADA4807-4 TSV994
$FPLIST
SOIC*3.9x8.7mm*P1.27mm*
DIP*W7.62mm*
TSSOP*4.4x5mm*P0.65mm*
SSOP*5.3x6.2mm*P0.65mm*
MSOP*3x3mm*P0.5mm*
$ENDFPLIST
DRAW
P 4 1 1 10 -200 200 200 0 -200 -200 -200 200 f
P 4 2 1 10 -200 200 200 0 -200 -200 -200 200 f
P 4 3 1 10 -200 200 200 0 -200 -200 -200 200 f
P 4 4 1 10 -200 200 200 0 -200 -200 -200 200 f
X ~ 1 300 0 100 L 50 50 1 1 O
X - 2 -300 -100 100 R 50 50 1 1 I
X + 3 -300 100 100 R 50 50 1 1 I
X + 5 -300 100 100 R 50 50 2 1 I
X - 6 -300 -100 100 R 50 50 2 1 I
X ~ 7 300 0 100 L 50 50 2 1 O
X + 10 -300 100 100 R 50 50 3 1 I
X ~ 8 300 0 100 L 50 50 3 1 O
X - 9 -300 -100 100 R 50 50 3 1 I
X + 12 -300 100 100 R 50 50 4 1 I
X - 13 -300 -100 100 R 50 50 4 1 I
X ~ 14 300 0 100 L 50 50 4 1 O
X V- 11 -100 -300 150 U 50 50 5 1 W
X V+ 4 -100 300 150 D 50 50 5 1 W
ENDDRAW
ENDDEF
#
# Amplifier_Operational_LM358
#
DEF Amplifier_Operational_LM358 U 0 5 Y Y 3 L N
F0 "U" 0 200 50 H V L CNN
F1 "Amplifier_Operational_LM358" 0 -200 50 H V L CNN
F2 "" 0 0 50 H I C CNN
F3 "" 0 0 50 H I C CNN
$FPLIST
SOIC*3.9x4.9mm*P1.27mm*
DIP*W7.62mm*
TO*99*
OnSemi*Micro8*
TSSOP*3x3mm*P0.65mm*
TSSOP*4.4x3mm*P0.65mm*
MSOP*3x3mm*P0.65mm*
SSOP*3.9x4.9mm*P0.635mm*
LFCSP*2x2mm*P0.5mm*
*SIP*
SOIC*5.3x6.2mm*P1.27mm*
$ENDFPLIST
DRAW
P 4 1 1 10 -200 200 200 0 -200 -200 -200 200 f
P 4 2 1 10 -200 200 200 0 -200 -200 -200 200 f
X ~ 1 300 0 100 L 50 50 1 1 O
X - 2 -300 -100 100 R 50 50 1 1 I
X + 3 -300 100 100 R 50 50 1 1 I
X + 5 -300 100 100 R 50 50 2 1 I
X - 6 -300 -100 100 R 50 50 2 1 I
X ~ 7 300 0 100 L 50 50 2 1 O
X V- 4 -100 -300 150 U 50 50 3 1 W
X V+ 8 -100 300 150 D 50 50 3 1 W
ENDDRAW
ENDDEF
#
# Amplifier_Operational_TL072
#
DEF Amplifier_Operational_TL072 U 0 5 Y Y 3 L N
F0 "U" 0 200 50 H V L CNN
F1 "Amplifier_Operational_TL072" 0 -200 50 H V L CNN
F2 "" 0 0 50 H I C CNN
F3 "" 0 0 50 H I C CNN
ALIAS LM358 AD8620 LMC6062 LMC6082 TL062 TL072 TL082 NE5532 SA5532 RC4558 RC4560 RC4580 LMV358 TS912 TSV912IDT TSV912IST TLC272 TLC277 MCP602 OPA1678 OPA2134 OPA2340 OPA2376xxD OPA2376xxDGK MC33078 MC33178 LM4562 OP249 OP275 ADA4075-2 MCP6002-xP MCP6002-xSN MCP6002-xMS LM7332 OPA2333xxD OPA2333xxDGK LMC6482 LT1492 LTC6081xMS8 LM6172 MCP6L92 NJM2043 NJM2114 NJM4556A NJM4558 NJM4559 NJM4560 NJM4580 NJM5532 ADA4807-2ARM OPA2691 LT6234 OPA2356xxD OPA2356xxDGK OPA1612AxD MC33172 OPA1602 TLV2372 LT6237 OPA2277
$FPLIST
SOIC*3.9x4.9mm*P1.27mm*
DIP*W7.62mm*
TO*99*
OnSemi*Micro8*
TSSOP*3x3mm*P0.65mm*
TSSOP*4.4x3mm*P0.65mm*
MSOP*3x3mm*P0.65mm*
SSOP*3.9x4.9mm*P0.635mm*
LFCSP*2x2mm*P0.5mm*
*SIP*
SOIC*5.3x6.2mm*P1.27mm*
$ENDFPLIST
DRAW
P 4 1 1 10 -200 200 200 0 -200 -200 -200 200 f
P 4 2 1 10 -200 200 200 0 -200 -200 -200 200 f
X ~ 1 300 0 100 L 50 50 1 1 O
X - 2 -300 -100 100 R 50 50 1 1 I
X + 3 -300 100 100 R 50 50 1 1 I
X + 5 -300 100 100 R 50 50 2 1 I
X - 6 -300 -100 100 R 50 50 2 1 I
X ~ 7 300 0 100 L 50 50 2 1 O
X V- 4 -100 -300 150 U 50 50 3 1 W
X V+ 8 -100 300 150 D 50 50 3 1 W
ENDDRAW
ENDDEF
#
# Connector_Conn_01x02_Male
#
DEF Connector_Conn_01x02_Male J 0 40 Y N 1 F N
F0 "J" 0 100 50 H V C CNN
F1 "Connector_Conn_01x02_Male" 0 -200 50 H V C CNN
F2 "" 0 0 50 H I C CNN
F3 "" 0 0 50 H I C CNN
$FPLIST
Connector*:*_1x??_*
$ENDFPLIST
DRAW
S 34 -95 0 -105 1 1 6 F
S 34 5 0 -5 1 1 6 F
P 2 1 1 6 50 -100 34 -100 N
P 2 1 1 6 50 0 34 0 N
X Pin_1 1 200 0 150 L 50 50 1 1 P
X Pin_2 2 200 -100 150 L 50 50 1 1 P
ENDDRAW
ENDDEF
#
# Connector_Conn_01x03_Male
#
DEF Connector_Conn_01x03_Male J 0 40 Y N 1 F N
F0 "J" 0 200 50 H V C CNN
F1 "Connector_Conn_01x03_Male" 0 -200 50 H V C CNN
F2 "" 0 0 50 H I C CNN
F3 "" 0 0 50 H I C CNN
$FPLIST
Connector*:*_1x??_*
$ENDFPLIST
DRAW
S 34 -95 0 -105 1 1 6 F
S 34 5 0 -5 1 1 6 F
S 34 105 0 95 1 1 6 F
P 2 1 1 6 50 -100 34 -100 N
P 2 1 1 6 50 0 34 0 N
P 2 1 1 6 50 100 34 100 N
X Pin_1 1 200 100 150 L 50 50 1 1 P
X Pin_2 2 200 0 150 L 50 50 1 1 P
X Pin_3 3 200 -100 150 L 50 50 1 1 P
ENDDRAW
ENDDEF
#
# Connector_Conn_01x06_Male
#
DEF Connector_Conn_01x06_Male J 0 40 Y N 1 F N
F0 "J" 0 300 50 H V C CNN
F1 "Connector_Conn_01x06_Male" 0 -400 50 H V C CNN
F2 "" 0 0 50 H I C CNN
F3 "" 0 0 50 H I C CNN
$FPLIST
Connector*:*_1x??_*
$ENDFPLIST
DRAW
S 34 -295 0 -305 1 1 6 F
S 34 -195 0 -205 1 1 6 F
S 34 -95 0 -105 1 1 6 F
S 34 5 0 -5 1 1 6 F
S 34 105 0 95 1 1 6 F
S 34 205 0 195 1 1 6 F
P 2 1 1 6 50 -300 34 -300 N
P 2 1 1 6 50 -200 34 -200 N
P 2 1 1 6 50 -100 34 -100 N
P 2 1 1 6 50 0 34 0 N
P 2 1 1 6 50 100 34 100 N
P 2 1 1 6 50 200 34 200 N
X Pin_1 1 200 200 150 L 50 50 1 1 P
X Pin_2 2 200 100 150 L 50 50 1 1 P
X Pin_3 3 200 0 150 L 50 50 1 1 P
X Pin_4 4 200 -100 150 L 50 50 1 1 P
X Pin_5 5 200 -200 150 L 50 50 1 1 P
X Pin_6 6 200 -300 150 L 50 50 1 1 P
ENDDRAW
ENDDEF
#
# Device_C
#
DEF Device_C C 0 10 N Y 1 F N
F0 "C" 25 100 50 H V L CNN
F1 "Device_C" 25 -100 50 H V L CNN
F2 "" 38 -150 50 H I C CNN
F3 "" 0 0 50 H I C CNN
$FPLIST
C_*
$ENDFPLIST
DRAW
P 2 0 1 20 -80 -30 80 -30 N
P 2 0 1 20 -80 30 80 30 N
X ~ 1 0 150 110 D 50 50 1 1 P
X ~ 2 0 -150 110 U 50 50 1 1 P
ENDDRAW
ENDDEF
#
# Device_CP1
#
DEF Device_CP1 C 0 10 N N 1 F N
F0 "C" 25 100 50 H V L CNN
F1 "Device_CP1" 25 -100 50 H V L CNN
F2 "" 0 0 50 H I C CNN
F3 "" 0 0 50 H I C CNN
$FPLIST
CP_*
$ENDFPLIST
DRAW
A 0 -150 128 1287 513 0 1 20 N -80 -50 80 -50
P 2 0 1 20 -80 30 80 30 N
P 2 0 1 0 -70 90 -30 90 N
P 2 0 1 0 -50 70 -50 110 N
X ~ 1 0 150 110 D 50 50 1 1 P
X ~ 2 0 -150 130 U 50 50 1 1 P
ENDDRAW
ENDDEF
#
# Device_D
#
DEF Device_D D 0 40 N N 1 F N
F0 "D" 0 100 50 H V C CNN
F1 "Device_D" 0 -100 50 H V C CNN
F2 "" 0 0 50 H I C CNN
F3 "" 0 0 50 H I C CNN
$FPLIST
TO-???*
*_Diode_*
*SingleDiode*
D_*
$ENDFPLIST
DRAW
P 2 0 1 8 -50 50 -50 -50 N
P 2 0 1 0 50 0 -50 0 N
P 4 0 1 8 50 50 50 -50 -50 0 50 50 N
X K 1 -150 0 100 R 50 50 1 1 P
X A 2 150 0 100 L 50 50 1 1 P
ENDDRAW
ENDDEF
#
# Device_R_POT_US
#
DEF Device_R_POT_US RV 0 40 Y N 1 F N
F0 "RV" -175 0 50 V V C CNN
F1 "Device_R_POT_US" -100 0 50 V V C CNN
F2 "" 0 0 50 H I C CNN
F3 "" 0 0 50 H I C CNN
$FPLIST
Potentiometer*
$ENDFPLIST
DRAW
P 2 0 1 0 0 -90 0 -100 N
P 2 0 1 0 0 100 0 90 N
P 2 0 1 0 100 0 60 0 N
P 4 0 1 0 45 0 90 20 90 -20 45 0 F
P 5 0 1 0 0 -30 40 -45 0 -60 -40 -75 0 -90 N
P 5 0 1 0 0 30 40 15 0 0 -40 -15 0 -30 N
P 5 0 1 0 0 90 40 75 0 60 -40 45 0 30 N
X 1 1 0 150 50 D 50 50 1 1 P
X 2 2 150 0 50 L 50 50 1 1 P
X 3 3 0 -150 50 U 50 50 1 1 P
ENDDRAW
ENDDEF
#
# Device_R_US
#
DEF Device_R_US R 0 0 N Y 1 F N
F0 "R" 100 0 50 V V C CNN
F1 "Device_R_US" -100 0 50 V V C CNN
F2 "" 40 -10 50 V I C CNN
F3 "" 0 0 50 H I C CNN
$FPLIST
R_*
$ENDFPLIST
DRAW
P 2 0 1 0 0 -90 0 -100 N
P 2 0 1 0 0 90 0 100 N
P 5 0 1 0 0 -30 40 -45 0 -60 -40 -75 0 -90 N
P 5 0 1 0 0 30 40 15 0 0 -40 -15 0 -30 N
P 5 0 1 0 0 90 40 75 0 60 -40 45 0 30 N
X ~ 1 0 150 50 D 50 50 1 1 P
X ~ 2 0 -150 50 U 50 50 1 1 P
ENDDRAW
ENDDEF
#
# Transistor_BJT_PN2222A
#
DEF Transistor_BJT_PN2222A Q 0 0 Y N 1 F N
F0 "Q" 200 75 50 H V L CNN
F1 "Transistor_BJT_PN2222A" 200 0 50 H V L CNN
F2 "Package_TO_SOT_THT:TO-92_Inline" 200 -75 50 H I L CIN
F3 "" 0 0 50 H I L CNN
$FPLIST
TO?92*
$ENDFPLIST
DRAW
C 50 0 111 0 1 10 N
P 2 0 1 0 0 0 25 0 N
P 2 0 1 0 100 -100 25 -25 N
P 2 0 1 0 100 100 25 25 N
P 3 0 1 20 25 75 25 -75 25 -75 N
P 3 0 1 0 95 -95 75 -75 75 -75 N
P 5 0 1 0 45 -65 65 -45 85 -85 45 -65 45 -65 F
X E 1 100 -200 100 U 50 50 1 1 P
X B 2 -200 0 200 R 50 50 1 1 I
X C 3 100 200 100 D 50 50 1 1 P
ENDDRAW
ENDDEF
#
# power_+5V
#
DEF power_+5V #PWR 0 0 Y Y 1 F P
F0 "#PWR" 0 -150 50 H I C CNN
F1 "power_+5V" 0 140 50 H V C CNN
F2 "" 0 0 50 H I C CNN
F3 "" 0 0 50 H I C CNN
DRAW
P 2 0 1 0 -30 50 0 100 N
P 2 0 1 0 0 0 0 100 N
P 2 0 1 0 0 100 30 50 N
X +5V 1 0 0 0 U 50 50 1 1 W N
ENDDRAW
ENDDEF
#
# power_GND
#
DEF power_GND #PWR 0 0 Y Y 1 F P
F0 "#PWR" 0 -250 50 H I C CNN
F1 "power_GND" 0 -150 50 H V C CNN
F2 "" 0 0 50 H I C CNN
F3 "" 0 0 50 H I C CNN
DRAW
P 6 0 1 0 0 0 0 -50 50 -50 0 -100 -50 -50 0 -50 N
X GND 1 0 0 0 D 50 50 1 1 W N
ENDDRAW
ENDDEF
#
#End Library

View File

@@ -0,0 +1 @@
(kicad_pcb (version 4) (host kicad "dummy file") )

View File

@@ -0,0 +1,33 @@
update=22/05/2015 07:44:53
version=1
last_client=kicad
[general]
version=1
RootSch=
BoardNm=
[pcbnew]
version=1
LastNetListRead=
UseCmpFile=1
PadDrill=0.600000000000
PadDrillOvalY=0.600000000000
PadSizeH=1.500000000000
PadSizeV=1.500000000000
PcbTextSizeV=1.500000000000
PcbTextSizeH=1.500000000000
PcbTextThickness=0.300000000000
ModuleTextSizeV=1.000000000000
ModuleTextSizeH=1.000000000000
ModuleTextSizeThickness=0.150000000000
SolderMaskClearance=0.000000000000
SolderMaskMinWidth=0.000000000000
DrawSegmentWidth=0.200000000000
BoardOutlineThickness=0.100000000000
ModuleOutlineThickness=0.150000000000
[cvpcb]
version=1
NetIExt=net
[eeschema]
version=1
LibDir=
[eeschema/libraries]

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,16 @@
EESchema Schematic File Version 4
EELAYER 30 0
EELAYER END
$Descr A4 11693 8268
encoding utf-8
Sheet 2 2
Title ""
Date ""
Rev ""
Comp ""
Comment1 ""
Comment2 ""
Comment3 ""
Comment4 ""
$EndDescr
$EndSCHEMATC

Binary file not shown.

480
TeensyDSP/DSP.cpp Normal file
View File

@@ -0,0 +1,480 @@
//======================================================================
// DSP.cpp
//======================================================================
#include "DSP.h"
#include <i2c_t3.h>
//#include <Wire.h>
//#include <SPI.h>
//#include <SD.h>
//#include <SerialFlash.h>
// GUItool: begin automatically generated code
AudioInputUSB usbIn; //xy=63,305
AudioInputI2S lineIn; //xy=71,197
AudioSynthWaveformSine tone1; //xy=111,369
AudioSynthWaveformSine tone2; //xy=111,410
AudioMixer4 rxAudio; //xy=328,111
AudioMixer4 txAudio; //xy=332,299
AudioAnalyzeRMS txVoxLevel; //xy=490,340
AudioFilterFIR rxFilter; //xy=493,103
AudioAmplifier usbOutAmp; //xy=658,99
AudioAmplifier lineOutAmp; //xy=659,162
AudioAmplifier usbBypassAmp; //xy=666,225
AudioAmplifier txOutAmp; //xy=713,301
AudioOutputI2S lineOut; //xy=876,294
AudioOutputUSB usbOut; //xy=878,255
AudioConnection patchCord1(usbIn, 0, txAudio, 1);
AudioConnection patchCord2(lineIn, 0, rxAudio, 0);
AudioConnection patchCord3(lineIn, 1, txAudio, 0);
AudioConnection patchCord4(tone1, 0, txAudio, 2);
AudioConnection patchCord5(tone1, 0, rxAudio, 2);
AudioConnection patchCord6(tone2, 0, txAudio, 3);
AudioConnection patchCord7(tone2, 0, rxAudio, 3);
AudioConnection patchCord8(rxAudio, rxFilter);
AudioConnection patchCord9(rxAudio, usbBypassAmp);
AudioConnection patchCord10(txAudio, txVoxLevel);
AudioConnection patchCord11(txAudio, txOutAmp);
AudioConnection patchCord12(rxFilter, usbOutAmp);
AudioConnection patchCord13(rxFilter, lineOutAmp);
AudioConnection patchCord14(usbOutAmp, 0, usbOut, 0);
AudioConnection patchCord15(lineOutAmp, 0, lineOut, 0);
AudioConnection patchCord16(usbBypassAmp, 0, usbOut, 1);
AudioConnection patchCord17(txOutAmp, 0, lineOut, 1);
AudioControlSGTL5000 audioCtrl; //xy=337,440
// GUItool: end automatically generated code
void UBitxDSP::begin() {
// Basic audio setup
AudioMemory(16); // TODO: optimize this
audioCtrl.enable();
audioCtrl.volume(0.0); // headphone volume...
audioCtrl.muteHeadphone(); // ...not used by UBitxDSP
setupRxAudio();
setupTxAudio();
// Default to RX.
muteRxIn(); // redundant?
muteTxIn(); // redundant?
isTx = true; // so that rx() call works
rx();
// Setup the VOX - TBD
// Setup the RX Filter.
setRxFilter(300.0, 3000.0);
sinceLastUpdate = 0;
}
void UBitxDSP::update() {
// Update the USB volume (level of TX USB output) periodically.
if (sinceLastUpdate > DSP_MILLIS_PER_UPDATE) {
float vol = usbIn.volume();
if (vol != usbVol) {
setTxInLevel(TX_USB, vol);
usbVol = vol;
}
sinceLastUpdate = 0;
}
}
void UBitxDSP::end() {
bypassRxFilter();
}
/**********************************************************************
* Transmit/Receive switching
**********************************************************************/
/*!
* Return to receive (RX) mode from transmit (TX) mode.
* First the transmit audio output is muted, to ensure that no more
* audio goes to the rig. Then we check to see if the latched TX audio
* source was different than the selected TX audio source; this happens
* if the radio is currently set for a particular input (which
* determines what is monitored by the VOX), but then is commanded to
* transmit a different source (e.g. based on a CAT command). The
* actual transmit audio source is latched during transmit, but upon
* returning to receive, we restore the selected transmit audio.
*/
void UBitxDSP::rx() {
if (isTx) {
muteTxOut();
if (txSrcLatched != txSrc) {
setTxAudioIn(txSrc);
}
if (txSrcLatched == MIC_IN) {
audioCtrl.inputSelect(AUDIO_INPUT_LINEIN);
}
unmuteRxIn(RX_AUDIO);
isTx = false;
}
}
/*!
* Enter transmit (TX) mode from receive (RX) mode.
*/
void UBitxDSP::tx(TxAudioIn src) {
if (!isTx) {
muteRxIn(RX_AUDIO);
txSrcLatched = src;
if (txSrcLatched != txSrc) {
setTxAudioIn(txSrcLatched, true);
}
if (txSrcLatched == MIC_IN) {
audioCtrl.inputSelect(AUDIO_INPUT_MIC);
audioCtrl.micGain(micGain);
}
unmuteTxOut();
isTx = true;
}
}
/**********************************************************************
* General audio setup -- called via begin()
**********************************************************************/
void UBitxDSP::setupRxAudio() {
for (int i = 0; i < NUM_RX_AUDIO_CH; i++) {
if (i == RX_AUDIO)
rxAudio.gain(i, 1.0);
else
rxAudio.gain(i, 0.0);
}
// Rig (Line) Input (RX)
audioCtrl.inputSelect(AUDIO_INPUT_LINEIN);
audioCtrl.unmuteLineout();
audioCtrl.lineInLevel(9, 5); // RX, TX
audioCtrl.lineOutLevel(29, 31); // RX, TX
// Line Output (RX)
setLineOutLevel(1.0);
// USB Output (RX)
setUSBOutLevel(1.0);
}
void UBitxDSP::setupTxAudio() {
for (int i = 0; i < NUM_TX_AUDIO_CH; i++) {
txAudio.gain(i, 0.0);
}
// Mic Input (TX)
audioCtrl.micGain(0); // TODO: set value
// Line Input (TX)
// USB Input (TX)
// Rig (Line) Output (TX)
txOutAmp.gain(1.0);
tone1.amplitude(1.0); // TODO - just do this once.
tone1.frequency(1500); // TODO: Make this dynamic based on CW (sidetone freq) versus data (1500 Hz)
tone1.amplitude(1.0); // TODO - just do this once.
tone1.amplitude(1.0); // TODO - just do this once.
tone1.frequency(700);
tone2.frequency(1900);
}
/**********************************************************************
* Receive audio chain
**********************************************************************/
void UBitxDSP::setRxInLevel(RxAudioCh ch, float level) {
if (ch < NUM_RX_AUDIO_CH) {
state.rxIn[ch].level = level;
rxAudio.gain(ch, state.rxIn[ch].mute ? 0.0 : state.rxIn[ch].level);
}
}
void UBitxDSP::muteRxIn() {
for (int i = 0; i < NUM_RX_AUDIO_CH; i++) {
state.rxIn[RxAudioCh(i)].mute = true;
rxAudio.gain(i, 0.0);
}
}
void UBitxDSP::muteRxIn(RxAudioCh ch) {
if (ch < NUM_RX_AUDIO_CH) {
if (!state.rxIn[ch].mute) {
state.rxIn[ch].mute = true;
rxAudio.gain(ch, 0.0);
}
}
}
void UBitxDSP::unmuteRxIn(RxAudioCh ch) {
if (ch < NUM_RX_AUDIO_CH) {
if (state.rxIn[ch].mute) {
state.rxIn[ch].mute = false;
rxAudio.gain(ch, state.rxIn[ch].level);
}
}
}
void UBitxDSP::setLineOutLevel(float level) {
state.rxOut[LINE_OUT].level = level;
lineOutAmp.gain(state.rxOut[LINE_OUT].mute ? 0.0 : state.rxOut[LINE_OUT].level);
}
void UBitxDSP::setUSBOutLevel(float level) {
state.rxOut[USB_OUT].level = level;
usbOutAmp.gain(state.rxOut[USB_OUT].mute ? 0.0 : state.rxOut[USB_OUT].level);
usbBypassAmp.gain(state.rxOut[USB_OUT].mute ? 0.0 : state.rxOut[USB_OUT].level);
}
/**********************************************************************
* Transmit audio chain
**********************************************************************/
void UBitxDSP::setTxInLevel(TxAudioCh ch, float level) {
if (ch < NUM_TX_AUDIO_CH) {
state.txIn[ch].level = level;
txAudio.gain(ch, state.txIn[ch].mute ? 0.0 : state.txIn[ch].level);
}
}
void UBitxDSP::muteTxIn() {
for (int i = 0; i < NUM_TX_AUDIO_CH; i++) {
state.txIn[TxAudioCh(i)].mute = true;
txAudio.gain(i, 0.0);
}
}
void UBitxDSP::muteTxIn(TxAudioCh ch) {
if (ch < NUM_TX_AUDIO_CH) {
if (!state.txIn[ch].mute) {
state.txIn[ch].mute = true;
txAudio.gain(ch, 0.0);
}
}
}
void UBitxDSP::unmuteTxIn(TxAudioCh ch) {
if (ch < NUM_TX_AUDIO_CH) {
if (state.txIn[ch].mute) {
state.txIn[ch].mute = false;
rxAudio.gain(ch, state.txIn[ch].level);
}
}
}
void UBitxDSP::setTxOutLevel(float level) {
state.txOut.level = level;
txOutAmp.gain(state.txOut.mute ? 0.0 : state.txOut.level);
}
void UBitxDSP::muteTxOut() {
if (!state.txOut.mute) {
state.txOut.mute = true;
txOutAmp.gain(0.0);
}
}
void UBitxDSP::unmuteTxOut() {
if (state.txOut.mute) {
state.txOut.mute = false;
txOutAmp.gain(state.txOut.level);
}
}
void UBitxDSP::setLineInLevel(float level) {
state.txIn[TX_LINE].level = level;
txAudio.gain(TX_LINE, state.txIn[TX_LINE].mute ? 0.0 : state.txIn[TX_LINE].level);
}
void UBitxDSP::setUSBInLevel(float level) {
state.txIn[TX_USB].level = level;
txAudio.gain(TX_USB, state.txIn[TX_USB].mute ? 0.0 : state.txIn[TX_USB].level);
}
void UBitxDSP::setTxAudioIn(TxAudioIn src, bool isTemp) {
if (!isTemp) {
txSrc = src;
}
if (!isTx) {
muteTxIn(); // Mute all channels, then unmute the desired ones.
switch (src) { // Don't switch inputs while transmitting.
case MIC_IN:
// Note that we can't actually use the VOX code on the mic input,
// because we can't make the actual mic input active without
// losing our receive audio. So, mic input is never actually
// selected until it is time for it to transmit, which makes the
// VOX moot. The caller must make use of an external, analog VOX
// circuit driving a GPIO pin, or something similar (or the PTT of
// course) to begin actually using the mic input. So this case
// just falls through to the line input.
case LINE_IN:
unmuteTxIn(TX_LINE);
break;
case USB_IN:
unmuteTxIn(TX_USB);
break;
case TUNE_IN:
tone1.amplitude(1.0); // TODO - just do this once.
tone1.frequency(1500); // TODO: Make this dynamic based on CW (sidetone freq) versus data (1500 Hz)
unmuteTxIn(TX_TONE1);
break;
case TWO_TONE_IN:
tone1.amplitude(1.0); // TODO - just do this once.
tone1.amplitude(1.0); // TODO - just do this once.
tone1.frequency(700);
tone2.frequency(1900);
unmuteTxIn(TX_TONE1);
unmuteTxIn(TX_TONE2);
break;
default:
// should never happen
break;
}
}
}
/**********************************************************************
* Receive audio filter (band pass)
**********************************************************************/
const int minRxFilterLo = MIN_RX_FILTER_LO;
const int maxRxFilterHi = MAX_RX_FILTER_HI;
const int minRxFilterWidth = MIN_RX_FILTER_WIDTH;
const int maxRxFilterWidth = MAX_RX_FILTER_WIDTH;
const int minRxFilterCenter = MIN_RX_FILTER_CENTER;
const int maxRxFilterCenter = MAX_RX_FILTER_CENTER;
/*!
* @brief Bypass the RX audio filter.
*/
void UBitxDSP::bypassRxFilter() {
rxFilter.begin(FIR_PASSTHRU, NUM_COEFFICIENTS);
}
/*!
@brief Update the RX audio filter using the currently set low and
high frequencies. This is called by each of the public
filter methods to update the filter with new frequencies.
*/
void UBitxDSP::updateRxFilter() {
audioFilter(coefficients, NUM_COEFFICIENTS, ID_BANDPASS, W_HAMMING, double(state.rxFilterLo), double(state.rxFilterHi));
rxFilter.begin(coefficients, NUM_COEFFICIENTS);
}
void UBitxDSP::setRxFilter(int lo, int hi) {
if (hi < lo + minRxFilterWidth) {
hi = lo + minRxFilterWidth;
}
if (hi > maxRxFilterHi) {
hi = maxRxFilterHi;
}
if (lo > hi - minRxFilterWidth) {
lo = hi - minRxFilterWidth;
}
if (lo < minRxFilterLo) {
lo = minRxFilterLo;
}
state.rxFilterHi = hi;
state.rxFilterLo = lo;
updateRxFilter();
}
void UBitxDSP::setRxFilterLo(int lo) {
if (lo > state.rxFilterHi - minRxFilterWidth) {
lo = state.rxFilterHi - minRxFilterWidth;
}
if (lo < minRxFilterLo) {
lo = minRxFilterLo;
}
state.rxFilterLo = lo;
updateRxFilter();
}
void UBitxDSP::setRxFilterHi(int hi) {
if (hi < state.rxFilterLo + minRxFilterWidth) {
hi = state.rxFilterLo + minRxFilterWidth;
}
if (hi > maxRxFilterHi) {
hi = maxRxFilterHi;
}
state.rxFilterHi = hi;
updateRxFilter();
}
void UBitxDSP::setRxFilterWidth(int width) {
if (width < minRxFilterWidth) {
width = minRxFilterWidth;
} else if (width > maxRxFilterWidth) {
width = maxRxFilterWidth;
}
int center = (state.rxFilterHi + state.rxFilterLo) / 2;
int lo = center - (width / 2);
int hi = center + (width / 2);
setRxFilter(lo, hi);
}
void UBitxDSP::setRxFilterCenter(int center) {
if (center < minRxFilterCenter) {
center = minRxFilterCenter;
} else if (center > maxRxFilterCenter) {
center = maxRxFilterCenter;
}
int width = state.rxFilterHi - state.rxFilterLo;
int lo = center - (width / 2);
int hi = center + (width / 2);
setRxFilter(lo, hi);
}
/**********************************************************************
* Transmit Voice-Operated-Switch (VOX)
**********************************************************************/
float UBitxDSP::getVoxLevel() const {
if (return txVoxLevel.available()) {
prevVox = txVoxLevel.read();
}
return prevVox;
}
/**********************************************************************
* Singleton - the DSP instance
**********************************************************************/
// TODO: Fix this. This won't work... this compilation unit won't be
// able to instantiate a class it doesn't know about.
#ifndef UBITXDSP_CLASS
#define UBITXDSP_CLASS UBitxDSP
#endif
UBITXDSP_CLASS theDSP;
UBitxDSP& DSP = theDSP;
/*
NOTES
Major functions:
- tx() - start transmitting / pause receiving
- rx() - stop transmitting / resume receiving
- setTxSource() - set the TX audio source to MIC_IN, LINE_IN, or USB_IN
- also sets the relevant VOX source/parameters (as applicable)
Receive audio chain:
-
*/
//======================================================================
// EOF
//======================================================================

283
TeensyDSP/DSP.h Normal file
View File

@@ -0,0 +1,283 @@
//======================================================================
// DSP.h
//======================================================================
#ifndef __DSP_h__
#define __DSP_h__
#include <Audio.h>
#include <dynamicFilters.h>
#include "Debug.h"
/**********************************************************************
* Macros
**********************************************************************/
#define MIN_RX_FILTER_LO (0.0) //! Min allowable value of the RX filter low-cut frequency
#define MAX_RX_FILTER_HI (5000.0) //! Max allowable value of the RX filter hi-cut frequency
#define MIN_RX_FILTER_WIDTH (0.0) //! Min allowable value of the RX filter bandwidth
#define MAX_RX_FILTER_WIDTH (5000.0) //! Max allowable value of the RX filter bandwidth
#define MIN_RX_FILTER_CENTER (0.0) //! Min allowable value of the RX filter center frequency
#define MAX_RX_FILTER_CENTER (5000.0) //! Max allowable value of the RX filter center frequency
#define DSP_MILLIS_PER_UPDATE (100) //! Number of milliseconds between update of the DSP object
#define TX_VOX_MIC_THRESH (0.0) //! Threshold for mic VOX (not implemented, since mic requires special handling)
#define TX_VOX_LINE_THRESH (0.25) //! Threshold for line in VOX
#define TX_VOX_USB_THRESH (0.25) //! Threshold for USB VOX
#define TX_VOX_TUNE_THRESH (0.0) //! Threshold for tune (single tone) VOX (not expected to be used)
#define TX_VOX_TT_THRESH (0.0) //! Threshold for two-tone VOX (not expected to be used)
#define TX_VOX_DELAY (500) //! VOX delay in milliseconds
/**********************************************************************
* Enumerations
**********************************************************************/
//! Defines the four separate RX audio input channels available.
enum RxAudioCh {
RX_AUDIO = 0, // Normal receiver audio input channel
RX_SPARE, // Not used
RX_TONE1 , // Optional tone #1 input channel (currently not used)
RX_TONE2, // Optional tone #2 input channel (currently not used)
NUM_RX_AUDIO_CH // Total number of channels
};
//! Defines the different RX audio inputs (not channels).
enum RxAudioIn {
RIG_IN = 0, // Normal rig input (receiver audio)
NUM_RX_AUDIO_IN // Total number of inputs
};
//! Defines the different RX audio outputs.
enum RxAudioOut {
LINE_OUT = 0, // Line audio out (and speaker)
USB_OUT, // USB audio out
NUM_RX_AUDIO_OUT
};
//! Defines the four separate TX audio input channels available.
enum TxAudioCh {
TX_LINE = 0, // Line and/or mic audio input channel
TX_USB, // USB audio input channel
TX_TONE1, // Audio tone #1 input channel
TX_TONE2, // Audio tone #2 input channel
NUM_TX_AUDIO_CH // Toal number of channels
};
//! Defines the different TX audio input sources (not channels!).
enum TxAudioIn {
MIC_IN = 0, // Microphone transmit audio input
LINE_IN, // Line ("AUX") transmit audio input
USB_IN, // USB transmit audio input
TUNE_IN, // Tune input (transmits a single tone)
TWO_TONE_IN, // Two tone audio input (transmits two tones)
NUM_TX_AUDIO_IN // Total number of inputs
};
/**********************************************************************
* Classes
**********************************************************************/
//! Defines parameters for a simple audio channel that can be muted.
struct AudioChannel {
bool mute = false;
float level = 0.0;
};
/*!
* Contains the current 'persistent' state of the DSP.
* This includes all audio-specific state that can be saved to, or
* restored from, EEPROM. It does not include 'transient' state (such
* as whether we're currently transmitting or receiving).
*/
struct DSPState {
//! Receiver audio inputs; all default to muted.
AudioChannel rxIn[NUM_RX_AUDIO_CH] = {
{true, 1.0}, // audio
{true, 0.0}, // spare 1
{true, 0.0}, // spare 2
{true, 0.0} // spare 3
};
//! Receiver audio output; defaults to un
muted.
AudioChannel rxOut[NUM_RX_AUDIO_OUT] = {
{false, 1.0}, // line
{false, 1.0} // USB
};
//! Transmitter audio inputs; all default to muted.
AudioChannel txIn[NUM_TX_AUDIO_CH] = {
{true, 0.1}, // line
{true, 0.1}, // USB
{true, 0.1}, // tone 1
{true, 0.1} // tone 2
};
//! Tranmitter audio output; defaults to muted.
AudioChannel txOut = {true, 1.0};
//! Current RX filter settings
float rxFilterLo = 300.0;
float rxFilterHi = 3000.0;
};
/*!
* Defines the DSP subsystem of the UBitx V5X.
* The DSP subsystem, which relies on the Teensy Audio Library, is
* responsible for setting up the audio inputs and outputs for both
* receive (RX) and transmit (TX) audio, maintaining the correct path
* between inputs and outputs based on current TX/RX state, and setting
* up audio filters and other audio-based modules for the RX and TX
* audio paths.
*/
class UBitxDSP {
/********************************************************************
* Object creation/deletion
********************************************************************/
public:
UBitxDSP() {}
/********************************************************************
* Basic administration
********************************************************************/
public:
void begin();
void update();
void end();
/********************************************************************
* Transmit/Receive switching
********************************************************************/
public:
void rx();
inline void tx() { tx(txSrc); }
void tx(TxAudioIn src);
/********************************************************************
* General audio setup -- called via begin()
********************************************************************/
protected:
virtual void setupRxAudio();
virtual void setupTxAudio();
/********************************************************************
* Receive audio chain
********************************************************************/
// Basic control of RX audio inputs and outputs.
public:
void setRxInLevel(RxAudioCh ch, float level); // Set the audio input level for a given channel.
void muteRxIn(); // Mute all RX audio input channels.
void muteRxIn(RxAudioCh ch); // Mute a specific RX audio input channel.
void unmuteRxIn(RxAudioCh ch); // Un-mute a specific RX audio input channel.
void setLineOutLevel(float level); // Set the line output level (0.0 - 1.0).
void setUSBOutLevel(float level); // Set the USB output level (0.0 - 1.0).
/********************************************************************
* Transmit audio chain
********************************************************************/
// Basic control of TX audio inputs and outputs.
public:
void setTxInLevel(TxAudioCh ch, float level); // Set the audio input level for a given channel.
void muteTxIn(); // Mute all TX audio input channels.
void muteTxIn(TxAudioCh ch); // Mute a specific TX audio input channel.
void unmuteTxIn(TxAudioCh ch); // Un-mute a specific TX audio input channel.
void setTxOutLevel(float level); // Set the TX audio output level.
void muteTxOut(); // Mute the TX audio output.
void unmuteTxOut(); // Un-mute the TX audio output.
void setLineInLevel(float level); // Set the line input level (0.0 - 1.0).
void setUSBInLevel(float level); // Set the USB input level (0.0 - 1.0).
// Transmit audio selection (may be overriden at actual transmit time).
public:
void setTxAudioIn(TxAudioIn src, bool isTemp = false); // Select a specific TX audio input path, and identify it as permanent or temporary.
inline TxAudioIn getTxAudioIn() const { return txSrc; } // Return the current TX audio input.
// Mic input controls.
public:
inline void setMicGain(float level) { micGain = static_cast<unsigned>(level * 63.0); } // Set the mic gain.
/********************************************************************
* Receive audio filter (band pass)
********************************************************************/
public:
void bypassRxFilter();
void updateRxFilter();
void setRxFilter(float lo, float hi);
void setRxFilterLo(float lo);
void setRxFilterHi(float hi);
void setRxFilterWidth(float width);
void setRxFilterCenter(float center);
/*!
* Get the current low frequency bound of the RX band pass filter.
* @return The low frequency bound.
*/
inline float getRxFilterLo() const { return state.rxFilterLo; }
/*!
* Get the current high frequency bound of the RX band pass filter.
* @return The high frequency bound.
*/
inline float getRxFilterHi() const { return state.rxFilterHi; }
/*!
* Get the current width of the RX band pass filter.
* @return The filter width.
*/
inline float getRxFilterWidth() const { return state.rxFilterHi - state.rxFilterLo; }
/*!
* Get the current center frequency of the RX band pass filter.
* @return The center frequency.
*/
inline float getRxFilterCenter() const { return (state.rxFilterHi + state.rxFilterLo) / 2.0; }
/********************************************************************
* Transmit Voice-Operated-Switch (VOX)
********************************************************************/
public:
float getVoxLevel() const;
/********************************************************************
* Private state
********************************************************************/
private:
DSPState state;
bool isTx = false;
TxAudioIn txSrc = MIC_IN;
TxAudioIn txSrcLatched = MIC_IN;
short coefficients[NUM_COEFFICIENTS] = {0};
elapsedMillis sinceLastUpdate = 0;
float usbVol = 0.0;
unsigned micGain = 0;
float prevVox = 0.0;
};
extern UBitxDSP& DSP;
#endif
//======================================================================
// EOF
//======================================================================

20
TeensyDSP/Debug.h Normal file
View File

@@ -0,0 +1,20 @@
#ifndef __Debug_h__
#define __Debug_h__
#define DEBUG
#ifdef DEBUG
#define DBGPRINT(MSG) do { Serial.print("DBG: "); Serial.print(MSG); } while (0)
#define DBGPRINTLN(MSG) do { Serial.print("DBG: "); Serial.println(MSG); } while (0)
#define DBGNEWLINE() do { Serial.println(); } while (0)
#define DBGCMD(CMD) do { Serial.print("DBG: "); Serial.println(#CMD); CMD; } while (0)
#define IFDEBUG(CMD) do { CMD; } while (0)
#else
#define DBGPRINT(MSG) do {} while (0)
#define DBGPRINTLN(MSG) do {} while (0)
#define DBGNEWLINE() do {} while (0)
#define DBGCMD(CMD) do { CMD; } while (0)
#define IFDEBUG(CMD) do {} while (0)
#endif
#endif

186
TeensyDSP/HamFuncs.h Normal file
View File

@@ -0,0 +1,186 @@
#ifndef __HamFuncs_h__
#define __HamFuncs_h__
/**********************************************************************/
#ifndef HF_PWR_DEFAULT_LOAD
#define HF_PWR_DEFAULT_LOAD 50.0
#endif
#ifndef HF_VSWR_MAX_REPORTED
#define HF_VSWR_MAX_REPORTED 9.9
#endif
#ifndef HF_BRIDGE_FWD_VRECT
#define HF_BRIDGE_FWD_VRECT 0.25
#endif
#ifndef HF_BRIDGE_FWD_TURNS
#define HF_BRIDGE_FWD_TURNS 10.0
#endif
#ifndef HF_BRIDGE_REV_VRECT
#define HF_BRIDGE_REV_VRECT 0.25
#endif
#ifndef HF_BRIDGE_REV_TURNS
#define HF_BRIDGE_REV_TURNS 10.0
#endif
#ifndef HF_ADC_DEFAULT_BITS
#define HF_ADC_DEFAULT_BITS 10
#endif
#ifndef HF_ADC_DEFAULT_VREF
#define HF_ADC_DEFAULT_VREF 3.3
#endif
/**********************************************************************/
namespace HF {
const float pwrDefaultLoad = HF_PWR_DEFAULT_LOAD;
const float vswrMaxReported = HF_VSWR_MAX_REPORTED;
const float bridgeFwdVrect = HF_BRIDGE_FWD_VRECT;
const float bridgeFwdTurns = HF_BRIDGE_FWD_TURNS;
const float bridgeRevVrect = HF_BRIDGE_REV_VRECT;
const float bridgeRevTurns = HF_BRIDGE_REV_TURNS;
const unsigned adcDefaultBits = HF_ADC_DEFAULT_BITS;
const float adcDefaultVref = HF_ADC_DEFAULT_VREF;
const float rms = sqrt(2.0) / 2.0;
/********************************************************************/
/*!
* @brief Calculate the output voltage of a resistive divider
* network, given the input voltage and the values of the
* resistors. The input voltage is applied to R1, the output
* voltage is taken from the junction of R1 and R2, and R2 is
* connected to ground.
* @param Vin
* Input voltage.
* @param R1
* Input resistor (ohms). Input voltage is measured between
* the top of this resistor and ground.
* @param R2
* Output resistor (ohms). Output voltage is measured
* between the top of this resistor and ground.
* @return Output voltage.
*/
inline float divOut(float Vin, float R1, float R2) {
return Vin * R2 / (R1 + R2);
}
/*!
* @brief Calculate the input voltage of a resistive divider
* network, given the output voltage and the values of the
* resistors. The input voltage is applied to R1, the output
* voltage is taken from the junction of R1 and R2, and R2 is
* connected to ground.
* @param Vout
* Output voltage.
* @param R1
* Input resistor (ohms). Input voltage is measured between
* the top of this resistor and ground.
* @param R2
* Output resistor (ohms). Output voltage is measured between
* the top of this resistor and ground.
* @return Input voltage.
*/
inline float divIn(float Vout, float R1, float R2) {
return Vout * (R1 + R2) / R2;
}
/*!
* @brief Calculate and return the power in watts, given a
* resistance and the voltage across the resistance.
* @param V
* Voltage across the load.
* @param R
* (optional) Resistance of the load (ohms). If not provided,
* a default is used (HF_PWR_DEFAULT_LOAD).
* @return Power dissipated (watts). This is calculated as
* P = V^2/R.
*/
inline float P(float V, float R = pwrDefaultLoad) {
return (V * V) / R;
}
/*!
* @brief Calculate and return the Voltage Standing Wave Ratio
* (VSWR) based on the given forward and reverse voltages.
* @param Vfwd
* Measured forward voltage.
* @param Vrev
* Measured reverse voltage.
* @param VSWRmax
* (optional) Maximum reported VSWR. The output will be
* clamped to this value if necessary (HF_VSWR_MAX_REPORTED).
* @return Voltage Standing Wave Ratio (VSWR). This is calculated
* as VSWR = (Vfwd + Vrev) / (Vfwd - Vrev).
*/
inline float VSWR(float Vfwd, float Vrev, float VSWRmax = vswrMaxReported) {
if (Vfwd - Vrev == 0.0) {
return VSWRmax;
} else {
float swr = (Vfwd + Vrev) / (Vfwd - Vrev);
return (swr > VSWRmax ? VSWRmax : swr);
}
}
/*!
* @brief Calculate and return the forward RMS input voltage across
* a Stockton bridge.
* @param Vout
* Rectified output voltage (e.g. read via an ADC).
* @param Vrect
* (optional) Voltage drop across the rectifier diode. If
* not provided, a default is used (HF_BRIDGE_FWD_VRECT).
* @param turns
* (optional) Coupling transformer turns ratio. If not
* provided, a default is used (HF_BRIDGE_FWD_TURNS).
* @return Input voltage (i.e. the actual forward voltage).
*/
inline float bridgeFwd(float Vout, float Vrect = bridgeFwdVrect, float turns = bridgeFwdTurns) {
return (Vout + Vrect) * turns * rms;
}
/*!
* @brief Calculate and return the reverse RMS input voltage across
* a Stockton bridge.
* @param Vout
* Rectified output voltage (e.g. read via an ADC).
* @param Vrect
* (optional) Voltage drop across the rectifier diode. If
* not provided, a default is used (HF_BRIDGE_REV_VRECT).
* @param turns
* (optional) Coupling transformer turns ratio. If not
* provided, a default is used (HF_BRIDGE_REV_TURNS).
* @return Input voltage (i.e. the actual reverse voltage).
*/
inline float bridgeRev(float Vout, float Vrect = bridgeRevVrect, float turns = bridgeRevTurns) {
return (Vout + Vrect) * turns * rms;
}
/*!
* @brief Calculate and return the input voltage to an Analog-to-
* Digital Converter (ADC) given the resolution (number of
* bits) and the voltage reference of the ADC.
* @param counts
* Value of the ADC measurement (in unitless counts).
* @param res
* (optional) Resolution (in bits) of the ADC. If not
* provided, the default is used (HF_ADC_DEFAULT_BITS).
* @param Vref
* (optional) Voltage reference of the ADC. If not
* provided, the default is used (HF_ADC_DEFAULT_VREF).
* @return Input voltage to the ADC.
*/
inline float adcIn(unsigned counts, unsigned res = adcDefaultBits, float Vref = adcDefaultVref) {
return float(counts) * Vref / float(1 << res);
}
};
#endif

185
TeensyDSP/Keyer.cpp Normal file
View File

@@ -0,0 +1,185 @@
//======================================================================
//
// nanoIO paddle keyer (c) 2018, David Freese, W1HKJ
//
// based on code from Iambic Keyer Code Keyer Sketch
// Copyright (c) 2009 Steven T. Elliott
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details:
//
// Free Software Foundation, Inc., 59 Temple Place, Suite 330,
// Boston, MA 02111-1307 USA
//
//======================================================================
#include <Arduino.h>
//#include "TimerOne.h"
//#include "config.h"
#include "Keyer.h"
const uint8_t LP_in = KEYER_LEFT_PADDLE_PIN;
const uint8_t RP_in = KEYER_RIGHT_PADDLE_PIN;
//#define ST_Freq 600 // Set the Sidetone Frequency to 600 Hz
//======================================================================
// keyerControl bit definitions
//
#define DIT_L 0x01 // Dit latch
#define DAH_L 0x02 // Dah latch
#define DIT_PROC 0x04 // Dit is being processed
#define PDLSWAP 0x08 // 0 for normal, 1 for swap
//======================================================================
//
// State Machine Defines
enum KSTYPE { IDLE, CHK_DIT, CHK_DAH, KEYED_PREP, KEYED, INTER_ELEMENT };
UBitxKeyer::UBitxKeyer(int wpm, float weight):
speed(wpm), symWeight(weight)
{
// Setup outputs
pinMode(LP_in, INPUT_PULLUP); // sets Left Paddle digital pin as input
pinMode(RP_in, INPUT_PULLUP); // sets Right Paddle digital pin as input
keyerState = IDLE;
keyerControl = 0;
keyMode = IAMBICA;
keyDown = false;
calcRatio();
}
// Calculate the length of dot, dash and silence
void UBitxKeyer::calcRatio()
{
float w = (1 + symWeight) / (symWeight -1);
spaceLen = (1200 / speed);
dotLen = spaceLen * (w - 1);
dashLen = (1 + w) * spaceLen;
}
void UBitxKeyer::setWPM(int wpm)
{
speed = wpm;
calcRatio();
}
//======================================================================
// Latch paddle press
//======================================================================
void UBitxKeyer::updatePaddleLatch()
{
if (digitalRead(LP_in) == LOW) {
keyerControl |= DIT_L;
}
if (digitalRead(RP_in) == LOW) {
keyerControl |= DAH_L;
}
}
bool UBitxKeyer::doPaddles()
{
if (keyMode == STRAIGHT) { // Straight Key
if ((digitalRead(LP_in) == LOW) || (digitalRead(RP_in) == LOW)) {
keyDown = true;
return true;
} else {
keyDown = false;
}
return false;
}
// keyerControl contains processing flags and keyer mode bits
// Supports Iambic A and B
// State machine based, uses calls to millis() for timing.
switch (keyerState) {
case IDLE: // Wait for direct or latched paddle press
if ((digitalRead(LP_in) == LOW) || (digitalRead(RP_in) == LOW) || (keyerControl & 0x03)) {
updatePaddleLatch();
keyerState = CHK_DIT;
// letting this fall through // return true;
} else {
return false;
}
// break;
case CHK_DIT: // See if the dit paddle was pressed
if (keyerControl & DIT_L) {
keyerControl |= DIT_PROC;
ktimer = dotLen;
keyerState = KEYED_PREP;
return true;
} else { // fall through
keyerState = CHK_DAH;
}
case CHK_DAH: // See if dah paddle was pressed
if (keyerControl & DAH_L) {
ktimer = dashLen;
keyerState = KEYED_PREP;
// letting this fall through // return true;
} else {
keyerState = IDLE;
return false;
}
// break;
case KEYED_PREP: // Assert key down, start timing
// state shared for dit or dah
keyDown = true;
ktimer += millis(); // set ktimer to interval end time
keyerControl &= ~(DIT_L + DAH_L); // clear both paddle latch bits
keyerState = KEYED; // next state
// letting this fall through // return true;
// break;
case KEYED: // Wait for timer to expire
if (millis() > ktimer) { // are we at end of key down ?
keyDown = false;
ktimer = millis() + spaceLen; // inter-element time
keyerState = INTER_ELEMENT; // next state
// letting this fall through // return true;
} else if (keyMode == IAMBICB) { // Iambic B Mode ?
updatePaddleLatch(); // yes, early paddle latch in Iambic B mode
} else {
return true;
}
// break;
case INTER_ELEMENT: // Insert time between dits/dahs
updatePaddleLatch(); // latch paddle state
if (millis() > ktimer) { // are we at end of inter-space ?
if (keyerControl & DIT_PROC) { // was it a dit or dah ?
keyerControl &= ~(DIT_L + DIT_PROC); // clear two bits
keyerState = CHK_DAH; // dit done, check for dah
return true;
} else {
keyerControl &= ~(DAH_L); // clear dah latch
keyerState = IDLE; // go idle
return false;
}
} else {
return true;
}
// break;
}
return false; // resolve compiler warning; do we ever get here?
}
UBitxKeyer basicKeyer(15, 3.0);
UBitxKeyer& Keyer = basicKeyer;
//======================================================================
// EOF
//======================================================================

79
TeensyDSP/Keyer.h Normal file
View File

@@ -0,0 +1,79 @@
//**********************************************************************
//
// Keyer, a part of nanoIO
//
// nanoIO paddle keyer (c) 2018, David Freese, W1HKJ
//
// based on code from Iambic Keyer Code Keyer Sketch
// Copyright (c) 2009 Steven T. Elliott
//
// nanoIO is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// nanoIO is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with fldigi. If not, see <http://www.gnu.org/licenses/>.
//
//Revisions:
//
//1.0.0: Initial release
//
//**********************************************************************
#ifndef __Keyer_h__
#define __Keyer_h__
#define IAMBICA 0
#define IAMBICB 1
#define STRAIGHT 2
#define KEYER_LEFT_PADDLE_PIN 17
#define KEYER_RIGHT_PADDLE_PIN 16
class UBitxKeyer
{
public:
UBitxKeyer(int wpm, float weight);
//void cw_pin(int pin);
//void ptt_pin(int pin);
void setWPM(int wpm);
inline void setMode(int mode) { keyMode = mode; }
inline int getMode() { return keyMode; }
inline bool isDown() { return keyDown; }
// void setWeight();
bool doPaddles();
private:
void calcRatio();
void updatePaddleLatch();
bool keyDown;
long ktimer;
int speed;
int dashLen; // Length of dash
int dotLen; // Length of dot
int spaceLen; // Length of space
float symWeight;
char keyerControl;
char keyerState;
int keyMode;
};
extern UBitxKeyer& Keyer;
#endif
//======================================================================
// EOF
//======================================================================

141
TeensyDSP/Nextion.cpp Normal file
View File

@@ -0,0 +1,141 @@
#include "Nextion.h"
char L_nowdisp = -1; //Sended nowdisp
char L_vfoActive; //vfoActive
unsigned long L_vfoCurr; //vfoA
byte L_vfoCurr_mode; //vfoA_mode
unsigned long L_vfoA; //vfoA
byte L_vfoA_mode; //vfoA_mode
unsigned long L_vfoB; //vfoB
byte L_vfoB_mode; //vfoB_mode
char L_ritOn;
unsigned long L_ritTxFrequency; //ritTxFrequency
char L_inTx;
byte L_isDialLock; //byte isDialLock
byte L_Split; //isTxType
byte L_TXStop; //isTxType
byte L_tuneStepIndex; //byte tuneStepIndex
byte L_scaledSMeter; //scaledSMeter
unsigned long L_sideTone; //sideTone
byte L_cwKeyType; //L_cwKeyType 0: straight, 1 : iambica, 2: iambicb
unsigned int L_cwSpeed; //cwSpeed
byte L_cwDelayTime; //cwDelayTime
byte L_delayBeforeCWStartTime; //byte delayBeforeCWStartTime
byte L_attLevel;
byte L_isIFShift; //1 = ifShift, 2 extend
int L_ifShiftValue;
byte L_sdrModeOn;
byte scaledSMeter = 0;
float calcVSWR = 0.0;
float L_calcVSWR = 0.0;
byte scaledVSWR = 0;
byte L_scaledVSWR = 0;
float fwdPower = 0;
float L_fwdPower = 0;
float revPower = 0;
float L_revPower = 0;
//Control must have prefix 'v' or 's'
char softSTRHeader[11] = {'p', 'm', '.', 's', '0', '.', 't', 'x', 't', '=', '\"'};
char softINTHeader[10] = {'p', 'm', '.', 'v', '0', '.', 'v', 'a', 'l', '='};
char softTemp[20];
/*!
@brief Send a string or numeric variable to the Nextion LCD.
@param varType
The type of the variable being sent to the Nextion LCD.
@param varIndex
The index (ID) of the variable being sent to the Nextion LCD.
*/
void sendHeader(char varType, char varIndex)
{
if (varType == SWS_HEADER_STR_TYPE)
{
softSTRHeader[4] = varIndex;
for (unsigned i = 0; i < sizeof(softSTRHeader)/sizeof(softSTRHeader[0]); i++)
Serial1.write(softSTRHeader[i]);
}
else
{
softINTHeader[4] = varIndex;
for (unsigned i = 0; i < sizeof(softINTHeader)/sizeof(softINTHeader[0]); i++)
Serial1.write(softINTHeader[i]);
}
}
/*!
@brief Send an unsigned long variable to the Nextion LCD.
@param varIndex
The index (ID) of the variable being sent to the Nextion LCD.
@param sendValue
The value of the variable being sent to the Nextion LCD.
*/
void sendCommandUL(char varIndex, unsigned long sendValue)
{
sendHeader(SWS_HEADER_INT_TYPE, varIndex);
memset(softTemp, 0, 20);
ultoa(sendValue, softTemp, DEC);
Serial1.print(softTemp);
Serial1.write(0xff);
Serial1.write(0xff);
Serial1.write(0xff);
}
/*!
@brief Send a (signed) long variable to the Nextion LCD.
@param varIndex
The index (ID) of the variable being sent to the Nextion LCD.
@param sendValue
The value of the variable being sent to the Nextion LCD.
*/
void sendCommandL(char varIndex, long sendValue)
{
sendHeader(SWS_HEADER_INT_TYPE, varIndex);
memset(softTemp, 0, 20);
ltoa(sendValue, softTemp, DEC);
Serial1.print(softTemp);
Serial1.write(0xff);
Serial1.write(0xff);
Serial1.write(0xff);
}
/*!
@brief Send a string variable to the Nextion LCD.
@param varIndex
The index (ID) of the variable being sent to the Nextion LCD.
@param sendValue
The value of the variable being sent to the Nextion LCD.
*/
void sendCommandStr(char varIndex, const char* sendValue)
{
sendHeader(SWS_HEADER_STR_TYPE, varIndex);
Serial1.print(sendValue);
Serial1.write('\"');
Serial1.write(0xFF);
Serial1.write(0xFF);
Serial1.write(0xFF);
}
unsigned char softBuff1Num[14] = {'p', 'm', '.', 'c', '0', '.', 'v', 'a', 'l', '=', 0, 0xFF, 0xFF, 0xFF};
/*!
@brief Send a single digit variable to the Nextion LCD.
@param varIndex
The index (ID) of the variable being sent to the Nextion LCD.
Values 0~9 are: Mode, nowDisp, ActiveVFO, IsDialLock, IsTxtType, IsSplitType.
@param sendValue
The value of the variable being sent to the Nextion LCD.
*/
void sendCommand1Num(char varIndex, char sendValue)
{
softBuff1Num[4] = varIndex;
softBuff1Num[10] = sendValue + 0x30; // convert to character digit
for (unsigned i = 0; i < sizeof(softBuff1Num)/sizeof(softBuff1Num[0]); i++)
Serial1.write(softBuff1Num[i]);
}

126
TeensyDSP/Nextion.h Normal file
View File

@@ -0,0 +1,126 @@
#ifndef __Nextion_h__
#define __Nextion_h__
#include <Arduino.h>
#include "Debug.h"
#define SWS_HEADER_CHAR_TYPE 'c' //1Byte Protocol Prefix
#define SWS_HEADER_INT_TYPE 'v' //Numeric Protocol Prefex
#define SWS_HEADER_STR_TYPE 's' //for TEXT Line compatiable Character LCD Control
//===================================================================
//Begin of Nextion LCD Protocol
//
// v0~v9, va~vz : Numeric (Transceiver -> Nextion LCD)
// s0~s9 : String (Text) (Transceiver -> Nextion LCD)
// vlSendxxx, vloxxx: Reserve for Nextion (Nextion LCD -> Transceiver)
//
//===================================================================
#define CMD_NOW_DISP '0' //c0
extern char L_nowdisp; //Sended nowdisp
#define CMD_VFO_TYPE 'v' //cv
extern char L_vfoActive; //vfoActive
#define CMD_CURR_FREQ 'c' //vc
extern unsigned long L_vfoCurr; //vfoA
#define CMD_CURR_MODE 'c' //cc
extern byte L_vfoCurr_mode; //vfoA_mode
#define CMD_VFOA_FREQ 'a' //va
extern unsigned long L_vfoA; //vfoA
#define CMD_VFOA_MODE 'a' //ca
extern byte L_vfoA_mode; //vfoA_mode
#define CMD_VFOB_FREQ 'b' //vb
extern unsigned long L_vfoB; //vfoB
#define CMD_VFOB_MODE 'b' //cb
extern byte L_vfoB_mode; //vfoB_mode
#define CMD_IS_RIT 'r' //cr
extern char L_ritOn;
#define CMD_RIT_FREQ 'r' //vr
extern unsigned long L_ritTxFrequency; //ritTxFrequency
#define CMD_IS_TX 't' //ct
extern char L_inTx;
#define CMD_IS_DIALLOCK 'l' //cl
extern byte L_isDialLock; //byte isDialLock
#define CMD_IS_SPLIT 's' //cs
extern byte L_Split; //isTxType
#define CMD_IS_TXSTOP 'x' //cx
extern byte L_TXStop; //isTxType
#define CMD_TUNEINDEX 'n' //cn
extern byte L_tuneStepIndex; //byte tuneStepIndex
#define CMD_SMETER 'p' //cs
extern byte L_scaledSMeter; //scaledSMeter
#define CMD_SIDE_TONE 't' //vt
extern unsigned long L_sideTone; //sideTone
#define CMD_KEY_TYPE 'k' //ck
extern byte L_cwKeyType; //L_cwKeyType 0: straight, 1 : iambica, 2: iambicb
#define CMD_CW_SPEED 's' //vs
extern unsigned int L_cwSpeed; //cwSpeed
#define CMD_CW_DELAY 'y' //vy
extern byte L_cwDelayTime; //cwDelayTime
#define CMD_CW_STARTDELAY 'e' //ve
extern byte L_delayBeforeCWStartTime; //byte delayBeforeCWStartTime
#define CMD_ATT_LEVEL 'f' //vf
extern byte L_attLevel;
extern byte L_isIFShift; //1 = ifShift, 2 extend
#define CMD_IS_IFSHIFT 'i' //ci
extern int L_ifShiftValue;
#define CMD_IFSHIFT_VALUE 'i' //vi
extern byte L_sdrModeOn;
#define CMD_SDR_MODE 'j' //cj
#define CMD_UBITX_INFO 'm' //cm Complete Send uBITX Information
//Once Send Data, When boot
//arTuneStep, When boot, once send
//long arTuneStep[5];
#define CMD_AR_TUNE1 '1' //v1
#define CMD_AR_TUNE2 '2' //v2
#define CMD_AR_TUNE3 '3' //v3
#define CMD_AR_TUNE4 '4' //v4
#define CMD_AR_TUNE5 '5' //v5
//int idleStep = 0;
extern byte scaledSMeter;
extern float calcVSWR;
extern float L_calcVSWR;
extern byte scaledVSWR;
extern byte L_scaledVSWR;
extern float fwdPower;
extern float L_fwdPower;
extern float revPower;
extern float L_revPower;
void sendHeader(char varType, char varIndex);
void sendCommandUL(char varIndex, unsigned long sendValue);
void sendCommandL(char varIndex, long sendValue);
void sendCommandStr(char varIndex, const char* sendValue);
void sendCommand1Num(char varIndex, char sendValue);
//=======================================================
//END OF Nextion Protocol
//=======================================================
#endif

3
TeensyDSP/Rig.cpp Normal file
View File

@@ -0,0 +1,3 @@
#include "Rig.h"
UBitxRig Rig;

73
TeensyDSP/Rig.h Normal file
View File

@@ -0,0 +1,73 @@
#ifndef __Rig_h__
#define __Rig_h__
#include "RigState.h"
struct RigState {
};
class UBitxRig {
public:
inline void begin() {}
inline void update() {}
inline unsigned getFreqA() const { return radState.getFreqA(); }
inline unsigned getFreqB() const { return radState.getFreqB(); }
inline int getRIT() const { return radState.getRIT(); }
inline int getXIT() const { return radState.getXIT(); }
inline bool isVFOA() const { return radState.isVFOA(); }
inline bool isVFOB() const { return radState.isVFOB(); }
inline bool isSplit() const { return radState.isSplit(); }
inline bool isRIT() const { return radState.isRIT(); }
inline bool isXIT() const { return radState.isXIT(); }
inline bool isModeCWAny() const { return radState.isModeCWAny(); }
inline bool isModeCW() const { return radState.isModeCW(); }
inline bool isModeCWR() const { return radState.isModeCWR(); }
inline bool isModeUSB() const { return radState.isModeUSB(); }
inline bool isModeLSB() const { return radState.isModeLSB(); }
inline bool isAI() const { return autoInfo; }
inline void setFreqA(unsigned freq) { catState.setFreqA(freq); }
inline void setFreqB(unsigned freq) { catState.setFreqB(freq); }
inline void setRIT(int freq) { catState.setRIT(freq); }
inline void setXIT(int freq) { catState.setXIT(freq); }
inline void setVFOA() { catState.setVFOA(); }
inline void setVFOB() { catState.setVFOB(); }
inline void setSplitOn() { catState.setSplitOn(); }
inline void setSplitOff() { catState.setSplitOff(); }
inline void setRITOn() { catState.setRITOn(); }
inline void setRITOff() { catState.setRITOff(); }
inline void setXITOn() { catState.setXITOn(); }
inline void setXITOff() { catState.setXITOff(); }
inline void setCW() { catState.setCW(); }
inline void setCWR() { catState.setCWR(); }
inline void setUSB() { catState.setUSB(); }
inline void setLSB() { catState.setLSB(); }
inline void setAI(bool on) { autoInfo = on; }
inline void aiOn() { autoInfo = true; }
inline void aiOff() { autoInfo = false; }
inline UBitxRigState& cat() { return catState; }
inline UBitxRigState& rad() { return radState; }
/********************************************************************/
// New functional/mode-based Rig methods
// AG
//void setVolOut(uint8_t level);
//uint8_t getVolOut();
// BD/BU
//void setBand();
//void getBand();
private:
UBitxRigState catState;
UBitxRigState radState;
bool autoInfo = false; // TODO: Move this to rig state struct
};
extern UBitxRig Rig;
#endif

416
TeensyDSP/RigState.cpp Normal file
View File

@@ -0,0 +1,416 @@
/*!
* @file RigState.cpp
*
* @mainpage uBITX V5X Software - RigState
*
* @section introsec Introduction
*
* TBD
*
* @section dependencies Dependencies
*
* TBD
*
* @section author Author
*
* Written by Rob "Scrape" French, KC4UPR
*
* @section license License
*
* TBD
*/
#include "Debug.h"
#include "RigState.h"
/***********************************************************************
* COMMON FUNCTIONS
*
* The following are all common to RigState objects, whether on the
* Raduino or on the TeensyDSP.
**********************************************************************/
static uint32_t zeroes[1] = {0}; // used to transmit zeroes
/*!
* @brief Begin using the RigState object. In order to force an
* initial update (i.e. sending current state to the remote
* device), all fields are initially marked dirty.
*/
void UBitxRigState::begin() {
setDirty();
}
/***********************************************************************
* RADUINO FUNCTIONS
*
* The following are specific to the Raduino implementation. Note that
* this depends on the use of the TEENSYDUINO #define, which may result
* in a fragile implementation for other development environments (e.g.
* if the normal Arduino IDE is not being used).
**********************************************************************/
#ifndef TEENSYDUINO
#include <Wire.h>
#include "ubitx.h"
#include "ubitx_eemap.h"
extern unsigned long frequency, ritRxFrequency, ritTxFrequency;
extern unsigned long vfoA;
extern unsigned long vfoB;
extern char cwMode;
extern char isUSB;
extern char vfoActive;
extern char ritOn;
extern char splitOn;
extern char inTx;
void setFrequency(unsigned long);
/*!
* @brief Send the RigState from the Raduino to the TeensyDSP. The
* basic process is: (1) read in any updated (dirty) data
* from the Raduino's state variables; (2) transmit the dirty
* data to the TeensyDSP; (2a) for clean data, zeroes are
* transmitted; (3) mark all data as clean.
*/
void UBitxRigState::send_RIGINF() {
readDirty();
Wire.beginTransmission(I2CMETER_ADDR);
Wire.write(I2CMETER_RIGINF);
for (RigStateWord i = DIRTY_WORD; i < NUM_WORDS; i++) {
if (i == DIRTY_WORD || isDirty(i)) {
// always send the current dirty bits
// or, bytes for updated (dirty) fields
Wire.write((byte*)&data[i], sizeof(uint32_t));
} else {
// otherwise, send out zeroes
Wire.write((byte*)&zeroes, sizeof(uint32_t));
//----------------------------------------------------------------
// NOTE: I am sending these zeroed out fields under a possibly
// mistaken assumption that in doing so, I will be sending a
// constant voltage on the SDA line most of the time, i.e. no
// bit changes, and so this will help reduce noise generated by
// I2C traffic (since most of the time there will be no updates.)
//----------------------------------------------------------------
}
}
Wire.endTransmission();
IFDEBUG( serialHexState("Sent") );
//IFDEBUG( serialPrettyState("Sent") );
setClean();
}
// delay(1); // 1ms - some delay required between ending transmission and requesting?
/*!
* @brief Receive the RigState from the TeensyDSP. This generally
* reflects changes due to CAT transmission to the TeensyDSP.
* @param numBytes
* Number of bytes received from the TeensyDSP.
*/
void UBitxRigState::receive_RIGINF(int numBytes) {
// Retrieve all of the deltas. Mark any received fields as dirty. It
// is assumed that send_RIGINF() was called immedaitely before this,
// so the fields are already clean.
byte* ptr = (byte*)&data;
Wire.requestFrom(I2CMETER_ADDR, sizeof(data));
for (RigStateWord i = DIRTY_WORD; i < NUM_WORDS && Wire.available(); i++) {
for (size_t j = 0; j < sizeof(uint32_t) && Wire.available(); j++) {
byte incomingByte = Wire.read();
if (i == DIRTY_WORD || isDirty(i)) {
// always overwrite the dirty bits
// and, update bytes for fields marked dirty
*ptr = incomingByte;
}
ptr++;
}
}
writeDirty();
IFDEBUG( serialHexState("Rcvd") );
//IFDEBUG( serialPrettyState("Rcvd") );
setClean(); // They get marked dirty as req'd during readDirty().
}
/*!
* @brief Write dirty fields from the RigState out to the Raduino
* variables.
*/
void UBitxRigState::writeDirty() {
// VFO A frequency
if (isDirty(VFOA_WORD)) {
if (vfoActive == VFO_A) {
setFrequency(getFreqA());
} else {
vfoA = getFreqA();
}
}
// VFO B frequency
if (isDirty(VFOB_WORD)) {
if (vfoActive == VFO_B) {
setFrequency(getFreqB());
} else {
vfoB = getFreqB();
}
}
// RIT and XIT frequencies
if (isDirty(OFFSETS_WORD)) {
// RIT
ritRxFrequency = getRIT() + ritTxFrequency;
if (ritOn == 1) {
if (inTx == 0) {
setFrequency(ritRxFrequency);
} else {
setFrequency(ritTxFrequency);
}
}
// XIT - TODO
}
// VFO A/B selection
if (isDirty(FLAGS_WORD)) {
char prev = vfoActive;
vfoActive = isVFOA() ? VFO_A : VFO_B;
if (vfoActive != prev) {
if (vfoActive == VFO_A) {
if (vfoA != frequency) {
setFrequency(vfoA);
}
} else if (vfoActive == VFO_B) {
if (vfoB != frequency) {
setFrequency(vfoB);
}
}
}
// Split on/off
splitOn = isSplit() ? 1 : 0;
// RIT on/off
prev = ritOn;
ritOn = isRIT() ? 1 : 0;
if (ritOn != prev) {
if ((ritOn == 1) && (inTx == 0)) {
setFrequency(ritRxFrequency);
}
}
// XIT on/off
// TODO
// Mode
prev = (cwMode << 1) | isUSB;
isUSB = isModeUSB() ? 1 : 0;
if (isModeCW()) {
cwMode = 2; // 2 = cwu
} else if (isModeCWR()) {
cwMode = 1; // 1 = cwl
} else {
cwMode = 0; // 0 = no cw
}
if ((cwMode << 1) | isUSB != prev) {
setFrequency(frequency);
}
}
}
/*!
* @brief Read current Raduino variables into the RigState
* (if they are changed) and set the appropriate dirty flags.
* @param r
* RigState reference to put the values into.
*/
void UBitxRigState::readDirty() {
unsigned long freq;
short offset;
// VFO A frequency
freq = (vfoActive == VFO_A) ? frequency : vfoA;
if (getFreqA() != freq) {
setFreqA(freq);
}
// VFO B frequency
freq = (vfoActive == VFO_B) ? frequency : vfoB;
if (getFreqB() != freq) {
setFreqB(freq);
}
// RIT frequency
if (inTx) {
offset = ritRxFrequency - ritTxFrequency;
} else {
offset = frequency - ritTxFrequency;
}
if (getRIT() != offset) {
setRIT(offset);
}
// XIT frequency
offset = 0; // xitRxFrequency - frequency;
if (getXIT() != offset) {
setXIT(offset);
}
// VFO A/B selection
if (isVFOA() && vfoActive == VFO_B) {
setVFOB();
} else if (isVFOB() && vfoActive == VFO_A) {
setVFOA();
}
// Split selection
if (isSplit() && splitOn == 0) {
setSplitOff();
} else if (!isSplit() && splitOn != 0) {
setSplitOn();
}
// RIT selection
if (isRIT() && ritOn == 0) {
setRITOff();
} else if (!isRIT() && ritOn != 0) {
setRITOn();
}
// XIT selection
//setXITOff();
// TODO
// Mode
char prev = (isModeCW() ? 4 : 0) | (isModeCWR() ? 2 : 0) | (isModeUSB() ? 1 : 0);
char curr = (cwMode << 1) | isUSB;
if (curr != prev) {
if (cwMode == 2) {
setCW();
} else if (cwMode == 1) {
setCWR();
} else {
if (isUSB) {
setUSB();
} else {
setLSB();
}
}
}
}
/***********************************************************************
* TEENSYDSP FUNCTIONS
*
* The following are specific to the TeensyDSP implementation. Note
* that this depends on the use of the TEENSYDUINO #define, which may
* result in a fragile implementation for other development environments
* (e.g. if the normal Arduino IDE is not being used).
**********************************************************************/
#else
#include <i2c_t3.h>
/*!
* @brief Receive RIGINF data from the Raduino. This method should
* be called on the TeensyDSP 'radState' (Raduino state)
* instance, when a RIGINF signal is received via I2C. It
* receives the incoming data from the Raduino and updates the
* state.
*/
void UBitxRigState::receive_RIGINF(int numBytes) {
byte* ptr = (byte*)&data;
setClean(); // we'll get new dirty bits via the I2C message
for (RigStateWord i = DIRTY_WORD; i < NUM_WORDS && Wire1.available(); i++) {
for (size_t j = 0; j < sizeof(uint32_t) && Wire1.available(); j++) {
byte incomingByte = Wire1.read();
if (i == DIRTY_WORD || isDirty(i)) {
// always overwrite the dirty bits
// and, update bytes for fields marked dirty
*ptr = incomingByte;
}
ptr++;
}
}
IFDEBUG( serialHexState("Rcvd") );
IFDEBUG( serialPrettyState("Rcvd") );
}
/**********************************************************************/
/*!
* @brief Handle a RIGINF signal from the Raduino. This method should
* be called on the TeensyDSP 'catState' (CAT state)
* instance, when a RIGINF signal is received via I2C. It
* sends a response to the Raduino via I2C, using the Wire1
* interface.
*/
void UBitxRigState::send_RIGINF() {
for (RigStateWord i = DIRTY_WORD; i < NUM_WORDS; i++) {
if (i == DIRTY_WORD || isDirty(i)) {
// always send the current dirty bits
// or, bytes for updated (dirty) fields
Wire1.write((byte*)&data[i], sizeof(uint32_t));
} else {
// otherwise, send out zeroes
Wire1.write((byte*)&zeroes, sizeof(uint32_t));
//----------------------------------------------------------------
// NOTE: I am sending these zeroed out fields under a possibly
// mistaken assumption that in doing so, I will be sending a
// constant voltage on the SDA line most of the time, i.e. no
// bit changes, and so this will help reduce noise generated by
// I2C traffic (since most of the time there will be no updates.)
//----------------------------------------------------------------
}
}
IFDEBUG( serialHexState("Sent") );
IFDEBUG( serialPrettyState("Sent") );
setClean(); // now that we've sent them, they're clean
//--------------------------------------------------------------------
// TODO: Need to look at possibly merging the two states together at
// this point. The purpose would be to minimize the turnaround time
// for getting the most recent data to a CAT response.
//--------------------------------------------------------------------
}
#endif
#ifdef DEBUG
char debugString[81] = {'\0'};
void UBitxRigState::serialHexState(const char* label = "RigState") {
Serial.print(label);
sprintf(debugString, ": %#010lx, %#010lx, %#010lx, %#010lx, %#010lx",
data[DIRTY_WORD], data[VFOA_WORD], data[VFOB_WORD], data[OFFSETS_WORD], data[FLAGS_WORD]);
Serial.println(debugString);
}
void UBitxRigState::serialPrettyState(const char* label = "RigState") {
Serial.println(label);
sprintf(debugString, "VFO A : %011ld %1c / VFO B : %011ld %1c",
getFreqA(), isDirty(VFOA_WORD) ? 'D' : ' ', getFreqB(), isDirty(VFOB_WORD) ? 'D' : ' ');
Serial.println(debugString);
sprintf(debugString, "RIT : %011ld %1c / XIT : %011ld %1c",
getRIT(), isDirty(OFFSETS_WORD) ? 'D' : ' ', getXIT(), isDirty(OFFSETS_WORD) ? 'D' : ' ');
Serial.println(debugString);
sprintf(debugString, "Split? %1c / VFO? %1c / RIT? %1c / XIT? %1c / Mode? %3s",
isSplit() ? 'Y' : 'N', isVFOA() ? 'A' : 'B', isRIT() ? 'Y' : 'N', isXIT() ? 'Y' : 'N',
isModeUSB() ? "USB" : (isModeLSB() ? "LSB" : (isModeCW() ? "CW " : (isModeCWR() ? "CWR" : " "))));
Serial.println(debugString);
}
#endif
/**********************************************************************/
#ifndef TEENSYDUINO
UBitxRigState _rigState;
UBitxRigState& rigState = _rigState;
#endif
/***********************************************************************
* EOF
**********************************************************************/

372
TeensyDSP/RigState.h Normal file
View File

@@ -0,0 +1,372 @@
/*!
* @file RigState.h
*/
#ifndef __RigState_h__
#define __RigState_h__
#include <Arduino.h>
#define UBITX_VFOB_FLAG 0x00000001
#define UBITX_SPLIT_FLAG 0x00000002
#define UBITX_RIT_FLAG 0x00000004
#define UBITX_XIT_FLAG 0x00000008
#define UBITX_CW_FLAG 0x00000010
#define UBITX_USB_FLAG 0x00000020
#define UBITX_TX_FLAG 0x00000040
#ifdef TEENSYDUINO
#define DISABLEINTS(CMD) do { noInterrupts(); CMD; interrupts(); } while (0)
#else
#define DISABLEINTS(CMD) do { CMD; } while (0)
#endif
enum RigStateWord {
DIRTY_WORD = 0,
VFOA_WORD,
VFOB_WORD,
OFFSETS_WORD,
FLAGS_WORD,
NUM_WORDS
};
inline RigStateWord& operator++(RigStateWord& orig) {
orig = static_cast<RigStateWord>(orig + 1);
// NOTE: Will overflow...
return orig;
}
inline RigStateWord operator++(RigStateWord& orig, int) {
RigStateWord rVal = orig;
++orig;
return rVal;
}
struct UBitxRigState {
volatile uint32_t data[NUM_WORDS] = {0};
void begin();
void send_RIGINF();
void receive_RIGINF(int numBytes = sizeof(data));
/*!
* @brief Set the dirty bit for the specified word.
*
* @param w
* The word to mark as dirty.
*/
inline void setDirty(RigStateWord w) {
data[DIRTY_WORD] |= w < NUM_WORDS ? 1 << w : 0;
}
/*!
* @brief Set the dirty bits for all words.
*/
inline void setDirty() { DISABLEINTS( data[DIRTY_WORD] = 0xFFFFFFFF ); }
/*!
* @brief Clear the dirty bit for the specified word.
*
* @param w
* The word to mark as clean.
*/
inline void setClean(RigStateWord w) {
data[DIRTY_WORD] &= ~(w < NUM_WORDS ? 1 << w : 0);
}
/*!
* @brief Clear the dirty bits for all words.
*/
inline void setClean() { DISABLEINTS( data[DIRTY_WORD] = 0 ); }
/*!
* @brief Check whether the specified word is clean.
*
* @param w
* The word to check for clean status.
*
* @return True if the word is clean.
*/
inline bool isClean(RigStateWord w) {
bool clean;
DISABLEINTS( clean = ((1 << w) & data[DIRTY_WORD]) > 0 ? false : true );
return clean;
}
/*!
* @brief Check whether the data is clean (as a whole).
*
* @return True if the data is clean (no dirty fields).
*/
inline bool isClean() {
bool clean;
DISABLEINTS( clean = data[DIRTY_WORD] == 0 );
return clean;
}
/*!
* @brief Check whether the specified word is dirty.
*
* @param w
* The word to check for dirty status.
*
* @return True if the word is dirty.
*/
inline bool isDirty(RigStateWord w) {
bool dirty;
DISABLEINTS( dirty = ((1 << w) & data[DIRTY_WORD]) > 0 ? true : false );
return dirty;
}
/*!
* @brief Check whether the data is dirty (as a whole).
*
* @return True if the data is dirty (at least one dirty field).
*/
inline bool isDirty() {
bool dirty;
DISABLEINTS( dirty = data[DIRTY_WORD] != 0 );
return dirty;
}
/*!
* @brief Set the VFO A frequency.
*
* @param freq
* The new frequency in Hz.
*/
inline void setFreqA(uint32_t freq, bool mark = true) {
DISABLEINTS( data[VFOA_WORD] = freq;
if (mark) setDirty(VFOA_WORD) );
}
inline uint32_t getFreqA() const {
uint32_t result;
DISABLEINTS( result = data[VFOA_WORD] );
return result;
}
/*!
* @brief Set the VFO B frequency.
*
* @param freq
* The new frequency in Hz.
*/
inline void setFreqB(uint32_t freq, bool mark = true) {
DISABLEINTS( data[VFOB_WORD] = freq );
}
inline uint32_t getFreqB() const {
uint32_t result;
DISABLEINTS( result = data[VFOB_WORD] );
return result;
}
inline void setRIT(int16_t offset, bool mark = true) {
DISABLEINTS( data[OFFSETS_WORD] = (int32_t(offset) << 16) | (0x0000FFFF & data[OFFSETS_WORD]);
if (mark) setDirty(OFFSETS_WORD) );
}
inline int16_t getRIT() const {
int16_t result;
DISABLEINTS( result = data[OFFSETS_WORD] >> 16 );
return result;
}
inline void setXIT(int16_t offset, bool mark = true) {
DISABLEINTS( data[OFFSETS_WORD] = (0xFFFF0000 & data[OFFSETS_WORD]) | offset;
if (mark) setDirty(OFFSETS_WORD) );
}
inline int16_t getXIT() const {
int16_t result;
DISABLEINTS( result = 0x0000FFFF & data[OFFSETS_WORD] );
return result;
}
inline void setVFOA(bool mark = true) {
DISABLEINTS( data[FLAGS_WORD] &= ~UBITX_VFOB_FLAG;
if (mark) setDirty(FLAGS_WORD) );
}
inline void setVFOB(bool mark = true) {
DISABLEINTS( data[FLAGS_WORD] |= UBITX_VFOB_FLAG;
if (mark) setDirty(FLAGS_WORD) );
}
inline bool isVFOA() const {
bool result;
DISABLEINTS( result = data[FLAGS_WORD] & UBITX_VFOB_FLAG ? false : true );
return result;
}
inline bool isVFOB() const {
bool result;
DISABLEINTS( result = data[FLAGS_WORD] & UBITX_VFOB_FLAG ? true : false );
return result;
}
inline void setSplitOn(bool mark = true) {
DISABLEINTS( data[FLAGS_WORD] |= UBITX_SPLIT_FLAG;
if (mark) setDirty(FLAGS_WORD) );
}
inline void setSplitOff(bool mark = true) {
DISABLEINTS( data[FLAGS_WORD] &= ~UBITX_SPLIT_FLAG;
if (mark) setDirty(FLAGS_WORD) );
}
inline bool isSplit() const {
bool result;
DISABLEINTS( result = data[FLAGS_WORD] & UBITX_SPLIT_FLAG ? true : false );
return result;
}
inline void setRITOn(bool mark = true) {
DISABLEINTS( data[FLAGS_WORD] |= UBITX_RIT_FLAG;
if (mark) setDirty(FLAGS_WORD) );
}
inline void setRITOff(bool mark = true) {
DISABLEINTS( data[FLAGS_WORD] &= ~UBITX_RIT_FLAG;
if (mark) setDirty(FLAGS_WORD) );
}
inline bool isRIT() const {
bool result;
DISABLEINTS( result = data[FLAGS_WORD] & UBITX_RIT_FLAG ? true : false );
return result;
}
inline void setXITOn(bool mark = true) {
DISABLEINTS( data[FLAGS_WORD] |= UBITX_XIT_FLAG;
if (mark) setDirty(FLAGS_WORD) );
}
inline void setXITOff(bool mark = true) {
DISABLEINTS( data[FLAGS_WORD] &= ~UBITX_XIT_FLAG;
if (mark) setDirty(FLAGS_WORD) );
}
inline bool isXIT() const {
bool result;
DISABLEINTS( result = data[FLAGS_WORD] & UBITX_XIT_FLAG ? true : false );
return result;
}
inline void setUSB(bool mark = true) {
DISABLEINTS( data[FLAGS_WORD] |= UBITX_USB_FLAG;
data[FLAGS_WORD] &= ~UBITX_CW_FLAG;
if (mark) setDirty(FLAGS_WORD) );
}
inline void setLSB(bool mark = true) {
DISABLEINTS( data[FLAGS_WORD] &= ~UBITX_USB_FLAG;
data[FLAGS_WORD] &= ~UBITX_CW_FLAG;
if (mark) setDirty(FLAGS_WORD) );
}
inline void setCW(bool mark = true) {
DISABLEINTS( data[FLAGS_WORD] |= UBITX_USB_FLAG;
data[FLAGS_WORD] |= UBITX_CW_FLAG;
if (mark) setDirty(FLAGS_WORD) );
}
inline void setCWR(bool mark = true) {
DISABLEINTS( data[FLAGS_WORD] &= ~UBITX_USB_FLAG;
data[FLAGS_WORD] |= UBITX_CW_FLAG;
if (mark) setDirty(FLAGS_WORD) );
}
inline bool isModeUSB() const {
bool result;
DISABLEINTS( result = ((data[FLAGS_WORD] & UBITX_USB_FLAG) > 0) && ((data[FLAGS_WORD] & UBITX_CW_FLAG) == 0) );
return result;
}
inline bool isModeLSB() const {
bool result;
DISABLEINTS( result = ((data[FLAGS_WORD] & UBITX_USB_FLAG) == 0) && ((data[FLAGS_WORD] & UBITX_CW_FLAG) == 0) );
return result;
}
inline bool isModeCWAny() const {
bool result;
DISABLEINTS( result = (data[FLAGS_WORD] & UBITX_CW_FLAG) > 0 );
return result;
}
inline bool isModeCW() const {
bool result;
DISABLEINTS( result = ((data[FLAGS_WORD] & UBITX_USB_FLAG) > 0) && ((data[FLAGS_WORD] & UBITX_CW_FLAG) > 0) );
return result;
}
inline bool isModeCWR() const {
bool result;
DISABLEINTS( result = ((data[FLAGS_WORD] & UBITX_USB_FLAG) == 0) && ((data[FLAGS_WORD] & UBITX_CW_FLAG) > 0) );
return result;
}
#ifdef DEBUG
void serialHexState(const char* label);
void serialPrettyState(const char* label);
#endif
#ifndef TEENSYDUINO
// These methods are only defined in the Raduino (Arduino) case of the
// RigState, not in the TeensyDSP (Teensy) case.
void writeDirty(); // write fields FROM RigState TO Raduino
void readDirty(); // read variables FROM Raduino TO RigState
#endif
};
#ifndef TEENSYDUINO
extern UBitxRigState& rigState;
#endif
/*
NOTE: This is all currently OBE, leaving it here for reference/future cleanup.
Protocol discussion:
- I2C master: Raduino
- I2C slave: TeensyDSP
Raduino state:
- Baseline uBITX variables
- I2C buffer
- On I2C transmit: make updates based on current variables
- On I2C receive:
- Update based on received I2C responses
- Update associated variables
TeensyDSP state:
- CAT buffer
- Used to receive command from CAT (when commands arrive via Serial)
- Used to transmit state to Raduino (when requested via Wire1)
- Raduino buffer
- Used to receive state from Raduino (when received via Wire1)
- Used to transmit responses to CAT (over Serial)
- Questions
- How can these be synchronized?
- At the tail end of an I2C request handler. Before sending the response to the Raduino via I2C:
- Copy updated CAT buffer items to the Raduino buffer.
- Copy updated Raduino buffer items to the CAT buffer.
- In the case of conflicts, CAT wins.
- Transmit the CAT buffer state to the Raduino.
- TeensyDSP updates 'outgoing' state based on CAT inputs.
- Make change to data.
- Mark data as dirty, if different than incoming state.
- When requested, Teensy DSP sends 'outgoing' state to Raduino.
- Send dirty data over I2C.
- Mark data as clean.
*/
#endif
/***********************************************************************
* EOF
**********************************************************************/

5
TeensyDSP/Sensors.cpp Normal file
View File

@@ -0,0 +1,5 @@
#include "Sensors.h"
UBitxSensors Sensors;
ADC adc;

363
TeensyDSP/Sensors.h Normal file
View File

@@ -0,0 +1,363 @@
#ifndef __Sensor_h__
#define __Sensor_h__
#include <ADC.h>
#include "Debug.h"
#include "HamFuncs.h"
/**********************************************************************/
#ifndef UBITX_SENSORS_S_METER_PIN
#define UBITX_SENSORS_S_METER_PIN 28
#endif
#ifndef UBITX_SENSORS_FWD_PWR_PIN
#define UBITX_SENSORS_FWD_PWR_PIN 26
#endif
#ifndef UBITX_SENSORS_REV_PWR_PIN
#define UBITX_SENSORS_REV_PWR_PIN 20
#endif
#ifndef UBITX_SENSORS_SUPPLY_PIN
#define UBITX_SENSORS_SUPPLY_PIN 21
#endif
#ifndef UBITX_SENSORS_SPARE1_PIN
#define UBITX_SENSORS_SPARE1_PIN 27
#endif
#ifndef UBITX_SENSORS_SPARE2_PIN
#define UBITX_SENSORS_SPARE2_PIN 31
#endif
#ifndef UBITX_SENSORS_AVG_SAMPLES
#define UBITX_SENSORS_AVG_SAMPLES 16
#endif
#ifndef UBITX_SENSORS_S_METER_R1
#define UBITX_SENSORS_S_METER_R1 0.0
#endif
#ifndef UBITX_SENSORS_S_METER_R2
#define UBITX_SENSORS_S_METER_R2 1.0
#endif
#ifndef UBITX_SENSORS_FWD_PWR_R1
#define UBITX_SENSORS_FWD_PWR_R1 22000.0
#endif
#ifndef UBITX_SENSORS_FWD_PWR_R2
#define UBITX_SENSORS_FWD_PWR_R2 33000.0
#endif
#ifndef UBITX_SENSORS_REV_PWR_R1
#define UBITX_SENSORS_REV_PWR_R1 22000.0
#endif
#ifndef UBITX_SENSORS_REV_PWR_R2
#define UBITX_SENSORS_REV_PWR_R2 33000.0
#endif
#ifndef UBITX_SENSORS_SUPPLY_R1
#define UBITX_SENSORS_SUPPLY_R1 56000.0
#endif
#ifndef UBITX_SENSORS_SUPPLY_R2
#define UBITX_SENSORS_SUPPLY_R2 10000.0
#endif
#ifndef UBITX_SENSORS_S_METER_LVL0
#define UBITX_SENSORS_S_METER_LVL0 2
#endif
#ifndef UBITX_SENSORS_S_METER_LVL1
#define UBITX_SENSORS_S_METER_LVL1 4
#endif
#ifndef UBITX_SENSORS_S_METER_LVL2
#define UBITX_SENSORS_S_METER_LVL2 8
#endif
#ifndef UBITX_SENSORS_S_METER_LVL3
#define UBITX_SENSORS_S_METER_LVL3 16
#endif
#ifndef UBITX_SENSORS_S_METER_LVL4
#define UBITX_SENSORS_S_METER_LVL4 32
#endif
#ifndef UBITX_SENSORS_S_METER_LVL5
#define UBITX_SENSORS_S_METER_LVL5 64
#endif
#ifndef UBITX_SENSORS_S_METER_LVL6
#define UBITX_SENSORS_S_METER_LVL6 128
#endif
#ifndef UBITX_SENSORS_S_METER_LVL7
#define UBITX_SENSORS_S_METER_LVL7 256
#endif
#ifndef UBITX_SENSORS_S_METER_LVL8
#define UBITX_SENSORS_S_METER_LVL8 512
#endif
/**********************************************************************/
const int uBitxSensorsSMeterPin = UBITX_SENSORS_S_METER_PIN;
const int uBitxSensorsFwdPwrPin = UBITX_SENSORS_FWD_PWR_PIN;
const int uBitxSensorsRevPwrPin = UBITX_SENSORS_REV_PWR_PIN;
const int uBitxSensorsSupplyPin = UBITX_SENSORS_SUPPLY_PIN;
const int uBitxSensorsSpare1Pin = UBITX_SENSORS_SPARE1_PIN;
const int uBitxSensorsSpare2Pin = UBITX_SENSORS_SPARE2_PIN;
const int uBitxSensorsAvgSamples = UBITX_SENSORS_AVG_SAMPLES;
const float uBitxSensorsSMeterR1 = UBITX_SENSORS_S_METER_R1;
const float uBitxSensorsSMeterR2 = UBITX_SENSORS_S_METER_R2;
const float uBitxSensorsFwdPwrR1 = UBITX_SENSORS_FWD_PWR_R1;
const float uBitxSensorsFwdPwrR2 = UBITX_SENSORS_FWD_PWR_R2;
const float uBitxSensorsRevPwrR1 = UBITX_SENSORS_REV_PWR_R1;
const float uBitxSensorsRevPwrR2 = UBITX_SENSORS_REV_PWR_R2;
const float uBitxSensorsSupplyR1 = UBITX_SENSORS_SUPPLY_R1;
const float uBitxSensorsSupplyR2 = UBITX_SENSORS_SUPPLY_R2;
const int uBitxSensorsSMeterValues[] = {
UBITX_SENSORS_S_METER_LVL0,
UBITX_SENSORS_S_METER_LVL1,
UBITX_SENSORS_S_METER_LVL2,
UBITX_SENSORS_S_METER_LVL3,
UBITX_SENSORS_S_METER_LVL4,
UBITX_SENSORS_S_METER_LVL5,
UBITX_SENSORS_S_METER_LVL6,
UBITX_SENSORS_S_METER_LVL7,
UBITX_SENSORS_S_METER_LVL8
};
const int uBitxSensorsSMeterLevels = sizeof(uBitxSensorsSMeterValues) /
sizeof(uBitxSensorsSMeterValues[0]);
extern ADC adc;
/**********************************************************************/
/*!
* @brief Class that maintains a "trailing average" of the last X
* samples provided. It is a template that can be instantiated
* with both the (numeric) data type that is being stored and
* averaged, as well as the number of samples to maintain the
* trailing average across.
*/
template <typename T, int N>
class TrailingAverage {
public:
/*!
* @brief Create a new TrailingAverage object. Data type averaged,
* and number of elements to average, are determined when the
* template is instantiated.
*/
TrailingAverage():
average(T(0)),
current(0),
divisor(T(N))
{
for (int i = 0; i < N; i++) {
data[i] = T(0);
}
}
/*!
* @brief Add a new element to the average. The current last (Nth)
* element is removed, and the new element is added.
* @param val
* The new element/value to incorporate into the average.
*/
inline void add(T val) {
//int last = (current - 1) % N;
//average -= data[last];
//current = (current + 1) % N;
//data[current] = val / divisor;
//average += data[current];
average -= data[current];
data[current] = val / divisor;
average += data[current];
current = (current + 1) % N;
}
/*!
* @brief Read the current value of the average.
* @return The current average.
*/
inline T read() {
return average;
}
private:
T data[N];
T average;
int current;
T divisor;
};
/**********************************************************************/
/*!
* @brief Class that handles the various sensors in the uBitx:
* S-Meter, forward/reverse power and SWR, and supply voltage.
*/
class UBitxSensors {
public:
/*!
* @brief Create a new UBitxSensors object. It uses the default
* S-Meter, Forward Power, Reverse Power, and Supply Voltage
* ADC pins.
*/
UBitxSensors():
sMeterPin(uBitxSensorsSMeterPin),
fwdPwrPin(uBitxSensorsFwdPwrPin),
revPwrPin(uBitxSensorsRevPwrPin),
supplyPin(uBitxSensorsSupplyPin),
spare1Pin(uBitxSensorsSpare1Pin),
spare2Pin(uBitxSensorsSpare2Pin)
{
pinMode(sMeterPin, INPUT); // analog
pinMode(fwdPwrPin, INPUT); // analog
pinMode(revPwrPin, INPUT); // analog
pinMode(supplyPin, INPUT); // analog
pinMode(spare1Pin, INPUT); // analog
pinMode(spare2Pin, INPUT); // analog
}
/*!
* @brief Update the value of the S-Meter by reading the associated
* ADC pin.
*/
inline void updateSMeter() {
int value = adc.analogRead(sMeterPin);
sMeter.add(value);
}
/*!
* @brief Update the value of the Forward and Reverse Power
* measurements by reading the associated ADC pin.
*/
void updatePower() {
ADC::Sync_result value = adc.analogSyncRead(revPwrPin, fwdPwrPin);
float fwdV = HF::adcIn(value.result_adc0);
float revV = HF::adcIn(value.result_adc1);
fwdV = HF::divIn(fwdV, uBitxSensorsFwdPwrR1, uBitxSensorsFwdPwrR2);
fwdV = HF::bridgeFwd(fwdV);
revV = HF::divIn(revV, uBitxSensorsRevPwrR1, uBitxSensorsRevPwrR2);
revV = HF::bridgeFwd(revV);
fwdPwr.add(HF::P(fwdV));
revPwr.add(HF::P(revV));
vswr.add(HF::VSWR(fwdV, revV));
}
/*!
* @brief Update the value of the Supply Voltage measurement by
* reading the associated ADC pin.
*/
inline void updateSupply() {
float value = HF::adcIn(adc.analogRead(supplyPin));
value = HF::divIn(value, uBitxSensorsSupplyR1, uBitxSensorsSupplyR2);
supply.add(value);
}
/*!
* @brief Return the unscaled value of the S-Meter reading.
* @return Unscaled S-Meter reading.
*/
inline int sMeterUnscaled() {
return sMeter.read();
}
/*!
* @brief Return the scaled value of the S-Meter reading. This
* is the value that is used to directly control the S-Meter
* display on the Nextion LCD.
* @return Scaled S-Meter reading.
*/
int sMeterScaled() {
int sig = sMeter.read() >> 2;
// small number of elements; just doing a linear search
for (int i = uBitxSensorsSMeterLevels; i > 0; i--) {
if (sig > uBitxSensorsSMeterValues[i - 1]) {
return i;
}
}
return 0;
}
/*!
* @brief Return the current Forward Power measurement.
* @return Forward Power measurement.
*/
inline float Pfwd() {
return fwdPwr.read();
}
/*!
* @brief Return the current Reverse Power measurement.
* @return Reverse Power measurement.
*/
inline float Prev() {
return revPwr.read();
}
/*!
* @brief Return the current Voltage Standing Wave Ration (VSWR).
* @return Current VSWR calculation.
*/
inline float VSWR() {
return vswr.read();
}
/*!
* @brief Return the current Voltage Standing Wave Ration (VSWR),
* scaled for the Nextion display protocol.
* @return Current VSWR calculation (scaled).
*/
float scaledVSWR() {
int val = int(vswr.read());
if (val < 0) {
return 0;
} else if (val > uBitxSensorsSMeterLevels) {
return uBitxSensorsSMeterLevels;
} else {
return val;
}
}
/*!
* @brief Return the current Supply Voltage measurement.
* @return Current Supply Voltage.
*/
inline float supplyVoltage() {
return supply.read();
}
private:
// Pins
int sMeterPin;
int fwdPwrPin;
int revPwrPin;
int supplyPin;
int spare1Pin;
int spare2Pin;
// Buffers for averages
TrailingAverage<int, uBitxSensorsAvgSamples> sMeter;
TrailingAverage<float, uBitxSensorsAvgSamples> fwdPwr;
TrailingAverage<float, uBitxSensorsAvgSamples> revPwr;
TrailingAverage<float, uBitxSensorsAvgSamples> vswr;
TrailingAverage<float, uBitxSensorsAvgSamples> supply;
};
extern UBitxSensors Sensors;
#endif

57
TeensyDSP/TR.cpp Normal file
View File

@@ -0,0 +1,57 @@
//======================================================================
// TR.cpp
//======================================================================
#include <Arduino.h>
#include "TR.h"
UBitxTR TR(DSP);
void UBitxTR::update(bool cw, bool extKey) {
updateLinePTT();
if (cw) {
if ((keyEnable && keyDown) || extKey) {
setTX();
} else {
setRX();
}
return;
}
updateMicPTT();
updateMicVOX();
updateDataVOX();
if (isTX) {
// If we are currently transmitting, then ANY T/R release (key
// release) will result in exiting transmit... except for VOX
// and CAT which can only function as a release if it was enabled.
if (micPTTReleased() || linePTTReleased() ||
(micVOXEnabled() && micVOXDeactivated()) ||
(catEnabled() && catDeactivated()) ||
(dataVOXEnabled() && dataVOXDeactivated())) {
// first, stop transmitting; then, setup RX audio
DBGCMD( setRX() );
DBGCMD( dsp.rx() );
}
} else {
if ((micPTTEnabled() && micPTTPressed()) || (micVOXEnabled() && micVOXActivated())) {
// first, setup TX audio; then, start transmitting (from Mic)
DBGCMD( dsp.tx(MIC_IN) );
DBGCMD( setTX() );
} else if ((linePTTEnabled() && linePTTPressed())) {
// first, setup TX audio; then, start transmitting (from Line In)
DBGCMD( dsp.tx(LINE_IN) );
DBGCMD( setTX() );
} else if (catEnable && catActivated()) {
// first, setup TX audio; then, start transmitting (USB)
DBGCMD( dsp.tx(USB_IN) );
DBGCMD( setTX() );
}
}
}
//======================================================================
// EOF
//======================================================================

178
TeensyDSP/TR.h Normal file
View File

@@ -0,0 +1,178 @@
//======================================================================
// TR.h
//======================================================================
#ifndef __TR_h__
#define __TR_h__
#include <Bounce2.h>
#include "Debug.h"
#include "DSP.h"
#define UBITX_TR_OUT_PIN 2
#define UBITX_TR_PTT_PIN 3
#define UBITX_TR_VOX_PIN 4
#define UBITX_TR_KEY_PIN 5
const int uBitxTROutPin = UBITX_TR_OUT_PIN;
const int uBitxTRPttPin = UBITX_TR_PTT_PIN;
const int uBitxTRVoxPin = UBITX_TR_VOX_PIN;
const int uBitxTRKeyPin = UBITX_TR_KEY_PIN;
class UBitxTR {
public:
UBitxTR(UBitxDSP& d, int out = uBitxTROutPin, int p = uBitxTRPttPin, int v = uBitxTRVoxPin, int k = uBitxTRKeyPin):
dsp(d), outPin(out), pttPin(p), voxPin(v), keyPin(k) {}
void begin() {
pinMode(outPin, OUTPUT);
pinMode(voxPin, INPUT_PULLUP);
pinMode(keyPin, INPUT_PULLUP);
ptt.attach(pttPin, INPUT_PULLUP);
ptt.interval(5);
// default configuration: PTT, key, and CAT enabled; VOX disabled
DBGCMD( enableMicPTT() );
DBGCMD( disableMicVOX() );
DBGCMD( enableLinePTT() );
DBGCMD( enableCAT() );
DBGCMD( setRX() );
}
inline void enableMicPTT() { pttEnable = true; }
inline void enableLinePTT() { keyEnable = true; }
inline void enableMicVOX() { voxEnable = true; }
inline void enableDataVOX() { dvoxEnable = true; }
inline void enableCAT() { catEnable = true; }
inline void disableMicPTT() { pttEnable = false; }
inline void disableLinePTT() { keyEnable = false; }
inline void disableMicVOX() { voxEnable = false; }
inline void disableDataVOX() { dvoxEnable = false; }
inline void disableCAT() { catEnable = false; }
inline bool micPTTEnabled() const { return pttEnable; }
inline bool linePTTEnabled() const { return keyEnable; }
inline bool micVOXEnabled() const { return voxEnable; }
inline bool dataVOXEnabled() const { return dvoxEnable; }
inline bool catEnabled() const { return catEnable; }
inline bool micPTTPressed() { return ptt.fell(); }
inline bool micPTTReleased() { return ptt.rose(); }
inline bool linePTTPressed() { return (L_keyDown != keyDown) && L_keyDown; }
inline bool linePTTReleased() { return (L_keyDown != keyDown) && keyDown; }
inline bool micVOXActivated() { return (L_voxActive != voxActive) && L_voxActive; }
inline bool micVOXDeactivated() { return (L_voxActive != voxActive) && voxActive; }
inline bool dataVOXActivated() { return (L_dvoxActive != dvoxActive) && L_dvoxActive; }
inline bool dataVOXDeactivated() { return (L_dvoxActive != dvoxActive) && dvoxActive; }
inline bool catActivated() { return (L_catActive != catActive) && L_catActive; }
inline bool catDeactivated() { return (L_catActive != catActive) && catActive; }
inline void catTX() {
L_catActive = catActive;
catActive = true;
}
inline void catRX() {
L_catActive = catActive;
catActive = false;
}
//======================================================================
inline bool transmitting() { return isTX; }
inline bool receiving() { return !isTX; }
/*!
* @brief Check if any of the PTT's have been pressed or released
* since the last update. Only one thing is allowed to occur
* based on an order of precedence. The highest priority is
* to stop transmitting.
*
* @param cw
* True if CW mode is currently active; false otherwise.
* Different/faster logic is used in CW mode.
*
* @param extKey
* True if an external keying signal (ie. CW keyer) is
* currently active (ie. key down).
*/
void update(bool cw = false, bool extKey = false);
void end() {
}
private:
inline void setTX() {
digitalWrite(outPin, LOW);
isTX = true;
}
inline void setRX() {
isTX = false;
digitalWrite(outPin, HIGH);
}
inline void updateMicPTT() {
ptt.update();
}
inline void updateLinePTT() {
L_keyDown = keyDown;
keyDown = (digitalRead(keyPin) == LOW);
}
inline void updateMicVOX() {
L_voxActive = voxActive;
voxActive = (digitalRead(voxPin) == LOW);
}
inline void updateDataVOX() {
L_dvoxActive = dvoxActive;
if (dsp.getVoxLevel() > dvoxThreshold) {
dvoxActive = true;
dvoxElapsed = 0;
} else if (dvoxActive && (dvoxElapsed > dvoxDelay)) {
dvoxActive = false;
}
}
UBitxDSP& dsp;
Bounce ptt;
int pttPin;
int voxPin;
int keyPin;
int outPin;
bool isTX = false;
bool pttEnable = false;
bool voxEnable = false;
bool dvoxEnable = false;
bool keyEnable = false;
bool catEnable = false;
bool voxActive = false;
bool L_voxActive = false;
bool dvoxActive = false;
bool L_dvoxActive = false;
bool keyDown = false;
bool L_keyDown = false;
bool catActive = false;
bool L_catActive = false;
elapsedMillis dvoxElapsed = 0;
unsigned dvoxDelay = 250; // TODO: make dynamic
};
extern UBitxTR TR;
#endif
//======================================================================
// EOF
//======================================================================

510
TeensyDSP/TS590.cpp Normal file
View File

@@ -0,0 +1,510 @@
#include <Arduino.h>
#include "TS590.h"
#include "Debug.h"
/**********************************************************************/
/*!
* @brief Send a command to the PC via CAT. Note that the command
* should not include the trailing terminator (;). That will
* be automatically added.
* @param format
* A printf-style format string.
* @param args
* Zero or more arguments to include in the command.
*/
void ts590SendCommand(const char* format, ...) {
static char outBuf[ts590CommandMaxLength];
va_list args;
va_start(args, format);
vsprintf(outBuf, format, args);
va_end(args);
Serial.print(outBuf);
Serial.print(";");
}
/**********************************************************************/
/*!
* @brief Create a new CAT command. It should be initialized with
* a 2-character command prefix.
* @param pre
* A 2-character command prefix. If more than 2 characters
* are supplied, only the first two will be used. If less
* than two are supplied, then the command will be
* initialized with a null prefix.
*/
TS590Command::TS590Command(const char* pre)
: myPrefix(pre), prefixLength(strlen(pre))
{}
TS590Command::~TS590Command() {}
/*!
* @brief Determine whether this is a Read command or not. by
* default, if it's a 2-letter command, it's a Read.
* @return True if a Read command; false otherwise.
*/
bool TS590Command::isReadCommand(const char* cmd) const {
if (strlen(cmd) == prefixLength) {
return true;
} else {
return false;
}
}
/*!
* @brief Process the provided command. If the command is a Set
* command, it calls handleCommand(). If Auto Information
* is eet (by the rig), sendResponse() is called at the end.
* If the command is a Read command, it also calls
* sendResponse(). Finally, if necessary, it will return
* any error codes to the PC.
* @param cmd
* The current command string received from the PC via CAT.
* It should be null-terminated, and should no longer have
* the terminator (;).
*/
void TS590Command::process(const char* cmd) {
theError = NoError;
if (isReadCommand(cmd)) {
DBGCMD( sendResponse(cmd) );
} else {
DBGCMD( handleCommand(cmd) );
switch(theError) {
case NoError:
if (theRig->isAI()) {
DBGCMD( sendResponse(cmd) );
}
break;
case SyntaxError:
DBGCMD( ts590SyntaxError() );
break;
case CommError:
DBGCMD( ts590CommError() );
break;
case ProcessError:
DBGCMD( ts590ProcessError() );
break;
}
}
}
/*!
* @brief Set the syntax error flag. This is cleared at the
* beginning of each call to process().
*/
void TS590Command::setSyntaxError() {
theError = SyntaxError;
}
/*!
* @brief Set the comms error flag. This is cleared at the
* beginning of each call to process().
*/
void TS590Command::setCommError() {
theError = CommError;
}
/*!
* @brief Set the process error flag. This is cleared at the
* beginning of each call to process().
*/
void TS590Command::setProcessError() {
theError = ProcessError;
}
/*!
* @brief Set the rig that will be used to process commands.
* @param r
* Pointer to the UBitxRig object.
*/
void TS590Command::setRig(UBitxRig* r) {
theRig = r;
}
/*!
* @brief Set the DSP that will be used to process commands.
* @param d
* Pointer to the UBitxDSP object.
*/
void TS590Command::setDSP(UBitxDSP* d) {
theDSP = d;
}
UBitxRig* TS590Command::theRig = &Rig;
UBitxDSP* TS590Command::theDSP = &DSP;
TS590Error TS590Command::theError = NoError;
/**********************************************************************/
void TS590Command_Bool::handleCommand(const char* cmd) {
setter(cmd[length()] == '0' ? false : true);
}
void TS590Command_Bool::sendResponse(const char* cmd) {
ts590SendCommand("%s%s", prefix(), getter() ? "1" : "0");
}
/**********************************************************************/
void TS590Command_UL::handleCommand(const char* cmd) {
unsigned val = static_cast<unsigned>(strtoul(&cmd[length()], NULL, 10));
if (val < myMin) {
val = myMin;
} else if (val > myMax) {
val = myMax;
}
val = (val * mySlope) + myIntercept;
setter(val);
}
void TS590Command_UL::sendResponse(const char* cmd) {
unsigned val = getter();
val = (val - myIntercept) / mySlope;
if (val < myMin) {
val = myMin;
} else if (val > myMax) {
val = myMax;
}
ts590SendCommand("%s%0*u", prefix(), myWidth, getter());
}
/**********************************************************************/
void TS590_FR::handleCommand(const char* cmd) {
if (strlen(cmd) == 3) {
switch (cmd[2]) {
case '0':
rig()->setVFOA();
rig()->setSplitOff();
break;
case '1':
rig()->setVFOB();
rig()->setSplitOff();
break;
case '2':
// TODO: Need to add something for channel mode.
break;
default:
setSyntaxError();
}
} else {
setSyntaxError();
}
}
void TS590_FR::sendResponse(const char* cmd) {
if (rig()->isVFOA()) {
ts590SendCommand("FR0");
} else if (rig()->isVFOB()) {
ts590SendCommand("FR1");
} else {
ts590SendCommand("FR2");
}
}
/**********************************************************************/
void TS590_FT::handleCommand(const char* cmd) {
if (strlen(cmd) == 3) {
switch (cmd[2]) {
case '0':
if (rig()->isVFOA()) {
rig()->setSplitOff();
} else if (rig()->isVFOB()) {
rig()->setSplitOn();
} else {
setSyntaxError();
}
break;
case '1':
if (rig()->isVFOA()) {
rig()->setSplitOn();
} else if (rig()->isVFOB()) {
rig()->setSplitOff();
} else {
setSyntaxError();
}
break;
default:
setSyntaxError();
}
} else {
setSyntaxError();
}
}
void TS590_FT::sendResponse(const char* cmd) {
if (rig()->isVFOA()) {
ts590SendCommand(rig()->isSplit() ? "FT1" : "FT0");
} else if (rig()->isVFOB()) {
ts590SendCommand(rig()->isSplit() ? "FT0" : "FT1");
} else {
ts590SendCommand("FT2");
}
}
/**********************************************************************/
void TS590_MD::handleCommand(const char* cmd) {
if (strlen(cmd) == 3) {
switch (cmd[2]) {
case '0': // None (setting failure)
case '4': // FM - not supported
case '5': // AM - not supported
case '6': // FSK - not supported
case '8': // None (setting failure)
case '9': // FSK-R - not supported
setProcessError();
break;
case '1': // LSB
rig()->setLSB();
break;
case '2': // USB
rig()->setUSB();
break;
case '3': // CW
rig()->setCW();
break;
case '7': // CW-R
rig()->setCWR();
break;
default:
setSyntaxError();
}
} else {
setSyntaxError();
}
}
void TS590_MD::sendResponse(const char* cmd) {
if (rig()->isModeCW()) {
ts590SendCommand("MD3");
} else if (rig()->isModeCWR()) {
ts590SendCommand("MD7");
} else if (rig()->isModeUSB()) {
ts590SendCommand("MD2");
} else if (rig()->isModeLSB()) {
ts590SendCommand("MD1");
} else {
ts590SendCommand("MD0");
}
}
/**********************************************************************/
int ssbHiCut[14] = {1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 2800, 3000, 3400, 4000, 5000};
int ssbLoCut[12] = {0, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000};
int ssbWidth[14] = {50, 80, 100, 150, 200, 250, 300, 400, 500, 600, 1000, 1500, 2000, 2500};
int ssbCenter[14] = {1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1750, 1800, 1900, 2000, 2100, 2210};
void TS590_SH::handleCommand(const char* cmd) {
if (strlen(cmd) == 4) {
index = strtoul(&cmd[2], NULL, 10);
if (index < sizeof(ssbHiCut) / sizeof(ssbHiCut[0])) {
dsp()->setRxFilterHi(ssbHiCut[index]);
} else {
setSyntaxError();
}
} else {
setSyntaxError();
}
}
void TS590_SH::sendResponse(const char* cmd) {
ts590SendCommand("SH%02u", index);
}
void TS590_SL::handleCommand(const char* cmd) {
if (strlen(cmd) == 4) {
index = strtoul(&cmd[2], NULL, 10);
if (index < sizeof(ssbLoCut) / sizeof(ssbLoCut[0])) {
dsp()->setRxFilterLo(ssbLoCut[index]);
} else {
setSyntaxError();
}
} else {
setSyntaxError();
}
}
void TS590_SL::sendResponse(const char* cmd) {
ts590SendCommand("SL%02u", index);
}
/**********************************************************************/
void TS590_VX::handleCommand(const char* cmd) {
}
void TS590_VX::sendResponse(const char* cmd) {
}
/**********************************************************************/
void nullSetFunc(unsigned x) { return; }
unsigned getIDFunc() {
#ifndef USE_TS590SG_CAT
return 021;
#else
return 023;
#endif
}
SetUL setAG = SetUL::create<UBitxDSP, &UBitxDSP::setLineOut255>(DSP);
GetUL getAG = GetUL::create<UBitxDSP, &UBitxDSP::getLineOut255>(DSP);
SetUL setAI = [](unsigned v) -> void { v == 0 ? Rig.aiOff() : Rig.aiOn(); };
GetUL getAI = []() -> unsigned { return Rig.isAI() ? 4 : 0; };
//SetUL setSidetone = SetUL::create<UBitxDSP, ...>(...);
//GetUL getSidetone = GetUL::create<UBitxDSP, ...>(...);
SetUL setUSBin = SetUL::create<UBitxDSP, &UBitxDSP::setUSBIn9>(DSP);
GetUL getUSBin = GetUL::create<UBitxDSP, &UBitxDSP::getUSBIn9>(DSP);
SetUL setUSBout = SetUL::create<UBitxDSP, &UBitxDSP::setUSBOut9>(DSP);
GetUL getUSBout = GetUL::create<UBitxDSP, &UBitxDSP::getUSBOut9>(DSP);
SetUL setACC2in = SetUL::create<UBitxDSP, &UBitxDSP::setLineIn9>(DSP);
GetUL getACC2in = GetUL::create<UBitxDSP, &UBitxDSP::getLineIn9>(DSP);
SetUL setACC2out = SetUL::create<UBitxDSP, &UBitxDSP::setLineOut9>(DSP);
GetUL getACC2out = GetUL::create<UBitxDSP, &UBitxDSP::getLineOut9>(DSP);
SetUL setVoxDelay = SetUL::create<UBitxDSP, &UBitxDSP::setDataVoxDelay>(DSP);
GetUL getVoxDelay = GetUL::create<UBitxDSP, &UBitxDSP::getDataVoxDelay>(DSP);
SetUL setUSBvox = SetUL::create<UBitxDSP, &UBitxDSP::setUSBVOXThresh9>(DSP);
GetUL getUSBvox = GetUL::create<UBitxDSP, &UBitxDSP::getUSBVOXThresh9>(DSP);
SetUL setACC2vox = SetUL::create<UBitxDSP, &UBitxDSP::setLineVOXThresh9>(DSP);
GetUL getACC2vox = GetUL::create<UBitxDSP, &UBitxDSP::getLineVOXThresh9>(DSP);
SetUL setID = SetUL::create<nullSetFunc>();
GetUL getID = GetUL::create<getIDFunc>();
TS590Command_UL TS590_AG("AG0", 3, 0, 255, setAG, getAG);
TS590Command_UL TS590_AI("AI", 1, 0, 4, setAI, getAI);
// TS590_AS
// TS590_BD
// TS590_BU
// TS590_CA
// TS590_CD0
// TS590_CD1
// TS590_CD2
// TS590_CH
#ifndef USE_TS590SG_CAT
//TS590Command_UL TS590_EX034("EX0340000", 2, 0, 14, 50, 300, setSideTone, getSideTone);
TS590Command_UL TS590_EX064("EX0640000", 1, 0, 9, setUSBin, getUSBin);
TS590Command_UL TS590_EX065("EX0650000", 1, 0, 9, setUSBout, getUSBout);
TS590Command_UL TS590_EX066("EX0660000", 1, 0, 9, setACC2in, getACC2in);
TS590Command_UL TS590_EX067("EX0670000", 1, 0, 9, setACC2out, getACC2out);
TS590Command_UL TS590_EX070("EX0700000", 2, 0, 20, 5, 0, setVoxDelay, getVoxDelay);
TS590Command_UL TS590_EX071("EX0710000", 1, 0, 9, setUSBvox, getUSBvox);
TS590Command_UL TS590_EX072("EX0720000", 1, 0, 9, setACC2vox, getACC2vox);
#else
//TS590Command_UL TS590_EX040("EX0400000", 2, 0, 14, 50, 300, setSideTone, getSideTone);
TS590Command_UL TS590_EX071("EX0710000", 1, 0, 9, setUSBin, getUSBin);
TS590Command_UL TS590_EX072("EX0720000", 1, 0, 9, setUSBout, getUSBout);
TS590Command_UL TS590_EX073("EX0730000", 1, 0, 9, setACC2in, getACC2in);
TS590Command_UL TS590_EX074("EX0740000", 1, 0, 9, setACC2out, getACC2out);
TS590Command_UL TS590_EX077("EX0770000", 2, 0, 20, 5, 0, setVoxDelay, getVoxDelay);
TS590Command_UL TS590_EX078("EX0780000", 1, 0, 9, setUSBvox, getUSBvox);
TS590Command_UL TS590_EX079("EX0790000", 1, 0, 9, setACC2vox, getACC2vox);
#endif
TS590Command_UL TS590_ID("ID", 3, 21, 23, setID, getID);
TS590_FA cmdFA;
TS590_FB cmdFB;
TS590_FR cmdFR;
TS590_FT cmdFT;
TS590_MD cmdMD;
TS590_SH cmdSH;
TS590_SL cmdSL;
TS590Command* catCommands[] = {
&cmdFA,
&cmdFB,
&cmdFR,
&cmdFT,
&cmdMD,
&cmdSH,
&cmdSL
};
int numCatCommands = sizeof(catCommands) / sizeof(catCommands[0]);
/**********************************************************************/
void UBitxTS590::begin() {
Serial.begin(9600); // USB is always 12 Mbit/sec
#ifdef DEBUG
delay(500);
Serial.print("DBG: Number of CAT commands: ");
Serial.println(numCommands);
for (int i = 0; i < numCommands; i++) {
Serial.print(" ");
Serial.println(commands[i]->prefix());
}
#endif
}
void UBitxTS590::update() {
char incomingChar;
while (Serial.available()) {
if (bufLen < ts590CommandMaxLength) {
incomingChar = Serial.read();
if (incomingChar == ';') {
buf[bufLen++] = '\0';
strupr(buf);
processCommand();
} else if (incomingChar == '\n' && bufLen == 0) {
;
} else {
buf[bufLen++] = incomingChar;
}
} else {
// too long... we're going to bail on this.
ts590SyntaxError();
bufLen = 0;
}
}
}
typedef class TS590Command* PCmd;
int compareCATCommands(const void* a, const void* b) {
TS590Command const *B = *(TS590Command const **)b;
int cmp = strncmp((char*)a, (char*)B->prefix(), B->length());
#ifdef DEBUG
Serial.print("Comparison: ");
Serial.print((char*)a);
Serial.print(" ? ");
Serial.print((char*)B->prefix());
Serial.print(" --> ");
Serial.println(cmp);
#endif
return cmp;
}
void UBitxTS590::processCommand() {
TS590Command** cmd = (TS590Command**)bsearch(buf, commands, numCommands, sizeof(TS590Command*), compareCATCommands);
if (cmd == NULL) {
ts590SyntaxError();
} else {
(*cmd)->process(buf);
}
bufLen = 0;
}
UBitxTS590 TS590(catCommands, numCatCommands);
/**********************************************************************/

362
TeensyDSP/TS590.h Normal file
View File

@@ -0,0 +1,362 @@
#ifndef __TS590_h__
#define __TS590_h__
#include <Arduino.h>
#include <Embedded_Template_Library.h>
#include <etl/delegate.h>
#include "DSP.h"
#include "Rig.h"
/**********************************************************************/
#define TS590_COMMAND_MAX_LENGTH 50 // including terminator (which will get converted to null)
const int ts590CommandMaxLength = TS590_COMMAND_MAX_LENGTH;
void ts590SendCommand(const char*, ...);
/*!
* @brief Send a syntax error response to the PC via CAT.
*/
inline void ts590SyntaxError() { ts590SendCommand("?"); }
/*!
* @brief Send a communications error response to the PC via CAT.
*/
inline void ts590CommError() { ts590SendCommand("E"); }
/*!
* @brief Send a processing error response to the PC via CAT.
*/
inline void ts590ProcessError() { ts590SendCommand("O"); }
enum TS590Error {
NoError,
SyntaxError,
CommError,
ProcessError
};
/**********************************************************************
**********************************************************************/
/*
class TS590BaseCommand {
public:
TS590BaseCommand(const char* prefix)
: myPrefix(prefix), prefixLength(strlen(prefix))
{}
virtual ~TS590BaseCommand() = 0;
inline const char* prefix() { return &myPrefix[0]; }
inline size_t length() { return prefixLength; }
virtual void handleCommand(const char* cmd) = 0;
virtual void sendResponse(const char* cmd) = 0;
virtual bool isReadCommand(const char* cmd) const;
inline void process(const char* cmd) {
theError = NoError;
if (isReadCommand(cmd)) {
DBGCMD( sendResponse(cmd) );
} else {
DBGCMD( handleCommand(cmd) );
switch(theError) {
case NoError:
if (theRig->isAI()) {
DBGCMD( sendResponse(cmd) );
}
break;
case SyntaxError:
DBGCMD( ts590SyntaxError() );
break;
case CommError:
DBGCMD( ts590CommError() );
break;
case ProcessError:
DBGCMD( ts590ProcessError() );
break;
}
}
}
private:
const char* myPrefix;
size_t prefixLength;
};
*/
typedef etl::delegate<bool(const char*)> ValidateFunc;
typedef etl::delegate<bool(const char*)> IsReadFunc;
typedef etl::delegate<void(bool)> ToggleFunc;
/*
class TS590ToggleCommand : public TS590BaseCommand {
TS590ToggleCommand(const char* prefix, ToggleFunc& setter, ToggleFunc& getter)
: TS590BaseCommand(prefix)
{}
private:
ToggleFunc& mySetter;
ToggleFunc& myGetter;
};
*/
/**********************************************************************/
/*!
* @brief A TS590S/SG "CAT" command. This is the base class for all
* CAT commands.
*/
class TS590Command {
public:
TS590Command(const char* pre);
virtual ~TS590Command();
/*!
* @brief Return the 2-character prefix for the command.
* @return The 2-character prefix for the command.
*/
inline const char* prefix() const { return &myPrefix[0]; }
inline size_t length() const { return prefixLength; }
/*!
* @brief Return the rig that this command will be used to control.
*/
inline UBitxRig* rig() const { return theRig; }
/*!
* @brief Return the DSP that this command will be used to control.
*/
inline UBitxDSP* dsp() const { return theDSP; }
/*!
* @brief Handle the provided Set command. If the Set command
* results in an error, then set the appropriate flag with
* setSyntaxError(), setCommError(), or setProcessError().
* @param cmd
* The current command string received from the PC via CAT.
* It should be null-terminated, and should no longer have
* the terminator (;).
*/
virtual void handleCommand(const char* cmd) = 0;
/*!
* @brief Send a response back to the PC. This assumes a
* successful command (no errors).
*/
virtual void sendResponse(const char* cmd) = 0;
virtual bool isReadCommand(const char* cmd) const;
void process(const char* cmd);
static void setSyntaxError();
static void setCommError();
static void setProcessError();
static void setRig(UBitxRig* r);
static void setDSP(UBitxDSP* d);
private:
const char* myPrefix;
size_t prefixLength;
static TS590Error theError;
static UBitxRig* theRig;
static UBitxDSP* theDSP;
};
/**********************************************************************/
typedef etl::delegate<void(bool)> SetBool;
typedef etl::delegate<bool(void)> GetBool;
class TS590Command_Bool : public TS590Command {
public:
TS590Command_Bool(const char* prefix, SetBool set, GetBool get)
: TS590Command(prefix), setter(set), getter(get) {}
virtual void handleCommand(const char* cmd);
virtual void sendResponse(const char* cmd);
private:
SetBool setter;
GetBool getter;
};
/**********************************************************************/
typedef etl::delegate<void(unsigned)> SetUL;
typedef etl::delegate<unsigned(void)> GetUL;
class TS590Command_UL : public TS590Command {
public:
TS590Command_UL(const char* prefix, size_t width, unsigned min, unsigned max, SetUL set, GetUL get)
: TS590Command(prefix), myWidth(width), myMin(min), myMax(max), mySlope(1), myIntercept(0), setter(set), getter(get) {}
TS590Command_UL(const char* prefix, size_t width, unsigned min, unsigned max, unsigned slope, unsigned intercept, SetUL set, GetUL get)
: TS590Command(prefix), myWidth(width), myMin(min), myMax(max), mySlope(slope), myIntercept(intercept), setter(set), getter(get) {}
virtual void handleCommand(const char* cmd);
virtual void sendResponse(const char* cmd);
private:
size_t myWidth;
unsigned myMin;
unsigned myMax;
unsigned mySlope;
unsigned myIntercept;
SetUL setter;
GetUL getter;
};
/**********************************************************************/
/*
typedef etl::delegate<void(bool)> SetULArray;
typedef etl::delegate<bool(void)> GetULArray;
class TS590Command_ULArray : public TS590Command {
public:
TS590Command_ULArray(const char* prefix, SetUL set, GetUL get)
: TS590Command(prefix), setter(set), getter(get) {}
virtual void handleCommand(const char* cmd);
virtual void sendResponse(const char* cmd);
private:
SetUL setter;
GetUL getter;
};
*/
/**********************************************************************/
/*!
* @brief CAT command for setting or reading the VFO A/B frequency.
*/
template<bool VFOA>
class TS590_FAB : public TS590Command {
public:
TS590_FAB(): TS590Command(VFOA ? "FA" : "FB") {}
virtual void handleCommand(const char* cmd) {
if (strlen(cmd) == 13) {
unsigned long freq = strtoul(&cmd[2], NULL, 10);
if (VFOA) {
rig()->setFreqA(freq);
} else {
rig()->setFreqB(freq);
}
} else {
setSyntaxError();
}
}
virtual void sendResponse(const char* cmd) {
ts590SendCommand(VFOA ? "FA%011u" : "FB%011u", VFOA ? rig()->getFreqA() : rig()->getFreqB());
}
};
typedef TS590_FAB<true> TS590_FA;
typedef TS590_FAB<false> TS590_FB;
/**********************************************************************/
/*!
* @brief CAT command for setting the receiver VFO. This will always
* disable split mode, if it was previously enabled.
*/
class TS590_FR : public TS590Command {
public:
TS590_FR(): TS590Command("FR") {}
virtual void handleCommand(const char* cmd);
virtual void sendResponse(const char* cmd);
};
/**********************************************************************/
/*!
* @brief CAT command for setting the transmitter VFO. If it is
* different than the receiver VFO, then split mode will be
* automatically enabled.
*/
class TS590_FT : public TS590Command {
public:
TS590_FT(): TS590Command("FT") {}
virtual void handleCommand(const char* cmd);
virtual void sendResponse(const char* cmd);
};
/**********************************************************************/
/*!
* @brief CAT command for setting the mode.
*/
class TS590_MD : public TS590Command {
public:
TS590_MD(): TS590Command("MD") {}
virtual void handleCommand(const char* cmd);
virtual void sendResponse(const char* cmd);
};
/**********************************************************************/
/*!
* @brief CAT command for setting the receiver high-cut frequency.
*/
class TS590_SH : public TS590Command {
public:
TS590_SH(): TS590Command("SH") {}
virtual void handleCommand(const char* cmd);
virtual void sendResponse(const char* cmd);
private:
unsigned index;
};
/*!
* @brief CAT command for setting the receiver low-cut frequency.
*/
class TS590_SL : public TS590Command {
public:
TS590_SL(): TS590Command("SL") {}
virtual void handleCommand(const char* cmd);
virtual void sendResponse(const char* cmd);
private:
unsigned index;
};
/*!
* CAT command for enabling or disabling the mic VOX.
*/
class TS590_VX : public TS590Command {
public:
TS590_VX(): TS590Command("VX") {}
virtual void handleCommand(const char* cmd);
virtual void sendResponse(const char* cmd);
private:
unsigned index;
};
/**********************************************************************/
class UBitxTS590 {
public:
UBitxTS590(TS590Command** cmds, int len): commands(cmds), numCommands(len) {}
void begin();
void update();
private:
void processCommand();
char buf[ts590CommandMaxLength] = {0};
int bufLen = 0;
TS590Command** commands;
int numCommands;
};
extern UBitxTS590 TS590;
#endif
/**********************************************************************/

75
TeensyDSP/TeensyDSP.h Normal file
View File

@@ -0,0 +1,75 @@
/*
Configuration file for Nextion LCD and Control MCU
The parameter can be set according to the CPU used.
KD8CEC, Ian Lee
-----------------------------------------------------------------------
**********************************************************************/
#include <Arduino.h>
#include "Debug.h"
#include "DSP.h"
#include "Keyer.h"
#include "Nextion.h"
#include "Rig.h"
#include "RigState.h"
#include "Sensors.h"
#include "TR.h"
#include "TS590.h"
//================================================================
//COMMUNICATION SECTION
//================================================================
//================================================================
// FFT and Decode Morse
//================================================================
#define FFTSIZE 64
#define SAMPLE_FREQUENCY 6000
#define SAMPLESIZE (FFTSIZE * 2)
#define DECODE_MORSE_SAMPLESIZE 48
extern uint8_t cwDecodeHz;
extern int magnitudelimit_low;
//================================================================
// EEPROM Section
//================================================================
#define MAX_FORWARD_BUFF_LENGTH 128
#define EEPROM_DSPTYPE 100
#define EEPROM_SMETER_UART 111
#define EEPROM_SMETER_TIME 112
#define EEPROM_CW_FREQ 120
//#define EEPROM_CW_MAG_LIMIT 121
#define EEPROM_CW_MAG_LOW 122
#define EEPROM_CW_NBTIME 126
#define EEPROM_RTTYDECODEHZ 130
//================================================================
// DEFINE for I2C Command
//================================================================
//S-Meter Address
#define I2CMETER_ADDR 0x58 //changed from 0x6A
//VALUE TYPE============================================
//Signal
#define I2CMETER_CALCS 0x59 //Calculated Signal Meter
#define I2CMETER_UNCALCS 0x58 //Uncalculated Signal Meter
//Power
#define I2CMETER_CALCP 0x57 //Calculated Power Meter
#define I2CMETER_UNCALCP 0x56 //UnCalculated Power Meter
//SWR
#define I2CMETER_CALCR 0x55 //Calculated SWR Meter
#define I2CMETER_UNCALCR 0x54 //Uncalculated SWR Meter
// Raduino<=>TeensyDSP data exchange
#define I2CMETER_RIGINF 0x50
// Raduino requests any CAT updates from TeensyDSP
//#define I2CMETER_REQCAT 0x51

779
TeensyDSP/TeensyDSP.ino Normal file
View File

@@ -0,0 +1,779 @@
/*
FFT, CW Decode for uBITX
KD8CEC, Ian Lee
Version : 0.8
-----------------------------------------------------------------------
License : See fftfunctions.cpp for FFT and CW Decode.
**********************************************************************/
#include <ADC.h>
#include <i2c_t3.h> // using i2c_t3 library for multiple I2C busses
#include <EEPROM.h>
#include "TeensyDSP.h"
//const uint8_t responseHeader[11]={'p', 'm', '.', 's', 'p', '.', 't', 'x', 't', '=', '"'}; //for Spectrum from DSP
//const uint8_t responseFooter[4]={'"', 0xFF, 0xFF, 0xFF};
//const char hexCodes[16] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', };
#ifdef DEBUG
int i2cCmdCounter[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
int i2cRespCounter[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
#endif
unsigned long SAMPLE_INTERVAL = 0;
int i2cCommand = 0;
//void calculateCoeff(uint8_t freqIndex);
uint8_t cwDecodeHz = 9;
int magnitudelimit_low = 30;
char forwardBuff[MAX_FORWARD_BUFF_LENGTH + 1];
static int nowBuffIndex = 0;
static char etxCount = 0;
static char nowSendingProtocol = 0;
uint8_t SMeterToUartSend = 0; //0 : Send, 1: Idle
uint8_t SMeterToUartIdleCount = 0;
#define SMeterToUartInterval 4
char DSPType = 1; //0 : Not Use, 1 : FFT, 2 : Morse Decoder, 3 : RTTY Decoder
char FFTToUartIdleCount = 0;
#define FFTToUartInterval 2
elapsedMillis sinceForward = 0;
uint8_t responseCommand = 0; //
bool isTX = false;
/**********************************************************************/
void responseConfig()
{
if (responseCommand == 2)
{
unsigned long returnValue = 0;
if (DSPType == 0)
{
returnValue = 94; //None
}
else if (DSPType == 1)
{
returnValue = 95; //Spectrum (FFT) mode
}
else if (DSPType == 2)
{
returnValue = 100 + cwDecodeHz;
}
returnValue = returnValue << 8;
returnValue = returnValue | (SMeterToUartSend & 0xFF);
returnValue = returnValue << 8;
uint8_t tmpValue = 0;
if (magnitudelimit_low > 255)
tmpValue = 255;
else if (magnitudelimit_low < 1)
tmpValue = 0;
else
tmpValue = magnitudelimit_low;
returnValue = returnValue | (tmpValue & 0xFF);
sendCommandUL('v', returnValue); //Return data
sendCommandUL('g', 0x6A); //Return data
}
responseCommand = 0;
}
//Result : if found .val=, 1 else 0
/*!
@brief Parse commands...
*/
char commandParser(int lastIndex)
{
//Analysing Forward data
//59 58 68 4A 1C 5F 6A E5 FF FF 73
//Find Loopback protocol
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
//70 6D 2E 76 76 2E 76 61 6C 3D 33 38 34 38 39 35 33 36 32 38 FF FF FF
//pm.vv.val=3848953628\xFF\xFF\xFF
//1234567890XXX
//
int startIndex = 0;
//Loop back command has 13 ~ 23
if (lastIndex < 13)
{
return 0;
}
//Protocol MAX Length : 22
if (lastIndex >= 22)
{
startIndex = lastIndex - 22;
}
else
{
startIndex = 0;
}
for (int i = lastIndex - 3; i >= startIndex + 7; i--)
{
//Find =
if (forwardBuff[i - 3] == 'v' && forwardBuff[i - 2] == 'a' && forwardBuff[i - 1] == 'l' && forwardBuff[i] == '=') //0x3D
{
uint8_t command1 = forwardBuff[i - 6]; //v
uint8_t command2 = forwardBuff[i - 5]; //v
// i-4 //.
forwardBuff[lastIndex - 2] = 0;
long commandVal = atol(&forwardBuff[i + 1]);
uint8_t *readBuff = (uint8_t *)&commandVal;
//Loop Back
if (command1 == 'v' && command2 == 'v')
{
int calcChecksum = readBuff[0] + readBuff[1] + readBuff[2];
calcChecksum = calcChecksum % 256;
//Correct Checksum and Receiver is DSP Moudle protocol v1.0
if (calcChecksum == readBuff[3] && readBuff[2] == 0x6A)
{
//Serial1.print("Correct Checksum Command : ");
//Serial1.println(readBuff[1]);
uint8_t cmd1 = readBuff[1];
if (cmd1 == 94)
{
DSPType = 0;
EEPROM.put(EEPROM_DSPTYPE, DSPType);
}
else if (cmd1 == 95)
{
//Serial1.println("Spectrum Mode");
DSPType = 1;
EEPROM.put(EEPROM_DSPTYPE, DSPType);
}
else if (cmd1 >= 100 && cmd1 <= 145)
{
cwDecodeHz = cmd1 - 100;
//calculateCoeff(cwDecodeHz);
DSPType = 2;
EEPROM.put(EEPROM_DSPTYPE, DSPType);
EEPROM.put(EEPROM_CW_FREQ, cwDecodeHz);
}
else if (cmd1 > 1 && cmd1 <= 5) //2~5 : Request Configuration
{
responseCommand = cmd1;
}
else if (cmd1 == 50 || cmd1 == 51) //Set Configuration
{
SMeterToUartSend = (cmd1 == 51);
EEPROM.put(EEPROM_SMETER_UART, SMeterToUartSend);
}
else if (cmd1 >= 146 && cmd1 <= 156 )
{
//Save Mode
magnitudelimit_low = (cmd1 - 146) * 10;
EEPROM.put(EEPROM_CW_MAG_LOW, magnitudelimit_low);
} //end of if
} //end of check Checksum
} //end of check Protocol (vv)
else if (command1 == 'c' && command2 == 't') //TX, RX
{
if (commandVal == 0) //RX
{
isTX = false;
SMeterToUartIdleCount = 0;
}
else if (commandVal == 1) //TX
{
isTX = true;
SMeterToUartIdleCount = 0;
}
}
return 1;
} //end of check Protocol (.val)
} //end of for
//Not found Protocol (.val=
return 0;
}
//#define PROTOCOL_TIMEOUT = 100
/*!
@brief Forwards serial data from the RX line to the TX line.
*/
void forwardData(void)
{
char recvChar;
if (Serial1.available() > 0)
{
Serial1.flush();
// Check RX buffer for available data.
while (Serial1.available() > 0)
{
recvChar = char(Serial1.read());
forwardBuff[nowBuffIndex] = recvChar;
if (recvChar == 0xFF) // found ETX
{
etxCount++; // Nextion protocol, ETX: 0xFF, 0xFF, 0xFF
if (etxCount >= 3)
{
// Finished Protocol
if (commandParser(nowBuffIndex) == 1)
{
nowSendingProtocol = 0; // finished 1 set command
etxCount = 0;
nowBuffIndex = 0;
}
}
}
else
{
nowSendingProtocol = 1; // sending data
etxCount = 0;
}
Serial1.write(recvChar);
sinceForward = 0;
nowBuffIndex++;
if (nowBuffIndex > MAX_FORWARD_BUFF_LENGTH - 2)
{
nowBuffIndex = 0;
}
}
Serial1.flush();
}
else
{
// check timeout
}
}
/**********************************************************************/
void sendMeterData(uint8_t isSend)
{
scaledSMeter = Sensors.sMeterScaled();
/*
1 : with noise (not use 0 ~ S3)
2 : -93 ~ -89
3 : -88 ~ -81
4 : -80 ~ -78
5 : -77 ~ -72
6 : -71 ~ -69
*/
if (isSend == 1)
{
if (L_scaledSMeter != scaledSMeter)
{
L_scaledSMeter = scaledSMeter;
sendCommand1Num(CMD_SMETER, L_scaledSMeter);
}
}
}
/**********************************************************************/
//void sendFFTData(void)
//{
// int readValue = 0;
// for (int i = 0; i < 11; i++)
// Serial1.write(responseHeader[i]);
//
// for(int i = 1; i < 64; i++)
// {
// readValue = (int)(FFTReal[i]);
// if (readValue < 0)
// {
// readValue = 0;
// }
// else if (readValue>255)
// {
// readValue=255;
// }
// Serial1.write(hexCodes[readValue >> 4]);
// Serial1.write(hexCodes[readValue & 0xf]);
// }
//
// for (int i = 0; i < 4; i++)
// Serial1.write(responseFooter[i]);
//}
void setup()
{
// Startup each of the subsystems, beginning with CAT.
DBGCMD( TS590.begin() );
DBGCMD( TR.begin() );
DBGCMD( Rig.begin() );
DBGCMD( DSP.begin() );
// load configuration
EEPROM.get(EEPROM_DSPTYPE, DSPType);
if (DSPType > 5)
{
DSPType = 1;
}
// signal meter
EEPROM.get(EEPROM_SMETER_UART, SMeterToUartSend);
if (SMeterToUartSend > 2)
{
SMeterToUartSend = 1;
}
// something with CW decoding...
EEPROM.get(EEPROM_CW_FREQ, cwDecodeHz);
if (cwDecodeHz > 40 || cwDecodeHz < 1)
{
cwDecodeHz = 9;
}
// EEPROM_CW_MAG_LOW
EEPROM.get(EEPROM_CW_MAG_LOW, magnitudelimit_low);
if (magnitudelimit_low > 1000 || magnitudelimit_low < 1)
{
magnitudelimit_low = 50;
}
// put your setup code here, to run once:
// slave Wire1 configuration for communication with the Raduino
Wire1.begin(I2CMETER_ADDR);
Wire1.onReceive(i2cReceiveEvent);
Wire1.onRequest(i2cRequestEvent);
// Serial1 configuration for communication with Raduino (RX) and Nextion (TX)
Serial1.begin(9600, SERIAL_8N1);
Serial1.flush();
SAMPLE_INTERVAL = round(1000000 * (1.0 / SAMPLE_FREQUENCY));
//calculateCoeff(cwDecodeHz); //Set 750Hz //9 * 50 + 300 = 750Hz
//Serial1.println("Start...");
}
/*!
@brief Receive a command via I2C. The most recent command will be received, which will
indicate which data the DSP should be preparing to return.
@param numBytes
Number of bytes received--not used in this procedure.
*/
void i2cReceiveEvent(size_t numBytes)
{
int readCommand = 0;
bool exitLoop = false;
// Does this really need to be a while loop? Don't we know the number of bytes?
while (Wire1.available() > 0 && !exitLoop) {
readCommand = Wire1.read();
if (readCommand == I2CMETER_RIGINF) {
Rig.rad().receive_RIGINF(numBytes - 1);
exitLoop = true;
}
}
// while (Wire1.available() > 0) // for Last command
// {
// readCommand = Wire1.read();
// // KC4UPR: Note that this looks to be only reading the last command, i.e.
// // if multiple commands have been queued up, only the last will get executed.
// }
if (0x50 <= readCommand && readCommand <= 0x59)
{
#ifdef DEBUG
i2cCmdCounter[readCommand - 0x50]++;
#endif
i2cCommand = readCommand;
}
}
/*!
@brief Respond to a request from the I2C Master (Raduino). Returns the appropriate data
based on whatever command was previously issued.
*/
void i2cRequestEvent(void)
{
//int maxValue = 0;
//int minValue = 30000;
//int readValue = 0;
//unsigned long curr = 0;
switch (i2cCommand) {
case I2CMETER_CALCS:
// Returns an already-calculated S-meter value.
Wire1.write(scaledSMeter);
break;
case I2CMETER_UNCALCS:
// Returns a raw signal strength value.
Wire1.write(Sensors.sMeterUnscaled() >> 2); // divided by 4... do we want this?
break;
case I2CMETER_CALCP:
// Returns a raw forward power value.
Wire1.write(int(fwdPower * 100.0));
break;
case I2CMETER_CALCR:
// Returns a raw reverse power value.
Wire1.write(int(revPower * 100.0));
break;
case I2CMETER_RIGINF:
// Receive current rig state; transmit any CAT updates, if required.
Rig.cat().send_RIGINF();
//Wire1.write(catState.header); // temporary - just writing a single, null byte
// NEEDS TO GET UPDATED
break;
/*
case I2CMETER_REQCAT:
// Provide latest CAT updates, if any.
//Wire1.write(catState.header); // temporary - just writing a single, null byte
// NEEDS TO GET UPDATED
if (Rig.updatedByCAT()) {
if (sentRigInfFlag) {
DBGPRINTLN("I2CMETER_REQCAT -- updated by CAT");
Wire1.write(Rig.stateAsBytes(), sizeof(UBitxRigState));
Rig.clearUpdate();
} else {
Wire1.write(1);
sentRigInfFlag = true;
}
} else {
DBGPRINTLN("I2CMETER_REQCAT -- NOT updated by CAT");
//Wire1.write(Rig.stateAsBytes(), sizeof(uint8_t));
Wire1.write(0);
}
break;
*/
default:
break;
}
#ifdef DEBUG
if (0x50 <= i2cCommand && i2cCommand <= 0x59)
{
i2cRespCounter[i2cCommand - 0x50]++;
}
#endif
}
//extern void Decode_Morse(float magnitude);
//extern double coeff;
#define LAST_TIME_INTERVAL 159
// for boot delay, a lot of data to transfer
// Delay 2.5 Sec
byte isBooted = 0;
//======================================================================
// ADC PROCESSES
//======================================================================
elapsedMillis sinceFrameMillis = 0;
elapsedMillis sinceADCMillis = 0;
#define FRAME_RATE 40
#define FRAME_INTERVAL_MS (1000/FRAME_RATE)
const int frameIntervalMillis = FRAME_INTERVAL_MS;
#define ADC_SAMPLE_RATE 120
#define ADC_INTERVAL_MS (1000/ADC_SAMPLE_RATE)
const int adcIntervalMillis = ADC_INTERVAL_MS;
//======================================================================
// MAIN LOOP
//======================================================================
#ifdef DEBUG
int frameCounter = 0;
#endif
/**********************************************************************/
void loop()
{
//char isProcess = 0; // 0: init, 1: complete ADC sampling, 2: complete FFT
//isProcess = 0;
// One-shot delay to ensure everything is booted up (primarily, the
// Nextion, and secondarily the Raduino.
if (isBooted < 100)
{
// delay 20msec
for (int i = 0; i < 20; i++)
{
forwardData();
delay(1);
}
isBooted++;
return;
}
// If CW mode, we need to update keying a lot...
if (Rig.isModeCWAny()) {
if (Rig.isModeCWAny()) Keyer.doPaddles();
TR.update(Rig.isModeCWAny(), Keyer.isDown());
//if (TR.transmitting()) return;
}
// Start out by forwarding any data sitting in the RX buffer. We will
// do this as often as possible.
forwardData();
if (sinceFrameMillis > frameIntervalMillis) {
// Do stuff that we do once per frame--I/O.
// TODO: debug output (frame skipping / utilization).
sinceFrameMillis = 0;
// Update each of the subsystems, beginning with CAT control.
TS590.update();
TR.update(Rig.isModeCWAny(), Keyer.isDown());
Rig.update();
DSP.update();
//if (Rig.isModeCWAny()) return;
#ifdef DEBUG
// For debugging, output some debug info every 1.0" (40 frames @ 40 Hz).
frameCounter++;
if (frameCounter % 40 == 0) {
Serial.println("======================================================================");
Serial.print("DBG: Frame: ");
Serial.print(frameCounter);
if (isTX) {
Serial.print(", Loop State: TX");
} else {
Serial.print(", Loop State: RX");
}
if (TR.transmitting()) {
Serial.println(", TR State: TX");
} else {
Serial.println(", TR State: RX");
}
Serial.print("VFO A: ");
Serial.print(Rig.getFreqA());
Serial.print(", VFO B: ");
Serial.print(Rig.getFreqB());
Serial.print(", Data Size: ");
Serial.print(sizeof(UBitxRigState));
Serial.println();
Serial.println("----------------------------------------------------------------------");
Serial.print("DBG: S-Meter Raw: ");
Serial.print(Sensors.sMeterUnscaled());
Serial.print(", S-Meter Scaled: ");
Serial.println(scaledSMeter);
Serial.print("DBG: VSWR Calc: ");
Serial.print(calcVSWR, 2);
Serial.print(", VSWR Scaled: ");
Serial.print(scaledVSWR);
Serial.print(", FWD PWR: ");
Serial.print(fwdPower, 2);
Serial.print(", REV PWR: ");
Serial.println(revPower, 2);
Serial.print("Audio Memory: ");
Serial.print(AudioMemoryUsage());
Serial.print(",");
Serial.println(AudioMemoryUsageMax());
Serial.println("----------------------------------------------------------------------");
Serial.print("Enabled/Active: PTT: ");
Serial.print(TR.micPTTEnabled() ? "Y" : "N"); Serial.print("/"); Serial.print(TR.micPTTPressed() ? "Y" : "N");
Serial.print(", VOX: ");
Serial.print(TR.micVOXEnabled() ? "Y" : "N"); Serial.print("/"); Serial.print(TR.micVOXActivated() ? "Y" : "N");
Serial.print(", Key: ");
Serial.print(TR.linePTTEnabled() ? "Y" : "N"); Serial.print("/"); Serial.print(TR.linePTTPressed() ? "Y" : "N");
Serial.print(", CAT: ");
Serial.print(TR.catEnabled() ? "Y" : "N"); Serial.print("/"); Serial.print(TR.catActivated() ? "Y" : "N");
Serial.println();
Serial.print("I2C Command/Response: ");
for (int i = 0x50; i <= 0x59; i++) {
Serial.print(i, HEX); Serial.print(": ");
Serial.print(i2cCmdCounter[i - 0x50]); Serial.print("/");
Serial.print(i2cRespCounter[i - 0x50]); Serial.print(", ");
}
Serial.println();
}
#endif
if (isTX) {
calcVSWR = Sensors.VSWR();
scaledVSWR = byte(Sensors.scaledVSWR());
fwdPower = Sensors.Pfwd();
revPower = Sensors.Prev();
// Send SWR meter information.
if (L_scaledVSWR != scaledVSWR) {
L_scaledVSWR = scaledVSWR;
sendCommand1Num(CMD_SMETER, scaledVSWR);
}
// Send forward power.
if (L_fwdPower != fwdPower) {
L_fwdPower = fwdPower;
sendCommandL('m', int(fwdPower * 100.0)); // watts x 100?
sendCommand1Num('m', 2);
}
// Send reverse power.
//if (L_revPower != revPower) {
// L_revPower = revPower;
// sendCommandL('m', int(revPower * 100.0)); // watts x 100?
// sendCommand1Num('m', 2);
//}
// Does there need to be some kind of 250-500ms delay after this???
// Delay 250msec ~ 500msec for Nextion LCD Processing (using m protocol)
//for (int i = 0; i < 10; i++) {
// forwardData();
// if (!isTX) { //if TX -> RX break
// break;
// }
// delay(25);
//} //end of delay time
// Send SWR.
if (L_calcVSWR != calcVSWR) {
L_calcVSWR = calcVSWR;
sendCommandL('m', int(calcVSWR * 100.0)); // SWR x 100?
sendCommand1Num('m', 3);
}
} else { // RX
// Send Signal Meter to UART
if (SMeterToUartSend == 1 && nowSendingProtocol == 0) //SMeter To Uart Send
{
//nowSendingProtocol -> not finished data forward, (not found 0xff, 0xff, 0xff yet)
sendMeterData(1);
} else {
sendMeterData(0); //only calculate Signal Level
}
}
// Forward any data that came in while we were updating stuff.
forwardData();
}
if (Rig.isModeCWAny()) return; // In CW, the ADC measurement messes with the timing. So need to use interrupts on the Keyer, and/or continuous ADC.
if (sinceADCMillis > adcIntervalMillis) {
// Do stuff that we do once per ADC interval--ADC colllection.
// TODO: debug output (frame skipping / utilization).
sinceADCMillis = 0;
if (isTX) {
Sensors.updatePower();
} else { // RX
Sensors.updateSMeter();
Sensors.updateSupply();
}
// Forward any data that came in while we were reading sensors.
//forwardData();
}
//if (Rig.isModeCWAny()) return;
// Check Response Command
if (responseCommand > 0 && sinceForward > LAST_TIME_INTERVAL)
{
responseConfig();
}
// //===========================================
// //TRANSCEIVER STATUS : RX
// //===========================================
// //===================================================================================
// // DSP Routine
// //===================================================================================
// if (DSPType == 1 && sinceForward > LAST_TIME_INTERVAL) // spectrum: FFT => send To UART
// {
// FFTToUartIdleCount = 0;
//
// if (isProcess == 1)
// {
// FFT(FFTReal, FFTImag, SAMPLESIZE, 7);
// isProcess = 2;
// }
//
// forwardData();
//
// if (isProcess == 2)
// {
// for (uint16_t k = 0; k < SAMPLESIZE; k++)
// {
// FFTReal[k] = sqrt(FFTReal[k] * FFTReal[k] + FFTImag[k] * FFTImag[k]);
// }
//
// isProcess = 3;
// }
//
// forwardData();
//
// if (isProcess == 3)
// {
// if (nowSendingProtocol == 0) //Idle Status
// {
// sendFFTData();
// }
// }
// }
// else if (DSPType == 2) //Decode Morse
// {
// //Implement Goertzel_algorithm
// //https://en.wikipedia.org/wiki/Goertzel_algorithm
//
// /*
// ω = 2 * π * Kterm / Nterms;
// cr = cos(ω);
// ci = sin(ω);
// coeff = 2 * cr;
//
// sprev = 0;
// sprev2 = 0;
// for each index n in range 0 to Nterms-1
// s = x[n] + coeff * sprev - sprev2;
// sprev2 = sprev;
// sprev = s;
// end
//
// power = sprev2 * sprev2 + sprev * sprev - coeff * sprev * sprev2;
// */
// double Q1 = 0;
// double Q2 = 0;
//
// for (unsigned index = 0; index < DECODE_MORSE_SAMPLESIZE; index++)
// {
// float Q0;
// Q0 = coeff * Q1 - Q2 + FFTReal[index];
// Q2 = Q1;
// Q1 = Q0;
// }
// double magnitudeSquared = (Q1*Q1)+(Q2*Q2)-Q1*Q2*coeff; // we do only need the real part //
// double magnitude = sqrt(magnitudeSquared);
//
// Decode_Morse(magnitude);
// } //end of if
}
//======================================================================
// EOF
//======================================================================

240
raduino-tmp/README.md Normal file
View File

@@ -0,0 +1,240 @@
<<<<<<< HEAD
Stand-in README.md while I merge several repos into this project.
=======
#NOTICE
----------------------------------------------------------------------------
- Now Release Version 1.20 on my blog (http://www.hamskey.com)
- You can download and compiled hex file and uBITX Manager application on release section (https://github.com/phdlee/ubitx/releases)
- For more information, see my blog (http://www.hamskey.com)
http://www.hamskey.com
Ian KD8CEC
kd8cec@gmail.com
#uBITX
uBITX firmware, written for the Raduino/Arduino control of uBITX transceivers
This project is based on https://github.com/afarhan/ubitx and all copyright is inherited.
The copyright information of the original is below.
KD8CEC
----------------------------------------------------------------------------
Prepared or finished tasks for the next version
- Add TTS module
- Direct control for Student
----------------------------------------------------------------------------
## REVISION RECORD
1.20
- Support uBITX V5
- Change to SDR Frequency (Remove just RTL-SDR's error Frequency (2390Hz))
1.12
- Support Custom LPF Control
- Other Minor Bugs
1.1
- Support Nextion LCD, TJC LCD
- Read & Backup uBITX, ADC Monitoring, ATT, IF-Shift and more on Nextion LCD (TJC LCD)
- Factory Reset (Both Character LCD and Nextion LCD are applicable)
- Support Signal Meter using ADC (A7 Port)
- Supoort I2C Signal Meter
- Spectrum
- Band Scan
- Memory Control on Nextion LCD (TJC LCD)
- Speed Change CW-Option on Nextion LCD
- Fixed Band Change Bug (Both Character LCD and Nextion LCD are applicable)
- uBITX Manager removed the Encode and Decode buttons. The procedure has become a bit easier.
- I2C Device Scan on uBITX Manager ( Both Character LCD and Nextion LCD are applicable)
- Si5351 I2C Address can be changed
- Recovery using QR-Code Data from Server
- Nextion LCD and TJC LCD can display Spectrum and CW Decode (using Stand alone S-Meter)
- Other Minor Bugs
1.09 (Beta)
- include 1.094 beta, 1.095 beta, 1.097 beta
1.08
- Receive performance is improved compared to the original firmware or version 1.061
- ATT function has been added to reduce RF gain (Shift 45Mhz IF)
- Added the ability to connect SDR. (Low cost RTL-SDR available)
- Added a protocol to ADC Monitoring in CAT communications
- Various LCD support, 16x02 Parallel LCD - It is the LCD equipped with uBITX, 16x02 I2C LCD, 20x04 Parallel LCD, 20x04 I2C LCD, 16x02 I2C Dual LCD
- Added Extended Switch Support
- Support S Meter
- Added S-Meter setting assistant to uBITX Manager
- Add recovery mode (such as Factory Reset)
- There have been many other improvements and fixes. More information is available on the blog. (http://www.hamskey.com)
1.07 (Beta)
- include 1.071 beta, 1.073 beta, 1.075 beta
- Features implemented in the beta version have been applied to Version 1.08 above.
1.061
- Added WSPR
You only need uBITX to use WSPR. No external devices are required.
Added Si5351 module for WSPR
- Update uBITX Manager to Version 1.0
- Reduce program size
for WSPR
for other Module
- Fixed IF Shift Bug
Disable IF Shift on TX
IF shift available in USB mode
Fixed cat routine in IF Shift setup
- Bugs fixed
cw start delay option
Auto key Bug
(found bug : LZ1LDO)
Message selection when Auto Key is used in RIT mode
(found bug : gerald)
- Improve CW Keying (start TX)
1.05
- include 1.05W, 1.051, 1.051W
- for WSPR Beta Test Version
1.04
- Optimized from Version1.03
- Reduce program size (97% -> 95%)
1.03
- Change eBFO Calibration Step (50 to 5)
- Change CW Frequency Display type
1.02
- Applied CW Start Delay to New CW Key logic (This is my mistake when applying the new CW Key Logic.Since uBITX operations are not significantly affected, this does not create a separate Release, It will be reflected in the next release.) - complete
- Modified CW Key Logic for Auto Key, (available AutoKey function by any cw keytype) - complete
- reduce cpu use usage (working)
- reduce (working)
1.01
- Fixed Cat problem with (IAMBIC A or B Selected)
1.0
- rename 0.30 to 1.0
0.35
- vfo to channel bug fixed (not saved mode -> fixed, channel has frequency and mode)
- add Channel tag (ch.1 ~ 10) by uBITX Manager
- add VFO to Channel, Channel To VFO
0.34
- TX Status check in auto Keysend logic
- optimize codes
- change default tune step size, and fixed bug
- change IF shift step (1Hz -> 50Hz)
0.33
- Added CWL, CWU Mode, (dont complete test yet)
- fixed VFO changed bug.
- Added Additional BFO for CWL, CWL
- Added IF Shift
- Change confirmation key PTT -> function key (not critical menus)
- Change CW Key Select type, (toggle -> select by dial)
0.32
- Added function Scroll Frequencty on upper line
- Added Example code for Draw meter and remarked (you can see and use this code in source codes)
- Added Split function, just toggle VFOs when TX/RX
0.31
- Fixed CW ADC Range error
- Display Message on Upper Line (anothor VFO Frequency, Tune Step, Selected Key Type)
0.30
- implemented the function to monitor the value of all analog inputs. This allows you to monitor the status of the CW keys connected to your uBITX.
- possible to set the ADC range for CW Keying. If no setting is made, it will have the same range as the original code. If you set the CW Keying ADC Values using uBITX Manager 0.3, you can reduce the key error.
- Added the function to select Straight Key, IAMBICA, IAMBICB key from the menu.
- default Band select is Ham Band mode, if you want common type, long press function key at band select menu, uBITX Manager can be used to modify frequencies to suit your country.
0.29
- Remove the use of initialization values in BFO settings - using crruent value, if factory reset
- Select Tune Step, default 0, 20, 50, 100, 200, Use the uBITX Manager to set the steps value you want. You can select Step by pressing and holding the Function Key (1sec ~ 2sec).
- Modify Dial Lock Function, Press the Function key for more than 3 seconds to toggle dial lock.
- created a new frequency tune method. remove original source codes, Threshold has been applied to reduce malfunction. checked the continuity of the user operating to make natural tune possible.
- stabilize and remove many warning messages - by Pullrequest and merge
- Changed cw keying method. removed the original code and applied Ron's code and Improved compatibility with original hardware and CAT commnication. It can be used without modification of hardware.
0.28
- Fixed CAT problem with hamlib on Linux
- restore Protocol autorecovery logic
0.27
(First alpha test version, This will be renamed to the major version 1.0)
- Dual VFO Dial Lock (vfoA Dial lock)
- Support Ham band on uBITX
default Hamband is regeion1 but customize by uBITX Manager Software
- Advanced ham band options (Tx control) for use in all countries. You can adjust it yourself.
- Convenience of band movement
0.26
- only Beta tester released & source code share
- find a bug on none initial eeprom uBITX - Fixed (Check -> initialized & compatible original source code)
- change the version number 0.26 -> 0.27
- Prevent overflow bugs
- bug with linux based Hamlib (raspberry pi), It was perfect for the 0.224 version, but there was a problem for the 0.25 version.
On Windows, ham deluxe, wsjt-x, jt65-hf, and fldigi were successfully run. Problem with Raspberry pi.
0.25
- Beta Version Released
http://www.hamskey.com/2018/01/release-beta-version-of-cat-support.html
- Added CAT Protocol for uBITX
- Modified the default usb carrier value used when the setting is wrong.
- Fixed a routine to repair when the CAT protocol was interrupted.
0.24
- Program optimization
reduce usage ram rate (string with M() optins)
- Optimized CAT protocol for wsjt-x, fldigi
0.23
- added delay_background() , replace almost delay() to delay_background for prevent timeout
- cat library compatible with FT-817 Command
switch VFOA / VFOB,
Read Write CW Speed
Read Write CW Delay Time
Read Write CW Pitch (with sidetone)
All of these can be controlled by Hamradio deluxe.
- modified cat libray function for protocol for CAT communication is not broken in CW or TX mode
- Ability to change CW Delay
- Added Dial Lock function
- Add functions CW Start dely (TX -> CW interval)
- Automatic storage of VFO frequency
It was implemented by storing it only once when the frequency stays 10 seconds or more after the change.
(protect eeprom life)
0.22
- fixed screen Update Problem
- Frequency Display Problem - Problems occur below 1Mhz
- added function Enhanced CAT communication
- replace ubitx_cat.ino to cat_libs.ino
- Save mode when switching to VFOA / VFOB
0.21
- fixed the cw side tone configuration.
- Fix the error that the frequency is over.
- fixed frequency display (alignment, point)
0.20
- original uBITX software (Ashhar Farhan)
## Original README.md
uBITX firmware, written for the Raduino/Arduino control of uBITX transceigers
Copyright (C) 2017, Ashhar Farhan
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
>>>>>>> raduino/master

View File

Before

Width:  |  Height:  |  Size: 71 KiB

After

Width:  |  Height:  |  Size: 71 KiB

674
teensydsp-tmp/LICENSE Normal file
View File

@@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

14
teensydsp-tmp/README.md Normal file
View File

@@ -0,0 +1,14 @@
# dspmeterv1
Please also refer to the site below.
https://github.com/soligen2010/dspmeterv1
-------------------------------------------
Standalone Signal Analyzer (I2C Type Signal-Meter) for uBITX - Arduino Nano Version
I do not claim any license for my code.
You may use it in any way. I just hope this will be used for amateur radio.
The other person's source code (CW Morse code) follows the original author's license.
Ian KD8CEC