18 Commits
v0.31 ... v0.34

Author SHA1 Message Date
phdlee
e915c21412 Merge pull request #18 from phdlee/version0.34
Version0.34
2018-02-03 17:17:43 +09:00
phdlee
60777178a8 TX Check in auto keysend 2018-02-03 17:07:11 +09:00
phdlee
dd68b38454 Optimize codes 2018-02-03 16:35:27 +09:00
phdlee
d229a10092 change tune step size and fixed bug 2018-02-02 20:49:00 +09:00
phdlee
3d019cdd44 change IF Shift Step 1 -> 50Hz 2018-01-31 17:53:20 +09:00
phdlee
55cfeeb924 Update README.md 2018-01-31 12:13:44 +09:00
phdlee
c8879e0e59 Update README.md 2018-01-31 12:12:58 +09:00
phdlee
4f5ac283b7 Merge pull request #17 from phdlee/version0.33
Version0.33
2018-01-31 10:47:20 +09:00
phdlee
4745790dfa fixed Key select bug 2018-01-31 10:44:23 +09:00
phdlee
85832de034 change confirmation key PTT->function key for easy interface 2018-01-30 20:02:49 +09:00
phdlee
4830db78cb change IF Shift setup type 2018-01-30 18:43:08 +09:00
phdlee
5eca64d2a9 vfo changed buf fixed, added BFO feature with Mike 2018-01-30 17:44:15 +09:00
phdlee
0d9ec08bd7 Added CWL, CWU Mode, need test 2018-01-30 13:20:52 +09:00
phdlee
3058d52551 Merge pull request #16 from phdlee/version0.32
Version0.32
2018-01-30 12:20:18 +09:00
phdlee
98c26730c6 display test and split TX/RX added 2018-01-30 12:13:52 +09:00
phdlee
3a306429ea display exaam (scroll freq) #2 2018-01-30 00:00:43 +09:00
phdlee
4f634a8277 line2 display example1.1 2018-01-29 23:02:46 +09:00
phdlee
a49d5e85b8 line2 display sample1 2018-01-29 22:49:30 +09:00
9 changed files with 995 additions and 335 deletions

View File

@@ -1,23 +1,14 @@
#IMPORTANT INFORMATION #IMPORTANT INFORMATION
---------------------------------------------------------------------------- ----------------------------------------------------------------------------
- 0.30 Version Test only download. almost complete - 0.33 Version Test only download. almost complete
- Beta 0.26 and Beta 0.261, Beta 0.262,0.27 is complete test, 0.28 is tested. - Beta 0.26 and Beta 0.261, Beta 0.262,0.27 is complete test, 0.28 is tested.
- 0.31 is tested but has not critical bug
- You can download and use it (Release section). - You can download and use it (Release section).
# Current work list (for Version 0.31)
1 Testing CAT Control with Software using hamlib on Linux
#NOTICE #NOTICE
---------------------------------------------------------------------------- ----------------------------------------------------------------------------
I received uBITX a month ago and found that many features are required, and began coding with the idea of implementing minimal functionality as a general hf transceiver rather than an experimental device. I received uBITX a month ago and found that many features are required, and began coding with the idea of implementing minimal functionality as a general hf transceiver rather than an experimental device.
- fixed bugs...
- Diallock for uBITX's sensitive encoders
- built in softare Memory keyer and cw options control for CW communication
- Implementation of CAT communication protocol for Digital Communication (as FT8, JT65, etc)
- Delay Options for external Linear.
- and more...
Most of the basic functions of the HF transceiver I thought were implemented. Most of the basic functions of the HF transceiver I thought were implemented.
The minimum basic specification for uBITX to operate as a radio, I think it is finished. The minimum basic specification for uBITX to operate as a radio, I think it is finished.
So I will release the 0.27 version and if I do not see the bug anymore, I will try to change the version name to 1.0. So I will release the 0.27 version and if I do not see the bug anymore, I will try to change the version name to 1.0.
@@ -50,6 +41,23 @@ Prepared or finished tasks for the next version
---------------------------------------------------------------------------- ----------------------------------------------------------------------------
## REVISION RECORD ## REVISION RECORD
0.33
- Added CWL, CWU Mode, (dont complete test yet)
- fixed VFO changed bug.
- Added Additional BFO for CWL, CWL
- Added IF Shift
- Change confirmation key PTT -> function key (not critical menus)
- Change CW Key Select type, (toggle -> select by dial)
0.32
- Added function Scroll Frequencty on upper line
- Added Example code for Draw meter and remarked (you can see and use this code in source codes)
- Added Split function, just toggle VFOs when TX/RX
0.31
- Fixed CW ADC Range error
- Display Message on Upper Line (anothor VFO Frequency, Tune Step, Selected Key Type)
0.30 0.30
- implemented the function to monitor the value of all analog inputs. This allows you to monitor the status of the CW keys connected to your uBITX. - implemented the function to monitor the value of all analog inputs. This allows you to monitor the status of the CW keys connected to your uBITX.
- possible to set the ADC range for CW Keying. If no setting is made, it will have the same range as the original code. If you set the CW Keying ADC Values using uBITX Manager 0.3, you can reduce the key error. - possible to set the ADC range for CW Keying. If no setting is made, it will have the same range as the original code. If you set the CW Keying ADC Values using uBITX Manager 0.3, you can reduce the key error.

View File

@@ -130,10 +130,21 @@ void CatGetFreqMode(unsigned long freq, byte fromType)
} }
//Mode Check //Mode Check
if (isUSB) if (cwMode == 0)
CAT_BUFF[4] = CAT_MODE_USB; {
if (isUSB)
CAT_BUFF[4] = CAT_MODE_USB;
else
CAT_BUFF[4] = CAT_MODE_LSB;
}
else if (cwMode == 1)
{
CAT_BUFF[4] = CAT_MODE_CW;
}
else else
CAT_BUFF[4] = CAT_MODE_LSB; {
CAT_BUFF[4] = CAT_MODE_CW;
}
SendCatData(5); SendCatData(5);
} }
@@ -198,12 +209,18 @@ void CatSetMode(byte tmpMode, byte fromType)
if (!inTx) if (!inTx)
{ {
if (tmpMode == CAT_MODE_USB) if (tmpMode == CAT_MODE_CW)
{ {
cwMode = 1;
}
else if (tmpMode == CAT_MODE_USB)
{
cwMode = 0;
isUSB = true; isUSB = true;
} }
else else
{ {
cwMode = 0;
isUSB = false; isUSB = false;
} }
@@ -358,10 +375,21 @@ void ReadEEPRom_FT817(byte fromType)
CAT_BUFF[1] = 0xB2; CAT_BUFF[1] = 0xB2;
break; case 0x69 : //FM Mic (#29) Contains 0-100 (decimal) as displayed break; case 0x69 : //FM Mic (#29) Contains 0-100 (decimal) as displayed
case 0x78 : case 0x78 :
if (isUSB) if (cwMode == 0)
CAT_BUFF[0] = CAT_MODE_USB; {
else if (isUSB)
CAT_BUFF[0] = CAT_MODE_LSB; CAT_BUFF[0] = CAT_MODE_USB;
else
CAT_BUFF[0] = CAT_MODE_LSB;
}
else if (cwMode == 1)
{
CAT_BUFF[0] = CAT_MODE_CW;
}
else if (cwMode == 2)
{
CAT_BUFF[0] = CAT_MODE_CW;
}
if (CAT_BUFF[0] != 0) CAT_BUFF[0] = 1 << 5; if (CAT_BUFF[0] != 0) CAT_BUFF[0] = 1 << 5;
break; break;
@@ -384,7 +412,7 @@ void ReadEEPRom_FT817(byte fromType)
//7A 6 ? ? //7A 6 ? ?
//7A 7 SPL On/Off 0 = Off, 1 = On //7A 7 SPL On/Off 0 = Off, 1 = On
CAT_BUFF[0] = (isSplitOn ? 0xFF : 0x7F); CAT_BUFF[0] = (splitOn ? 0xFF : 0x7F);
break; break;
case 0xB3 : // case 0xB3 : //
CAT_BUFF[0] = 0x00; CAT_BUFF[0] = 0x00;

View File

@@ -365,6 +365,11 @@ void controlAutoCW(){
//check interval time, if you want adjust interval between chars, modify below //check interval time, if you want adjust interval between chars, modify below
if (isAutoCWHold == 0 && (millis() - autoCWbeforeTime > cwSpeed * 3)) if (isAutoCWHold == 0 && (millis() - autoCWbeforeTime > cwSpeed * 3))
{ {
if (!inTx){ //if not TX Status, change RX -> TX
keyDown = 0;
startTx(TX_CW, 0); //disable updateDisplay Command for reduce latency time
}
sendCWChar(EEPROM.read(CW_AUTO_DATA + autoCWSendCharIndex++)); sendCWChar(EEPROM.read(CW_AUTO_DATA + autoCWSendCharIndex++));
if (autoCWSendCharIndex > autoCWSendCharEndIndex) { //finish auto cw send if (autoCWSendCharIndex > autoCWSendCharEndIndex) { //finish auto cw send

View File

@@ -151,6 +151,7 @@ int count = 0; //to generally count ticks, loops, etc
#define CW_SPEED 28 #define CW_SPEED 28
//AT328 has 1KBytes EEPROM //AT328 has 1KBytes EEPROM
#define CW_CAL 252
#define VFO_A_MODE 256 #define VFO_A_MODE 256
#define VFO_B_MODE 257 #define VFO_B_MODE 257
#define CW_DELAY 258 #define CW_DELAY 258
@@ -159,7 +160,8 @@ int count = 0; //to generally count ticks, loops, etc
#define TX_TUNE_TYPE 261 // #define TX_TUNE_TYPE 261 //
#define HAM_BAND_RANGE 262 //FROM (2BYTE) TO (2BYTE) * 10 = 40byte #define HAM_BAND_RANGE 262 //FROM (2BYTE) TO (2BYTE) * 10 = 40byte
#define HAM_BAND_FREQS 302 //40, 1 BAND = 4Byte most bit is mode #define HAM_BAND_FREQS 302 //40, 1 BAND = 4Byte most bit is mode
#define TUNING_STEP 342 //TUNING STEP * 6 (index 1 + STEPS 5) #define TUNING_STEP 342 //TUNING STEP * 6 (index 1 + STEPS 5) //1STEP :
//for reduce cw key error, eeprom address //for reduce cw key error, eeprom address
#define CW_ADC_MOST_BIT1 348 //most 2bits of DOT_TO , DOT_FROM, ST_TO, ST_FROM #define CW_ADC_MOST_BIT1 348 //most 2bits of DOT_TO , DOT_FROM, ST_TO, ST_FROM
@@ -232,7 +234,7 @@ int count = 0; //to generally count ticks, loops, etc
char ritOn = 0; char ritOn = 0;
char vfoActive = VFO_A; char vfoActive = VFO_A;
int8_t meter_reading = 0; // a -1 on meter makes it invisible int8_t meter_reading = 0; // a -1 on meter makes it invisible
unsigned long vfoA=7150000L, vfoB=14200000L, sideTone=800, usbCarrier; unsigned long vfoA=7150000L, vfoB=14200000L, sideTone=800, usbCarrier, cwmCarrier;
unsigned long vfoA_eeprom, vfoB_eeprom; //for protect eeprom life unsigned long vfoA_eeprom, vfoB_eeprom; //for protect eeprom life
unsigned long frequency, ritRxFrequency, ritTxFrequency; //frequency is the current frequency on the dial unsigned long frequency, ritRxFrequency, ritTxFrequency; //frequency is the current frequency on the dial
@@ -249,7 +251,6 @@ byte saveIntervalSec = 10; //second
unsigned long saveCheckTime = 0; unsigned long saveCheckTime = 0;
unsigned long saveCheckFreq = 0; unsigned long saveCheckFreq = 0;
bool isSplitOn = false;
byte cwDelayTime = 60; byte cwDelayTime = 60;
byte delayBeforeCWStartTime = 50; byte delayBeforeCWStartTime = 50;
@@ -260,7 +261,7 @@ byte sideToneSub = 0;
//DialLock //DialLock
byte isDialLock = 0; //000000[0]vfoB [0]vfoA 0Bit : A, 1Bit : B byte isDialLock = 0; //000000[0]vfoB [0]vfoA 0Bit : A, 1Bit : B
byte isTxType = 0; //000000[0 - isSplit] [0 - isTXStop] byte isTxType = 0; //000000[0 - isSplit] [0 - isTXStop]
byte arTuneStep[5]; long arTuneStep[5];
byte tuneStepIndex; //default Value 0, start Offset is 0 because of check new user byte tuneStepIndex; //default Value 0, start Offset is 0 because of check new user
byte displayOption1 = 0; byte displayOption1 = 0;
@@ -298,9 +299,13 @@ byte userCallsignLength = 0; //7 : display callsign at system startup, 6~0 :
*/ */
boolean txCAT = false; //turned on if the transmitting due to a CAT command boolean txCAT = false; //turned on if the transmitting due to a CAT command
char inTx = 0; //it is set to 1 if in transmit mode (whatever the reason : cw, ptt or cat) char inTx = 0; //it is set to 1 if in transmit mode (whatever the reason : cw, ptt or cat)
char splitOn = 0; //working split, uses VFO B as the transmit frequency, (NOT IMPLEMENTED YET) char splitOn = 0; //working split, uses VFO B as the transmit frequency
char keyDown = 0; //in cw mode, denotes the carrier is being transmitted char keyDown = 0; //in cw mode, denotes the carrier is being transmitted
char isUSB = 0; //upper sideband was selected, this is reset to the default for the char isUSB = 0; //upper sideband was selected, this is reset to the default for the
char cwMode = 0; //compatible original source, and extend mode //if cwMode == 0, mode check : isUSB, cwMode > 0, mode Check : cwMode
//iscwMode = 0 : ssbmode, 1 :cwl, 2 : cwu, 3 : cwn (none tx)
//frequency when it crosses the frequency border of 10 MHz //frequency when it crosses the frequency border of 10 MHz
byte menuOn = 0; //set to 1 when the menu is being displayed, if a menu item sets it to zero, the menu is exited byte menuOn = 0; //set to 1 when the menu is being displayed, if a menu item sets it to zero, the menu is exited
unsigned long cwTimeout = 0; //milliseconds to go before the cw transmit line is released and the radio goes back to rx mode unsigned long cwTimeout = 0; //milliseconds to go before the cw transmit line is released and the radio goes back to rx mode
@@ -311,6 +316,10 @@ boolean modeCalibrate = false;//this mode of menus shows extended menus to calib
unsigned long beforeIdle_ProcessTime = 0; //for check Idle time unsigned long beforeIdle_ProcessTime = 0; //for check Idle time
byte line2DisplayStatus = 0; //0:Clear, 1 : menu, 1: DisplayFrom Idle, byte line2DisplayStatus = 0; //0:Clear, 1 : menu, 1: DisplayFrom Idle,
char lcdMeter[17];
byte isIFShift = 0; //1 = ifShift, 2 extend
long ifShiftValue = 0; //
/** /**
* Below are the basic functions that control the uBitx. Understanding the functions before * Below are the basic functions that control the uBitx. Understanding the functions before
@@ -364,22 +373,24 @@ void setNextHamBandFreq(unsigned long f, char moveDirection)
EEPROM.get(HAM_BAND_FREQS + 4 * findedIndex, resultFreq); EEPROM.get(HAM_BAND_FREQS + 4 * findedIndex, resultFreq);
loadMode = (byte)(resultFreq >> 30); //loadMode = (byte)(resultFreq >> 30);
resultFreq = resultFreq & 0x3FFFFFFF; //resultFreq = resultFreq & 0x3FFFFFFF;
loadMode = (byte)(resultFreq >> 29);
resultFreq = resultFreq & 0x1FFFFFFF;
if ((resultFreq / 1000) < hamBandRange[(unsigned char)findedIndex][0] || (resultFreq / 1000) > hamBandRange[(unsigned char)findedIndex][1]) if ((resultFreq / 1000) < hamBandRange[(unsigned char)findedIndex][0] || (resultFreq / 1000) > hamBandRange[(unsigned char)findedIndex][1])
resultFreq = (unsigned long)(hamBandRange[(unsigned char)findedIndex][0]) * 1000; resultFreq = (unsigned long)(hamBandRange[(unsigned char)findedIndex][0]) * 1000;
setFrequency(resultFreq); setFrequency(resultFreq);
byteWithFreqToMode(loadMode); byteToMode(loadMode, 1);
} }
void saveBandFreqByIndex(unsigned long f, unsigned long mode, char bandIndex) { void saveBandFreqByIndex(unsigned long f, unsigned long mode, char bandIndex) {
if (bandIndex >= 0) if (bandIndex >= 0)
EEPROM.put(HAM_BAND_FREQS + 4 * bandIndex, (f & 0x3FFFFFFF) | (mode << 30) ); //EEPROM.put(HAM_BAND_FREQS + 4 * bandIndex, (f & 0x3FFFFFFF) | (mode << 30) );
EEPROM.put(HAM_BAND_FREQS + 4 * bandIndex, (f & 0x1FFFFFFF) | (mode << 29) );
} }
/* /*
KD8CEC KD8CEC
When using the basic delay of the Arduino, the program freezes. When using the basic delay of the Arduino, the program freezes.
@@ -473,13 +484,27 @@ void setFrequency(unsigned long f){
setTXFilters(f); setTXFilters(f);
if (isUSB){ if (cwMode == 0)
si5351bx_setfreq(2, SECOND_OSC_USB - usbCarrier + f); {
si5351bx_setfreq(1, SECOND_OSC_USB); if (isUSB){
si5351bx_setfreq(2, SECOND_OSC_USB - usbCarrier + f + (isIFShift ? ifShiftValue : 0));
si5351bx_setfreq(1, SECOND_OSC_USB);
}
else{
si5351bx_setfreq(2, SECOND_OSC_LSB + usbCarrier + f + (isIFShift ? ifShiftValue : 0));
si5351bx_setfreq(1, SECOND_OSC_LSB);
}
} }
else{ else
si5351bx_setfreq(2, SECOND_OSC_LSB + usbCarrier + f); {
si5351bx_setfreq(1, SECOND_OSC_LSB); if (cwMode == 1){ //CWL
si5351bx_setfreq(2, SECOND_OSC_LSB + cwmCarrier + f + (isIFShift ? ifShiftValue : 0));
si5351bx_setfreq(1, SECOND_OSC_LSB);
}
else{ //CWU
si5351bx_setfreq(2, SECOND_OSC_USB - cwmCarrier + f + (isIFShift ? ifShiftValue : 0));
si5351bx_setfreq(1, SECOND_OSC_USB);
}
} }
frequency = f; frequency = f;
@@ -508,6 +533,21 @@ void startTx(byte txMode, byte isDisplayUpdate){
ritRxFrequency = frequency; ritRxFrequency = frequency;
setFrequency(ritTxFrequency); setFrequency(ritTxFrequency);
} }
else if (splitOn == 1) {
if (vfoActive == VFO_B) {
vfoActive = VFO_A;
frequency = vfoA;
byteToMode(vfoA_mode, 0);
}
else if (vfoActive == VFO_A){
vfoActive = VFO_B;
frequency = vfoB;
byteToMode(vfoB_mode, 0);
}
setFrequency(frequency);
} //end of else
if (txMode == TX_CW){ if (txMode == TX_CW){
//turn off the second local oscillator and the bfo //turn off the second local oscillator and the bfo
@@ -517,10 +557,22 @@ void startTx(byte txMode, byte isDisplayUpdate){
//shif the first oscillator to the tx frequency directly //shif the first oscillator to the tx frequency directly
//the key up and key down will toggle the carrier unbalancing //the key up and key down will toggle the carrier unbalancing
//the exact cw frequency is the tuned frequency + sidetone //the exact cw frequency is the tuned frequency + sidetone
if (isUSB)
si5351bx_setfreq(2, frequency + sideTone); if (cwMode == 0)
else {
si5351bx_setfreq(2, frequency - sideTone); if (isUSB)
si5351bx_setfreq(2, frequency + sideTone);
else
si5351bx_setfreq(2, frequency - sideTone);
}
else if (cwMode == 1) //CWL
{
si5351bx_setfreq(2, frequency - sideTone);
}
else //CWU
{
si5351bx_setfreq(2, frequency + sideTone);
}
} }
//reduce latency time when begin of CW mode //reduce latency time when begin of CW mode
@@ -532,10 +584,28 @@ void stopTx(){
inTx = 0; inTx = 0;
digitalWrite(TX_RX, 0); //turn off the tx digitalWrite(TX_RX, 0); //turn off the tx
si5351bx_setfreq(0, usbCarrier); //set back the carrier oscillator anyway, cw tx switches it off
if (cwMode == 0)
si5351bx_setfreq(0, usbCarrier + (isIFShift ? ifShiftValue : 0)); //set back the carrier oscillator anyway, cw tx switches it off
else
si5351bx_setfreq(0, cwmCarrier + (isIFShift ? ifShiftValue : 0)); //set back the carrier oscillator anyway, cw tx switches it off
if (ritOn) if (ritOn)
setFrequency(ritRxFrequency); setFrequency(ritRxFrequency);
else if (splitOn == 1) {
//vfo Change
if (vfoActive == VFO_B){
vfoActive = VFO_A;
frequency = vfoA;
byteToMode(vfoA_mode, 0);
}
else if (vfoActive == VFO_A){
vfoActive = VFO_B;
frequency = vfoB;
byteToMode(vfoB_mode, 0);
}
setFrequency(frequency);
} //end of else
else else
setFrequency(frequency); setFrequency(frequency);
@@ -685,9 +755,8 @@ void doRIT(){
updateDisplay(); updateDisplay();
} }
} }
/*
/** save Frequency and mode to eeprom for Auto Save with protected eeprom cycle, by kd8cec
save Frequency and mode to eeprom
*/ */
void storeFrequencyAndMode(byte saveType) void storeFrequencyAndMode(byte saveType)
{ {
@@ -719,6 +788,22 @@ void storeFrequencyAndMode(byte saveType)
} }
} }
//calculate step size from 1 byte, compatible uBITX Manager, by KD8CEC
unsigned int byteToSteps(byte srcByte) {
byte powerVal = (byte)(srcByte >> 6);
unsigned int baseVal = srcByte & 0x3F;
if (powerVal == 1)
return baseVal * 10;
else if (powerVal == 2)
return baseVal * 100;
else if (powerVal == 3)
return baseVal * 1000;
else
return baseVal;
}
/** /**
* The settings are read from EEPROM. The first time around, the values may not be * The settings are read from EEPROM. The first time around, the values may not be
* present or out of range, in this case, some intelligent defaults are copied into the * present or out of range, in this case, some intelligent defaults are copied into the
@@ -761,6 +846,7 @@ void initSettings(){
if (EEPROM.read(VERSION_ADDRESS) != VERSION_NUM) if (EEPROM.read(VERSION_ADDRESS) != VERSION_NUM)
EEPROM.write(VERSION_ADDRESS, VERSION_NUM); EEPROM.write(VERSION_ADDRESS, VERSION_NUM);
EEPROM.get(CW_CAL, cwmCarrier);
//for Save VFO_A_MODE to eeprom //for Save VFO_A_MODE to eeprom
//0: default, 1:not use, 2:LSB, 3:USB, 4:CW, 5:AM, 6:FM //0: default, 1:not use, 2:LSB, 3:USB, 4:CW, 5:AM, 6:FM
@@ -781,7 +867,7 @@ void initSettings(){
else else
{ {
Iambic_Key = true; Iambic_Key = true;
if (cwKeyType = 1) if (cwKeyType == 1)
keyerControl &= ~IAMBICB; keyerControl &= ~IAMBICB;
else else
keyerControl |= IAMBICB; keyerControl |= IAMBICB;
@@ -824,7 +910,7 @@ void initSettings(){
hamBandRange[0][0] = 1810; hamBandRange[0][1] = 2000; hamBandRange[0][0] = 1810; hamBandRange[0][1] = 2000;
hamBandRange[1][0] = 3500; hamBandRange[1][1] = 3800; hamBandRange[1][0] = 3500; hamBandRange[1][1] = 3800;
hamBandRange[2][0] = 5351; hamBandRange[2][1] = 5367; hamBandRange[2][0] = 5351; hamBandRange[2][1] = 5367;
hamBandRange[3][0] = 7000; hamBandRange[3][1] = 7200; hamBandRange[3][0] = 7000; hamBandRange[3][1] = 7300; //region 1
hamBandRange[4][0] = 10100; hamBandRange[4][1] = 10150; hamBandRange[4][0] = 10100; hamBandRange[4][1] = 10150;
hamBandRange[5][0] = 14000; hamBandRange[5][1] = 14350; hamBandRange[5][0] = 14000; hamBandRange[5][1] = 14350;
hamBandRange[6][0] = 18068; hamBandRange[6][1] = 18168; hamBandRange[6][0] = 18068; hamBandRange[6][1] = 18168;
@@ -838,8 +924,8 @@ void initSettings(){
findedValidValueCount = 0; findedValidValueCount = 0;
EEPROM.get(TUNING_STEP, tuneStepIndex); EEPROM.get(TUNING_STEP, tuneStepIndex);
for (byte i = 0; i < 5; i++) { for (byte i = 0; i < 5; i++) {
arTuneStep[i] = EEPROM.read(TUNING_STEP + i + 1); arTuneStep[i] = byteToSteps(EEPROM.read(TUNING_STEP + i + 1));
if (arTuneStep[i] >= 1 && arTuneStep[i] < 251) //Maximum 250 for check valid Value if (arTuneStep[i] >= 1 && arTuneStep[i] <= 60000) //Maximum 650 for check valid Value
findedValidValueCount++; findedValidValueCount++;
} }
@@ -909,15 +995,18 @@ void initSettings(){
//original code with modified by kd8cec //original code with modified by kd8cec
if (usbCarrier > 12010000l || usbCarrier < 11990000l) if (usbCarrier > 12010000l || usbCarrier < 11990000l)
usbCarrier = 11995000l; usbCarrier = 11995000l;
if (cwmCarrier > 12010000l || cwmCarrier < 11990000l)
cwmCarrier = 11995000l;
if (vfoA > 35000000l || 3500000l > vfoA) { if (vfoA > 35000000l || 3500000l > vfoA) {
vfoA = 7150000l; vfoA = 7150000l;
vfoA_mode = 2; vfoA_mode = 2; //LSB
} }
if (vfoB > 35000000l || 3500000l > vfoB) { if (vfoB > 35000000l || 3500000l > vfoB) {
vfoB = 14150000l; vfoB = 14150000l;
vfoB_mode = 3; vfoB_mode = 3; //USB
} }
//end of original code section //end of original code section
@@ -993,7 +1082,7 @@ void setup()
//Serial.begin(9600); //Serial.begin(9600);
lcd.begin(16, 2); lcd.begin(16, 2);
printLineF(1, F("CECBT v0.31")); printLineF(1, F("CECBT v0.35"));
Init_Cat(38400, SERIAL_8N1); Init_Cat(38400, SERIAL_8N1);
initMeter(); //not used in this build initMeter(); //not used in this build
@@ -1011,11 +1100,12 @@ void setup()
} }
initPorts(); initPorts();
byteToMode(vfoA_mode, 0);
initOscillators(); initOscillators();
frequency = vfoA; frequency = vfoA;
saveCheckFreq = frequency; //for auto save frequency saveCheckFreq = frequency; //for auto save frequency
byteToMode(vfoA_mode);
setFrequency(vfoA); setFrequency(vfoA);
updateDisplay(); updateDisplay();
@@ -1024,13 +1114,11 @@ void setup()
} }
/**
* The loop checks for keydown, ptt, function button and tuning.
*/
//for debug //for debug
int dbgCnt = 0; int dbgCnt = 0;
byte flasher = 0; byte flasher = 0;
//Auto save Frequency and Mode with Protected eeprom life by KD8CEC
void checkAutoSaveFreqMode() void checkAutoSaveFreqMode()
{ {
//when tx or ritOn, disable auto save //when tx or ritOn, disable auto save
@@ -1079,10 +1167,12 @@ void loop(){
if (!inTx){ if (!inTx){
if (ritOn) if (ritOn)
doRIT(); doRIT();
//else if (isIFShift)
// doIFShift();
else else
doTuningWithThresHold(); doTuningWithThresHold();
if (isCWAutoMode == 0 && beforeIdle_ProcessTime < millis() - 200) { if (isCWAutoMode == 0 && beforeIdle_ProcessTime < millis() - 250) {
idle_process(); idle_process();
beforeIdle_ProcessTime = millis(); beforeIdle_ProcessTime = millis();
} }

View File

@@ -37,6 +37,7 @@ void factory_alignment(){
printLine2("#3:Test 3.5MHz"); printLine2("#3:Test 3.5MHz");
cwMode = 0;
isUSB = false; isUSB = false;
setFrequency(3500000l); setFrequency(3500000l);
updateDisplay(); updateDisplay();
@@ -59,6 +60,7 @@ void factory_alignment(){
btnWaitForClick(); btnWaitForClick();
printLine2("#5:Test 14MHz"); printLine2("#5:Test 14MHz");
cwMode = 0;
isUSB = true; isUSB = true;
setFrequency(14000000l); setFrequency(14000000l);
updateDisplay(); updateDisplay();
@@ -80,6 +82,7 @@ void factory_alignment(){
printLine2("Alignment done"); printLine2("Alignment done");
delay(1000); delay(1000);
cwMode = 0;
isUSB = false; isUSB = false;
setFrequency(7150000l); setFrequency(7150000l);
updateDisplay(); updateDisplay();

View File

@@ -17,14 +17,241 @@
along with this program. If not, see <http://www.gnu.org/licenses/>. along with this program. If not, see <http://www.gnu.org/licenses/>.
**************************************************************************/ **************************************************************************/
char line2Buffer[16];
//KD8CEC 200Hz ST
//L14.150 200Hz ST
//U14.150 +150khz
int freqScrollPosition = 0;
//Example Line2 Optinal Display
//immediate execution, not call by scheulder
void updateLine2Buffer(char isDirectCall)
{
unsigned long tmpFreq = 0;
if (isDirectCall == 0)
{
if (ritOn)
{
line2Buffer[0] = 'R';
line2Buffer[1] = 'i';
line2Buffer[2] = 't';
line2Buffer[3] = 'T';
line2Buffer[4] = 'X';
line2Buffer[5] = ':';
//display frequency
tmpFreq = ritTxFrequency;
for (int i = 15; i >= 6; i--) {
if (tmpFreq > 0) {
if (i == 12 || i == 8) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
return;
} //end of ritOn display
//======================================================
//other VFO display
//======================================================
if (vfoActive == VFO_B)
{
tmpFreq = vfoA;
//line2Buffer[0] = 'A';
}
else
{
tmpFreq = vfoB;
//line2Buffer[0] = 'B';
}
// EXAMPLE 1 & 2
//U14.150.100
//display frequency
for (int i = 9; i >= 0; i--) {
if (tmpFreq > 0) {
if (i == 2 || i == 6) line2Buffer[i] = '.';
else {
line2Buffer[i] = tmpFreq % 10 + 0x30;
tmpFreq /= 10;
}
}
else
line2Buffer[i] = ' ';
}
//EXAMPLE #1
if ((displayOption1 & 0x04) == 0x00) //none scroll display
line2Buffer[6] = 'k';
else
{
//example #2
if (freqScrollPosition++ > 18) //none scroll display time
{
line2Buffer[6] = 'k';
if (freqScrollPosition > 25)
freqScrollPosition = -1;
}
else //scroll frequency
{
line2Buffer[10] = 'H';
line2Buffer[11] = 'z';
if (freqScrollPosition < 7)
{
for (int i = 11; i >= 0; i--)
if (i - (7 - freqScrollPosition) >= 0)
line2Buffer[i] = line2Buffer[i - (7 - freqScrollPosition)];
else
line2Buffer[i] = ' ';
}
else
{
for (int i = 0; i < 11; i++)
if (i + (freqScrollPosition - 7) <= 11)
line2Buffer[i] = line2Buffer[i + (freqScrollPosition - 7)];
else
line2Buffer[i] = ' ';
}
}
} //scroll
line2Buffer[7] = ' ';
} //check direct call by encoder
if (isIFShift)
{
if (isDirectCall == 1)
for (int i = 0; i < 16; i++)
line2Buffer[i] = ' ';
//IFShift Offset Value
line2Buffer[8] = 'I';
line2Buffer[9] = 'F';
if (ifShiftValue == 0)
{
line2Buffer[10] = 'S';
line2Buffer[11] = ':';
line2Buffer[12] = 'O';
line2Buffer[13] = 'F';
line2Buffer[14] = 'F';
}
else
{
line2Buffer[10] = ifShiftValue >= 0 ? '+' : 0;
line2Buffer[11] = 0;
line2Buffer[12] = ' ';
//11, 12, 13, 14, 15
memset(b, 0, sizeof(b));
ltoa(ifShiftValue, b, DEC);
strncat(line2Buffer, b, 5);
}
if (isDirectCall == 1) //if call by encoder (not scheduler), immediate print value
printLine2(line2Buffer);
} // end of display IF
else // step display
{
if (isDirectCall != 0)
return;
memset(&line2Buffer[8], ' ', 8);
//Step
long tmpStep = arTuneStep[tuneStepIndex -1];
byte isStepKhz = 0;
if (tmpStep >= 1000)
{
isStepKhz = 2;
}
for (int i = 10; i >= 8 - isStepKhz; i--) {
if (tmpStep > 0) {
line2Buffer[i + isStepKhz] = tmpStep % 10 + 0x30;
tmpStep /= 10;
}
else
line2Buffer[i +isStepKhz] = ' ';
}
//if (isStepKhz == 1)
// line2Buffer[10] = 'k';
if (isStepKhz == 0)
{
line2Buffer[11] = 'H';
line2Buffer[12] = 'z';
}
line2Buffer[13] = ' ';
//if (
//Check CW Key cwKeyType = 0; //0: straight, 1 : iambica, 2: iambicb
if (cwKeyType == 0)
{
line2Buffer[14] = 'S';
line2Buffer[15] = 'T';
}
else if (cwKeyType == 1)
{
line2Buffer[14] = 'I';
line2Buffer[15] = 'A';
}
else
{
line2Buffer[14] = 'I';
line2Buffer[15] = 'B';
}
}
}
//meterType : 0 = S.Meter, 1 : P.Meter
void DisplayMeter(byte meterType, byte meterValue, char drawPosition)
{
drawMeter(meterValue); //call original source code
int lineNumber = 0;
if ((displayOption1 & 0x01) == 0x01)
lineNumber = 1;
lcd.setCursor(drawPosition, lineNumber);
for (int i = 0; i < 6; i++) //meter 5 + +db 1 = 6
lcd.write(lcdMeter[i]);
}
byte testValue = 0;
char checkCount = 0;
void idle_process() void idle_process()
{ {
//space for user graphic display //space for user graphic display
if (menuOn == 0) if (menuOn == 0)
{ {
if ((displayOption1 & 0x10) == 0x10) //always empty topline
return;
//if line2DisplayStatus == 0 <-- this condition is clear Line, you can display any message //if line2DisplayStatus == 0 <-- this condition is clear Line, you can display any message
if (line2DisplayStatus == 0 || (((displayOption1 & 0x04) == 0x04) && line2DisplayStatus == 2)) {
if (checkCount++ > 1)
{
updateLine2Buffer(0); //call by scheduler
printLine2(line2Buffer);
line2DisplayStatus = 2;
checkCount = 0;
}
//EX for Meters
/*
DisplayMeter(0, testValue++, 7);
if (testValue > 30)
testValue = 0;
*/
}
} }
} }

File diff suppressed because it is too large Load Diff

View File

@@ -109,7 +109,11 @@ void initOscillators(){
//initialize the SI5351 //initialize the SI5351
si5351bx_init(); si5351bx_init();
si5351bx_vcoa = (SI5351BX_XTAL * SI5351BX_MSA) + calibration; // apply the calibration correction factor si5351bx_vcoa = (SI5351BX_XTAL * SI5351BX_MSA) + calibration; // apply the calibration correction factor
si5351bx_setfreq(0, usbCarrier);
if (cwMode == 0)
si5351bx_setfreq(0, usbCarrier + (isIFShift ? ifShiftValue : 0));
else
si5351bx_setfreq(0, cwmCarrier + (isIFShift ? ifShiftValue : 0));
} }

View File

@@ -25,8 +25,8 @@ int btnDown(){
* The current reading of the meter is assembled in the string called meter * The current reading of the meter is assembled in the string called meter
*/ */
//char meter[17];
/*
const PROGMEM uint8_t s_meter_bitmap[] = { const PROGMEM uint8_t s_meter_bitmap[] = {
B00000,B00000,B00000,B00000,B00000,B00100,B00100,B11011, B00000,B00000,B00000,B00000,B00000,B00100,B00100,B11011,
B10000,B10000,B10000,B10000,B10100,B10100,B10100,B11011, B10000,B10000,B10000,B10000,B10100,B10100,B10100,B11011,
@@ -35,7 +35,18 @@ const PROGMEM uint8_t s_meter_bitmap[] = {
B00010,B00010,B00010,B00010,B00110,B00110,B00110,B11011, B00010,B00010,B00010,B00010,B00110,B00110,B00110,B11011,
B00001,B00001,B00001,B00001,B00101,B00101,B00101,B11011 B00001,B00001,B00001,B00001,B00101,B00101,B00101,B11011
}; };
PGM_P ps_meter_bitmap = reinterpret_cast<PGM_P>(s_meter_bitmap); */
const PROGMEM uint8_t meters_bitmap[] = {
B10000, B10000, B10000, B10000, B10000, B10000, B10000, B10000 , //custom 1
B11000, B11000, B11000, B11000, B11000, B11000, B11000, B11000 , //custom 2
B11100, B11100, B11100, B11100, B11100, B11100, B11100, B11100 , //custom 3
B11110, B11110, B11110, B11110, B11110, B11110, B11110, B11110 , //custom 4
B11111, B11111, B11111, B11111, B11111, B11111, B11111, B11111 , //custom 5
B01000, B11100, B01000, B00000, B10111, B10101, B10101, B10111 //custom 6
};
PGM_P p_metes_bitmap = reinterpret_cast<PGM_P>(meters_bitmap);
const PROGMEM uint8_t lock_bitmap[8] = { const PROGMEM uint8_t lock_bitmap[8] = {
0b01110, 0b01110,
@@ -60,38 +71,56 @@ void initMeter(){
lcd.createChar(0, tmpbytes); lcd.createChar(0, tmpbytes);
for (i = 0; i < 8; i++) for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(ps_meter_bitmap + i); tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i);
lcd.createChar(1, tmpbytes); lcd.createChar(1, tmpbytes);
for (i = 0; i < 8; i++) for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(ps_meter_bitmap + i + 8); tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 8);
lcd.createChar(2, tmpbytes); lcd.createChar(2, tmpbytes);
for (i = 0; i < 8; i++) for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(ps_meter_bitmap + i + 16); tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 16);
lcd.createChar(3, tmpbytes); lcd.createChar(3, tmpbytes);
for (i = 0; i < 8; i++) for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(ps_meter_bitmap + i + 24); tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 24);
lcd.createChar(4, tmpbytes); lcd.createChar(4, tmpbytes);
for (i = 0; i < 8; i++) for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(ps_meter_bitmap + i + 28); tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 32);
lcd.createChar(5, tmpbytes); lcd.createChar(5, tmpbytes);
for (i = 0; i < 8; i++) for (i = 0; i < 8; i++)
tmpbytes[i] = pgm_read_byte(ps_meter_bitmap + i + 32); tmpbytes[i] = pgm_read_byte(p_metes_bitmap + i + 40);
lcd.createChar(6, tmpbytes); lcd.createChar(6, tmpbytes);
} }
/** //by KD8CEC
* The meter is drawn with special characters. //0 ~ 25 : 30 over : + 10
* character 1 is used to simple draw the blocks of the scale of the meter void drawMeter(int needle) {
* characters 2 to 6 are used to draw the needle in positions 1 to within the block //5Char + O over
* This displays a meter from 0 to 100, -1 displays nothing int drawCharLength = needle / 5;
*/ int drawCharLengthLast = needle % 5;
int i;
/* for (i = 0; i < 5; i++) {
if (needle >= 5)
lcdMeter[i] = 5; //full
else if (needle > 0)
lcdMeter[i] = needle; //full
else //0
lcdMeter[i] = 0x20;
needle -= 5;
}
if (needle > 0)
lcdMeter[5] = 6;
else
lcdMeter[5] = 0x20;
}
/*
void drawMeter(int8_t needle){ void drawMeter(int8_t needle){
int16_t best, i, s; int16_t best, i, s;
@@ -101,19 +130,18 @@ void drawMeter(int8_t needle){
s = (needle * 4)/10; s = (needle * 4)/10;
for (i = 0; i < 8; i++){ for (i = 0; i < 8; i++){
if (s >= 5) if (s >= 5)
meter[i] = 1; lcdMeter[i] = 1;
else if (s >= 0) else if (s >= 0)
meter[i] = 2 + s; lcdMeter[i] = 2 + s;
else else
meter[i] = 1; lcdMeter[i] = 1;
s = s - 5; s = s - 5;
} }
if (needle >= 40) if (needle >= 40)
meter[i-1] = 6; lcdMeter[i-1] = 6;
meter[i] = 0; lcdMeter[i] = 0;
} }
*/ */
// The generic routine to display one line on the LCD // The generic routine to display one line on the LCD
void printLine(unsigned char linenmbr, const char *c) { void printLine(unsigned char linenmbr, const char *c) {
if ((displayOption1 & 0x01) == 0x01) if ((displayOption1 & 0x01) == 0x01)
@@ -207,7 +235,6 @@ char byteToChar(byte srcByte){
void updateDisplay() { void updateDisplay() {
// tks Jack Purdum W8TEE // tks Jack Purdum W8TEE
// replaced fsprint commmands by str commands for code size reduction // replaced fsprint commmands by str commands for code size reduction
// replace code for Frequency numbering error (alignment, point...) by KD8CEC // replace code for Frequency numbering error (alignment, point...) by KD8CEC
int i; int i;
unsigned long tmpFreq = frequency; // unsigned long tmpFreq = frequency; //
@@ -234,10 +261,21 @@ void updateDisplay() {
if (ritOn) if (ritOn)
strcpy(c, "RIT "); strcpy(c, "RIT ");
else { else {
if (isUSB) if (cwMode == 0)
strcpy(c, "USB "); {
if (isUSB)
strcpy(c, "USB ");
else
strcpy(c, "LSB ");
}
else if (cwMode == 1)
{
strcpy(c, "CWL ");
}
else else
strcpy(c, "LSB "); {
strcpy(c, "CWU ");
}
} }
if (vfoActive == VFO_A) // VFO A is active if (vfoActive == VFO_A) // VFO A is active
strcat(c, "A:"); strcat(c, "A:");