Compare commits

...

3 Commits

13 changed files with 585 additions and 37 deletions

View File

@ -339,12 +339,12 @@ byte delay_background(unsigned delayTime, byte fromType){ //fromType : 4 autoCWK
//Check PTT while auto Sending
autoSendPTTCheck();
Check_Cat(3);
//Check_Cat(3);
}
else
{
//Background Work
Check_Cat(fromType);
//Check_Cat(fromType);
}
}
@ -806,7 +806,7 @@ void checkButton(){
//wait for the button to go up again
while(keyStatus == getBtnStatus()) {
delay(10);
Check_Cat(0);
//Check_Cat(0);
}
//delay(50);//debounce
}
@ -825,7 +825,7 @@ void checkButton(){
//wait for the button to go up again
while(btnDown()) {
delay(10);
Check_Cat(0);
//Check_Cat(0);
}
//delay(50);//debounce
}
@ -1402,7 +1402,8 @@ void setup()
//printLineF(1, FIRMWARE_VERSION_INFO);
DisplayVersionInfo(FIRMWARE_VERSION_INFO);
Init_Cat(38400, SERIAL_8N1);
//Init_Cat(38400, SERIAL_8N1);
Serial.begin(38400);
initSettings();
initPorts();
@ -1475,6 +1476,13 @@ void checkAutoSaveFreqMode()
rigState.vfo[0] = vfoA;
rigState.vfo[1] = vfoB;
rigState.rit = ritRxFrequency - frequency;
rigState.flags = 0;
rigState.flags |= (vfoActive == VFO_B ? UBITX_VFOB_FLAG : 0);
rigState.flags |= (cwMode != 0 ? UBITX_CW_FLAG : 0);
rigState.flags |= (isUSB != 0 ? UBITX_USB_FLAG : 0);
rigState.flags |= (splitOn != 0 ? UBITX_SPLIT_FLAG : 0);
rigState.flags |= (ritOn != 0 ? UBITX_RIT_FLAG : 0);
}
void loop(){
@ -1497,13 +1505,14 @@ void loop(){
// controlAutoCW();
// KC4UPR: Note, implementation below leaves no manual way to abort TX due to CAT. May
// want to add in a way to interrupt CAT transmission with a PTT/CW event.
if (!txCAT) {
if (cwMode == 0)
//if (!txCAT) {
if (cwMode == 0) {
checkPTT();
else
} else {
cwKeyer();
}
checkButton();
}
//}
//cwKeyer();
@ -1525,7 +1534,7 @@ void loop(){
} //end of check TX Status
//we check CAT after the encoder as it might put the radio into TX
Check_Cat(inTx? 1 : 0);
//Check_Cat(inTx? 1 : 0);
//for SEND SW Serial
#ifdef USE_SW_SERIAL

View File

@ -341,6 +341,8 @@ extern void DisplayVersionInfo(const char* fwVersionInfo);
extern int GetI2CSmeterValue(int valueType); //ubitx_ui.ino
extern void doRaduinoToTeensy(UBitxRigState* r);
extern void updateStateFromRaduino(UBitxRigState& r);
extern void updateRaduinoFromState(UBitxRigState& r);
extern UBitxRigState rigState;

View File

@ -997,23 +997,10 @@ UBitxRigState catState;
void idle_process()
{
// KC4UPR 2021-02-05 added update process for Raduino-TeensyDSP coordination
// Note, need to not have to copy this every time...
if (vfoActive == VFO_A) {
rigState.vfo[0] = frequency;
rigState.flags &= ~UBITX_VFOB_FLAG;
} else if (vfoActive == VFO_B) {
rigState.vfo[1] = frequency;
rigState.flags |= UBITX_VFOB_FLAG;
}
updateStateFromRaduino(rigState);
doRaduinoToTeensy(&rigState);
if (vfoActive == VFO_A) {
if (rigState.vfo[0] != frequency) {
setFrequency(rigState.vfo[0]);
} else if (vfoActive == VFO_B) {
setFrequency(rigState.vfo[1]);
}
}
updateRaduinoFromState(rigState);
//S-Meter Display
if (((displayOption1 & 0x08) == 0x08 && (sdrModeOn == 0)) && (++checkCountSMeter > SMeterLatency))
{

View File

@ -350,3 +350,43 @@ void doRaduinoToTeensy(UBitxRigState* r) {
Serial.print(len);
Serial.println();
}
void updateStateFromRaduino(UBitxRigState& r) {
// Note, we really need to be checking a dirty flag for this. But, I don't have a dirty flag in this version of the data type...
if (vfoActive == VFO_A) {
rigState.vfo[0] = frequency;
rigState.flags &= ~UBITX_VFOB_FLAG;
} else if (vfoActive == VFO_B) {
rigState.vfo[1] = frequency;
rigState.flags |= UBITX_VFOB_FLAG;
}
rigState.rit = ritRxFrequency - frequency;
rigState.flags = 0;
rigState.flags |= (vfoActive == VFO_B ? UBITX_VFOB_FLAG : 0);
rigState.flags |= (cwMode != 0 ? UBITX_CW_FLAG : 0);
rigState.flags |= (isUSB != 0 ? UBITX_USB_FLAG : 0);
rigState.flags |= (splitOn != 0 ? UBITX_SPLIT_FLAG : 0);
rigState.flags |= (ritOn != 0 ? UBITX_RIT_FLAG : 0);
}
void updateRaduinoFromState(UBitxRigState& r) {
vfoActive = rigState.flags & UBITX_VFOB_FLAG ? VFO_B : VFO_A;
if (vfoActive == VFO_A) {
if (rigState.vfo[0] != frequency) {
setFrequency(rigState.vfo[0]);
}
} else if (vfoActive == VFO_B) {
if (rigState.vfo[1] != frequency) {
setFrequency(rigState.vfo[1]);
}
}
ritRxFrequency = frequency + rigState.rit;
splitOn = rigState.flags & UBITX_SPLIT_FLAG ? 1 : 0;
ritOn = rigState.flags & UBITX_RIT_FLAG ? 1 : 0;
isUSB = rigState.flags & UBITX_USB_FLAG ? 1 : 0;
if (rigState.flags & UBITX_CW_FLAG) {
cwMode = isUSB ? 2 : 1; // 2 = cwu / 1 = cwl
} else {
cwMode = 0;
}
}

185
TeensyDSP/Keyer.cpp Normal file
View File

@ -0,0 +1,185 @@
//======================================================================
//
// nanoIO paddle keyer (c) 2018, David Freese, W1HKJ
//
// based on code from Iambic Keyer Code Keyer Sketch
// Copyright (c) 2009 Steven T. Elliott
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details:
//
// Free Software Foundation, Inc., 59 Temple Place, Suite 330,
// Boston, MA 02111-1307 USA
//
//======================================================================
#include <Arduino.h>
//#include "TimerOne.h"
//#include "config.h"
#include "Keyer.h"
const uint8_t LP_in = KEYER_LEFT_PADDLE_PIN;
const uint8_t RP_in = KEYER_RIGHT_PADDLE_PIN;
//#define ST_Freq 600 // Set the Sidetone Frequency to 600 Hz
//======================================================================
// keyerControl bit definitions
//
#define DIT_L 0x01 // Dit latch
#define DAH_L 0x02 // Dah latch
#define DIT_PROC 0x04 // Dit is being processed
#define PDLSWAP 0x08 // 0 for normal, 1 for swap
//======================================================================
//
// State Machine Defines
enum KSTYPE { IDLE, CHK_DIT, CHK_DAH, KEYED_PREP, KEYED, INTER_ELEMENT };
UBitxKeyer::UBitxKeyer(int wpm, float weight):
speed(wpm), symWeight(weight)
{
// Setup outputs
pinMode(LP_in, INPUT_PULLUP); // sets Left Paddle digital pin as input
pinMode(RP_in, INPUT_PULLUP); // sets Right Paddle digital pin as input
keyerState = IDLE;
keyerControl = 0;
keyMode = IAMBICA;
keyDown = false;
calcRatio();
}
// Calculate the length of dot, dash and silence
void UBitxKeyer::calcRatio()
{
float w = (1 + symWeight) / (symWeight -1);
spaceLen = (1200 / speed);
dotLen = spaceLen * (w - 1);
dashLen = (1 + w) * spaceLen;
}
void UBitxKeyer::setWPM(int wpm)
{
speed = wpm;
calcRatio();
}
//======================================================================
// Latch paddle press
//======================================================================
void UBitxKeyer::updatePaddleLatch()
{
if (digitalRead(LP_in) == LOW) {
keyerControl |= DIT_L;
}
if (digitalRead(RP_in) == LOW) {
keyerControl |= DAH_L;
}
}
bool UBitxKeyer::doPaddles()
{
if (keyMode == STRAIGHT) { // Straight Key
if ((digitalRead(LP_in) == LOW) || (digitalRead(RP_in) == LOW)) {
keyDown = true;
return true;
} else {
keyDown = false;
}
return false;
}
// keyerControl contains processing flags and keyer mode bits
// Supports Iambic A and B
// State machine based, uses calls to millis() for timing.
switch (keyerState) {
case IDLE: // Wait for direct or latched paddle press
if ((digitalRead(LP_in) == LOW) || (digitalRead(RP_in) == LOW) || (keyerControl & 0x03)) {
updatePaddleLatch();
keyerState = CHK_DIT;
// letting this fall through // return true;
} else {
return false;
}
// break;
case CHK_DIT: // See if the dit paddle was pressed
if (keyerControl & DIT_L) {
keyerControl |= DIT_PROC;
ktimer = dotLen;
keyerState = KEYED_PREP;
return true;
} else { // fall through
keyerState = CHK_DAH;
}
case CHK_DAH: // See if dah paddle was pressed
if (keyerControl & DAH_L) {
ktimer = dashLen;
keyerState = KEYED_PREP;
// letting this fall through // return true;
} else {
keyerState = IDLE;
return false;
}
// break;
case KEYED_PREP: // Assert key down, start timing
// state shared for dit or dah
keyDown = true;
ktimer += millis(); // set ktimer to interval end time
keyerControl &= ~(DIT_L + DAH_L); // clear both paddle latch bits
keyerState = KEYED; // next state
// letting this fall through // return true;
// break;
case KEYED: // Wait for timer to expire
if (millis() > ktimer) { // are we at end of key down ?
keyDown = false;
ktimer = millis() + spaceLen; // inter-element time
keyerState = INTER_ELEMENT; // next state
// letting this fall through // return true;
} else if (keyMode == IAMBICB) { // Iambic B Mode ?
updatePaddleLatch(); // yes, early paddle latch in Iambic B mode
} else {
return true;
}
// break;
case INTER_ELEMENT: // Insert time between dits/dahs
updatePaddleLatch(); // latch paddle state
if (millis() > ktimer) { // are we at end of inter-space ?
if (keyerControl & DIT_PROC) { // was it a dit or dah ?
keyerControl &= ~(DIT_L + DIT_PROC); // clear two bits
keyerState = CHK_DAH; // dit done, check for dah
return true;
} else {
keyerControl &= ~(DAH_L); // clear dah latch
keyerState = IDLE; // go idle
return false;
}
} else {
return true;
}
// break;
}
return false; // resolve compiler warning; do we ever get here?
}
UBitxKeyer basicKeyer(15, 3.0);
UBitxKeyer& Keyer = basicKeyer;
//======================================================================
// EOF
//======================================================================

79
TeensyDSP/Keyer.h Normal file
View File

@ -0,0 +1,79 @@
//**********************************************************************
//
// Keyer, a part of nanoIO
//
// nanoIO paddle keyer (c) 2018, David Freese, W1HKJ
//
// based on code from Iambic Keyer Code Keyer Sketch
// Copyright (c) 2009 Steven T. Elliott
//
// nanoIO is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// nanoIO is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with fldigi. If not, see <http://www.gnu.org/licenses/>.
//
//Revisions:
//
//1.0.0: Initial release
//
//**********************************************************************
#ifndef __Keyer_h__
#define __Keyer_h__
#define IAMBICA 0
#define IAMBICB 1
#define STRAIGHT 2
#define KEYER_LEFT_PADDLE_PIN 17
#define KEYER_RIGHT_PADDLE_PIN 16
class UBitxKeyer
{
public:
UBitxKeyer(int wpm, float weight);
//void cw_pin(int pin);
//void ptt_pin(int pin);
void setWPM(int wpm);
inline void setMode(int mode) { keyMode = mode; }
inline int getMode() { return keyMode; }
inline bool isDown() { return keyDown; }
// void setWeight();
bool doPaddles();
private:
void calcRatio();
void updatePaddleLatch();
bool keyDown;
long ktimer;
int speed;
int dashLen; // Length of dash
int dotLen; // Length of dot
int spaceLen; // Length of space
float symWeight;
char keyerControl;
char keyerState;
int keyMode;
};
extern UBitxKeyer& Keyer;
#endif
//======================================================================
// EOF
//======================================================================

View File

@ -25,4 +25,150 @@ struct UBitxRigState {
uint32_t flags = 0;
};
/**********************************************************************/
template<typename T, int ID>
struct Field {
byte id = ID;
bool dirty;
T data;
inline size_t sizeOfWrite() { return dirty ? sizeof(byte) + sizeof(T) : 0; }
template<typename STREAM> void writeChanges() {
if (dirty) {
STREAM().write(id);
STREAM().write((byte*)&data, sizeof(T));
}
}
template<typename STREAM> int read() {
size_t len = 0;
byte* ptr = (byte*)&data;
while (STREAM().available() && len < sizeof(T)) {
ptr[len++] = STREAM().read();
}
return len;
}
inline void merge(Field<T,ID>& f) {
if (dirty) {
f.data = data;
f.dirty = true;
} else if (f.dirty) {
data = f.data;
dirty = true;
}
}
inline void markClean() { dirty = false; }
};
struct RigState {
Field<uint32_t, 0> vfoA;
Field<uint32_t, 1> vfoB;
Field<int32_t, 2> rit;
Field<int32_t, 3> xit;
Field<uint32_t, 4> flags;
inline size_t sizeOfWrite() {
size_t size = 0;
size += vfoA.sizeOfWrite();
size += vfoB.sizeOfWrite();
size += rit.sizeOfWrite();
size += xit.sizeOfWrite();
size += flags.sizeOfWrite();
return size;
}
template<typename STREAM> void writeChanges() {
vfoA.writeChanges<STREAM>();
vfoB.writeChanges<STREAM>();
rit.writeChanges<STREAM>();
xit.writeChanges<STREAM>();
flags.writeChanges<STREAM>();
}
template<typename STREAM> void readChanges(size_t size) {
size_t len = 0;
while (STREAM().available() && len < size) {
switch(STREAM().read()) {
case 0:
len += vfoA.read<STREAM>();
break;
case 1:
len += vfoB.read<STREAM>();
break;
case 2:
len += rit.read<STREAM>();
break;
case 3:
len += xit.read<STREAM>();
break;
case 4:
len += flags.read<STREAM>();
break;
default:
;
}
}
}
inline void merge(RigState& r) {
vfoA.merge(r.vfoA);
vfoB.merge(r.vfoB);
rit.merge(r.rit);
xit.merge(r.xit);
flags.merge(r.flags);
}
inline void markClean(RigState& r) {
vfoA.markClean();
vfoB.markClean();
rit.markClean();
xit.markClean();
flags.markClean();
}
};
/*
Protocol discussion:
- I2C master: Raduino
- I2C slave: TeensyDSP
Raduino state:
- Baseline uBITX variables
- I2C buffer
- On I2C transmit: make updates based on current variables
- On I2C receive:
- Update based on received I2C responses
- Update associated variables
TeensyDSP state:
- CAT buffer
- Used to receive command from CAT (when commands arrive via Serial)
- Used to transmit state to Raduino (when requested via Wire1)
- Raduino buffer
- Used to receive state from Raduino (when received via Wire1)
- Used to transmit responses to CAT (over Serial)
- Questions
- How can these be synchronized?
- At the tail end of an I2C request handler. Before sending the response to the Raduino via I2C:
- Copy updated CAT buffer items to the Raduino buffer.
- Copy updated Raduino buffer items to the CAT buffer.
- In the case of conflicts, CAT wins.
- Transmit the CAT buffer state to the Raduino.
- TeensyDSP updates 'outgoing' state based on CAT inputs.
- Make change to data.
- Mark data as dirty, if different than incoming state.
- When requested, Teensy DSP sends 'outgoing' state to Raduino.
- Send dirty data over I2C.
- Mark data as clean.
*/
#endif

View File

@ -7,10 +7,20 @@
UBitxTR TR(DSP);
void UBitxTR::update(bool cw) {
void UBitxTR::update(bool cw, bool extKey) {
updateKey();
if (cw) {
if ((keyEnable && keyDown) || extKey) {
setTX();
} else {
setRX();
}
return;
}
updatePTT();
updateVOX();
updateKey();
if (isTX) {
// If we are currently transmitting, then ANY T/R release (key

View File

@ -87,8 +87,12 @@ class UBitxTR {
* @param cw
* True if CW mode is currently active; false otherwise.
* Different/faster logic is used in CW mode.
*
* @param extKey
* True if an external keying signal (ie. CW keyer) is
* currently active (ie. key down).
*/
void update(bool cw = false);
void update(bool cw = false, bool extKey = false);
void end() {
}

View File

@ -138,17 +138,17 @@ TS590Error TS590Command::theError = NoError;
void TS590_FR::handleCommand(const char* cmd) {
if (strlen(cmd) == 3) {
switch (cmd[2]) {
case 0:
case '0':
rig()->selectVFOA(true);
rig()->splitOff(true);
break;
case 1:
case '1':
rig()->selectVFOB(true);
rig()->splitOff(true);
break;
case 2:
case '2':
// TODO: Need to add something for channel mode.
break;
@ -175,7 +175,7 @@ void TS590_FR::sendResponse(const char* cmd) {
void TS590_FT::handleCommand(const char* cmd) {
if (strlen(cmd) == 3) {
switch (cmd[2]) {
case 0:
case '0':
if (rig()->isVFOA()) {
rig()->splitOff(true);
} else if (rig()->isVFOB()) {
@ -185,7 +185,7 @@ void TS590_FT::handleCommand(const char* cmd) {
}
break;
case 1:
case '1':
if (rig()->isVFOA()) {
rig()->splitOn(true);
} else if (rig()->isVFOB()) {
@ -215,16 +215,76 @@ void TS590_FT::sendResponse(const char* cmd) {
/**********************************************************************/
void TS590_MD::handleCommand(const char* cmd) {
if (strlen(cmd) == 3) {
switch (cmd[2]) {
case '0': // None (setting failure)
case '4': // FM - not supported
case '5': // AM - not supported
case '6': // FSK - not supported
case '8': // None (setting failure)
case '9': // FSK-R - not supported
setProcessError();
break;
case '1': // LSB
rig()->selectLSB(true);
rig()->cwOff(true);
break;
case '2': // USB
rig()->selectUSB(true);
rig()->cwOff(true);
break;
case '3': // CW
rig()->selectUSB(true);
rig()->cwOn(true);
break;
case '7': // CW-R
rig()->selectLSB(true);
rig()->cwOn(true);
break;
default:
setSyntaxError();
}
} else {
setSyntaxError();
}
}
void TS590_MD::sendResponse(const char* cmd) {
if (rig()->isCW()) {
if (rig()->isUSB()) {
ts590SendCommand("MD3");
} else {
ts590SendCommand("MD7");
}
} else {
if (rig()->isUSB()) {
ts590SendCommand("MD2");
} else {
ts590SendCommand("MD1");
}
}
}
/**********************************************************************/
TS590_FA cmdFA;
TS590_FB cmdFB;
TS590_FR cmdFR;
TS590_FT cmdFT;
TS590_MD cmdMD;
TS590Command* catCommands[] = {
&cmdFA,
&cmdFB,
&cmdFR,
&cmdFT
&cmdFT,
&cmdMD
};
int numCatCommands = sizeof(catCommands) / sizeof(catCommands[0]);

View File

@ -148,6 +148,18 @@ class TS590_FT : public TS590Command {
/**********************************************************************/
/*!
* @brief CAT command for setting the mode.
*/
class TS590_MD : public TS590Command {
public:
TS590_MD(): TS590Command("MD") {}
virtual void handleCommand(const char* cmd);
virtual void sendResponse(const char* cmd);
};
/**********************************************************************/
class UBitxTS590 {
public:
UBitxTS590(TS590Command** cmds, int len): commands(cmds), numCommands(len) {}

View File

@ -10,6 +10,7 @@ KD8CEC, Ian Lee
#include <Arduino.h>
#include "Debug.h"
#include "DSP.h"
#include "Keyer.h"
#include "Nextion.h"
#include "Rig.h"
#include "RigState.h"

View File

@ -540,6 +540,13 @@ void loop()
return;
}
// If CW mode, we need to update keying a lot...
if (Rig.isCW()) {
if (Rig.isCW()) Keyer.doPaddles();
TR.update(Rig.isCW(), Keyer.isDown());
//if (TR.transmitting()) return;
}
// Start out by forwarding any data sitting in the RX buffer. We will
// do this as often as possible.
forwardData();
@ -550,11 +557,13 @@ void loop()
sinceFrameMillis = 0;
// Update each of the subsystems, beginning with CAT control.
TS590.update();
TR.update();
TS590.update();
TR.update(Rig.isCW(), Keyer.isDown());
Rig.update();
DSP.update();
//if (Rig.isCW()) return;
#ifdef DEBUG
// For debugging, output some debug info every 1.0" (40 frames @ 40 Hz).
frameCounter++;
@ -676,6 +685,8 @@ void loop()
forwardData();
}
if (Rig.isCW()) return; // In CW, the ADC measurement messes with the timing. So need to use interrupts on the Keyer, and/or continuous ADC.
if (sinceADCMillis > adcIntervalMillis) {
// Do stuff that we do once per ADC interval--ADC colllection.
// TODO: debug output (frame skipping / utilization).
@ -692,6 +703,8 @@ void loop()
//forwardData();
}
//if (Rig.isCW()) return;
// Check Response Command
if (responseCommand > 0 && sinceForward > LAST_TIME_INTERVAL)
{