Merge pull request #13 from phdlee/version0.296

Version0.296 => Version 0.30
This commit is contained in:
phdlee 2018-01-27 18:36:07 +09:00 committed by GitHub
commit 261215b1ad
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 308 additions and 171 deletions

View File

@ -1,5 +1,5 @@
/************************************************************************* /*************************************************************************
KD8CEC'S Memory Keyer for HAM KD8CEC's Memory Keyer for HAM
This source code is written for All amateur radio operator, This source code is written for All amateur radio operator,
I have not had amateur radio communication for a long time. CW has been I have not had amateur radio communication for a long time. CW has been

View File

@ -158,7 +158,20 @@ int count = 0; //to generally count ticks, loops, etc
#define TX_TUNE_TYPE 261 // #define TX_TUNE_TYPE 261 //
#define HAM_BAND_RANGE 262 //FROM (2BYTE) TO (2BYTE) * 10 = 40byte #define HAM_BAND_RANGE 262 //FROM (2BYTE) TO (2BYTE) * 10 = 40byte
#define HAM_BAND_FREQS 302 //40, 1 BAND = 4Byte most bit is mode #define HAM_BAND_FREQS 302 //40, 1 BAND = 4Byte most bit is mode
#define TUNING_STEP 342 //TUNING STEP * 6 (index 1 + STEPS 5) #define TUNING_STEP 342 //TUNING STEP * 6 (index 1 + STEPS 5)
//for reduce cw key error, eeprom address
#define CW_ADC_MOST_BIT1 348 //most 2bits of DOT_TO , DOT_FROM, ST_TO, ST_FROM
#define CW_ADC_ST_FROM 349 //CW ADC Range STRAIGHT KEY from (Lower 8 bit)
#define CW_ADC_ST_TO 350 //CW ADC Range STRAIGHT KEY to (Lower 8 bit)
#define CW_ADC_DOT_FROM 351 //CW ADC Range DOT from (Lower 8 bit)
#define CW_ADC_DOT_TO 352 //CW ADC Range DOT to (Lower 8 bit)
#define CW_ADC_MOST_BIT2 353 //most 2bits of BOTH_TO, BOTH_FROM, DASH_TO, DASH_FROM
#define CW_ADC_DASH_FROM 354 //CW ADC Range DASH from (Lower 8 bit)
#define CW_ADC_DASH_TO 355 //CW ADC Range DASH to (Lower 8 bit)
#define CW_ADC_BOTH_FROM 356 //CW ADC Range BOTH from (Lower 8 bit)
#define CW_ADC_BOTH_TO 357 //CW ADC Range BOTH to (Lower 8 bit)
//Check Firmware type and version //Check Firmware type and version
#define FIRMWAR_ID_ADDR 776 //776 : 0x59, 777 :0x58, 778 : 0x68 : Id Number, if not found id, erase eeprom(32~1023) for prevent system error. #define FIRMWAR_ID_ADDR 776 //776 : 0x59, 777 :0x58, 778 : 0x68 : Id Number, if not found id, erase eeprom(32~1023) for prevent system error.
@ -245,6 +258,16 @@ byte isTxType = 0; //000000[0 - isSplit] [0 - isTXStop]
byte arTuneStep[5]; byte arTuneStep[5];
byte tuneStepIndex; //default Value 0, start Offset is 0 because of check new user byte tuneStepIndex; //default Value 0, start Offset is 0 because of check new user
//CW ADC Range
int cwAdcSTFrom = 0;
int cwAdcSTTo = 0;
int cwAdcDotFrom = 0;
int cwAdcDotTo = 0;
int cwAdcDashFrom = 0;
int cwAdcDashTo = 0;
int cwAdcBothFrom = 0;
int cwAdcBothTo = 0;
//Variables for auto cw mode //Variables for auto cw mode
byte isCWAutoMode = 0; //0 : none, 1 : CW_AutoMode_Menu_Selection, 2 : CW_AutoMode Sending byte isCWAutoMode = 0; //0 : none, 1 : CW_AutoMode_Menu_Selection, 2 : CW_AutoMode Sending
byte cwAutoTextCount = 0; //cwAutoText Count byte cwAutoTextCount = 0; //cwAutoText Count
@ -574,8 +597,13 @@ applied Threshold for reduct errors, dial Lock, dynamic Step
byte threshold = 2; //noe action for count byte threshold = 2; //noe action for count
unsigned long lastEncInputtime = 0; unsigned long lastEncInputtime = 0;
int encodedSumValue = 0; int encodedSumValue = 0;
unsigned long lastTunetime = 0; //if continous moving, skip threshold processing
byte lastMovedirection = 0; //0 : stop, 1 : cw, 2 : ccw
#define skipThresholdTime 100
#define encodeTimeOut 1000 #define encodeTimeOut 1000
void doTuning(){
void doTuningWithThresHold(){
int s = 0; int s = 0;
unsigned long prev_freq; unsigned long prev_freq;
long incdecValue = 0; long incdecValue = 0;
@ -592,6 +620,8 @@ void doTuning(){
if (s == 0) { if (s == 0) {
if (encodedSumValue != 0 && (millis() - encodeTimeOut) > lastEncInputtime) if (encodedSumValue != 0 && (millis() - encodeTimeOut) > lastEncInputtime)
encodedSumValue = 0; encodedSumValue = 0;
lastMovedirection = 0;
return; return;
} }
lastEncInputtime = millis(); lastEncInputtime = millis();
@ -599,16 +629,18 @@ void doTuning(){
//for check moving direction //for check moving direction
encodedSumValue += (s > 0 ? 1 : -1); encodedSumValue += (s > 0 ? 1 : -1);
//check threshold //check threshold and operator actions (hold dial speed = continous moving, skip threshold check)
if ((encodedSumValue * encodedSumValue) <= (threshold * threshold)) if ((lastTunetime < millis() - skipThresholdTime) && ((encodedSumValue * encodedSumValue) <= (threshold * threshold)))
return; return;
lastTunetime = millis();
//Valid Action without noise //Valid Action without noise
encodedSumValue = 0; encodedSumValue = 0;
prev_freq = frequency; prev_freq = frequency;
//incdecValue = tuningStep * s; //incdecValue = tuningStep * s;
frequency += (arTuneStep[tuneStepIndex -1] * s); frequency += (arTuneStep[tuneStepIndex -1] * s * (s * s < 10 ? 1 : 3)); //appield weight (s is speed)
if (prev_freq < 10000000l && frequency > 10000000l) if (prev_freq < 10000000l && frequency > 10000000l)
isUSB = true; isUSB = true;
@ -686,7 +718,10 @@ void initSettings(){
EEPROM.get(VFO_B, vfoB); EEPROM.get(VFO_B, vfoB);
EEPROM.get(CW_SIDETONE, sideTone); EEPROM.get(CW_SIDETONE, sideTone);
EEPROM.get(CW_SPEED, cwSpeed); EEPROM.get(CW_SPEED, cwSpeed);
//End of original code
//----------------------------------------------------------------
//Add Lines by KD8CEC
//for custom source Section ============================= //for custom source Section =============================
//ID & Version Check from EEProm //ID & Version Check from EEProm
//if found different firmware, erase eeprom (32 //if found different firmware, erase eeprom (32
@ -788,6 +823,45 @@ void initSettings(){
if (tuneStepIndex == 0) //New User if (tuneStepIndex == 0) //New User
tuneStepIndex = 3; tuneStepIndex = 3;
//CW Key ADC Range ======= adjust set value for reduce cw keying error
//by KD8CEC
unsigned int tmpMostBits = 0;
tmpMostBits = EEPROM.read(CW_ADC_MOST_BIT1);
cwAdcSTFrom = EEPROM.read(CW_ADC_ST_FROM) | ((tmpMostBits & 0x03) << 8);
cwAdcSTTo = EEPROM.read(CW_ADC_ST_TO) | ((tmpMostBits & 0x0C) << 6);
cwAdcDotFrom = EEPROM.read(CW_ADC_DOT_FROM) | ((tmpMostBits & 0x30) << 4);
cwAdcDotTo = EEPROM.read(CW_ADC_DOT_TO) | ((tmpMostBits & 0xC0) << 2);
tmpMostBits = EEPROM.read(CW_ADC_MOST_BIT2);
cwAdcDashFrom = EEPROM.read(CW_ADC_DASH_FROM) | ((tmpMostBits & 0x03) << 8);
cwAdcDashTo = EEPROM.read(CW_ADC_DASH_TO) | ((tmpMostBits & 0x0C) << 6);
cwAdcBothFrom = EEPROM.read(CW_ADC_BOTH_FROM) | ((tmpMostBits & 0x30) << 4);
cwAdcBothTo = EEPROM.read(CW_ADC_BOTH_TO) | ((tmpMostBits & 0xC0) << 2);
//default Value (for original hardware)
if (cwAdcSTFrom >= cwAdcSTTo)
{
cwAdcSTFrom = 0;
cwAdcSTTo = 50;
}
if (cwAdcBothFrom >= cwAdcBothTo)
{
cwAdcBothFrom = 51;
cwAdcBothTo = 300;
}
if (cwAdcDotFrom >= cwAdcDotTo)
{
cwAdcDotFrom = 301;
cwAdcDotTo = 600;
}
if (cwAdcDashFrom >= cwAdcDashTo)
{
cwAdcDashFrom = 601;
cwAdcDashTo = 800;
}
//end of CW Keying Variables
if (cwDelayTime < 1 || cwDelayTime > 250) if (cwDelayTime < 1 || cwDelayTime > 250)
cwDelayTime = 60; cwDelayTime = 60;
@ -798,6 +872,7 @@ void initSettings(){
if (vfoB_mode < 2) if (vfoB_mode < 2)
vfoB_mode = 3; vfoB_mode = 3;
//original code with modified by kd8cec
if (usbCarrier > 12010000l || usbCarrier < 11990000l) if (usbCarrier > 12010000l || usbCarrier < 11990000l)
usbCarrier = 11995000l; usbCarrier = 11995000l;
@ -810,8 +885,9 @@ void initSettings(){
vfoB = 14150000l; vfoB = 14150000l;
vfoB_mode = 3; vfoB_mode = 3;
} }
//end of original code section
//for protect eeprom life //for protect eeprom life by KD8CEC
vfoA_eeprom = vfoA; vfoA_eeprom = vfoA;
vfoB_eeprom = vfoB; vfoB_eeprom = vfoB;
vfoA_mode_eeprom = vfoA_mode; vfoA_mode_eeprom = vfoA_mode;
@ -969,7 +1045,7 @@ void loop(){
if (ritOn) if (ritOn)
doRIT(); doRIT();
else else
doTuning(); doTuningWithThresHold();
} }
//we check CAT after the encoder as it might put the radio into TX //we check CAT after the encoder as it might put the radio into TX

View File

@ -83,79 +83,38 @@ void cwKeyUp(){
cwTimeout = millis() + cwDelayTime * 10; cwTimeout = millis() + cwDelayTime * 10;
} }
/***************************************************************************** //Variables for Ron's new logic
// New logic, by RON
// modified by KD8CEC
******************************************************************************/
#define DIT_L 0x01 // DIT latch #define DIT_L 0x01 // DIT latch
#define DAH_L 0x02 // DAH latch #define DAH_L 0x02 // DAH latch
#define DIT_PROC 0x04 // DIT is being processed #define DIT_PROC 0x04 // DIT is being processed
#define PDLSWAP 0x08 // 0 for normal, 1 for swap #define PDLSWAP 0x08 // 0 for normal, 1 for swap
#define IAMBICB 0x10 // 0 for Iambic A, 1 for Iambic B #define IAMBICB 0x10 // 0 for Iambic A, 1 for Iambic B
enum KSTYPE {IDLE, CHK_DIT, CHK_DAH, KEYED_PREP, KEYED, INTER_ELEMENT }; enum KSTYPE {IDLE, CHK_DIT, CHK_DAH, KEYED_PREP, KEYED, INTER_ELEMENT };
static long ktimer; static long ktimer;
bool Iambic_Key = true; bool Iambic_Key = true;
unsigned char keyerControl = IAMBICB; unsigned char keyerControl = IAMBICB;
unsigned char keyerState = IDLE; unsigned char keyerState = IDLE;
//Below is a test to reduce the keying error. //Below is a test to reduce the keying error. do not delete lines
/*
char update_PaddleLatch(byte isUpdateKeyState) {
int paddle = analogRead(ANALOG_KEYER);
unsigned char tmpKeyerControl;
if (paddle > 800) // above 4v is up
tmpKeyerControl = 0;
//else if (paddle > 600) // 4-3v is DASH
else if (paddle > 693 && paddle < 700) // 4-3v is DASH
tmpKeyerControl |= DAH_L;
//else if (paddle > 300) //1-2v is DOT
else if (paddle > 323 && paddle < 328) //1-2v is DOT
tmpKeyerControl |= DIT_L;
//else if (paddle > 50)
else if (paddle > 280 && paddle < 290)
tmpKeyerControl |= (DAH_L | DIT_L) ; //both are between 1 and 2v
else
tmpKeyerControl = 0 ; //STRAIGHT KEY in original code
//keyerControl |= (DAH_L | DIT_L) ; //STRAIGHT KEY in original code
if (isUpdateKeyState == 1) {
keyerControl |= tmpKeyerControl;
}
byte buff[17];
sprintf(buff, "Key : %d", paddle);
if (tmpKeyerControl > 0)
printLine2(buff);
return tmpKeyerControl;
//if (analogRead(ANALOG_DOT) < 600 ) keyerControl |= DIT_L;
//if (analogRead(ANALOG_DASH) < 600 ) keyerControl |= DAH_L;
}
*/
//create by KD8CEC for compatible with new CW Logic //create by KD8CEC for compatible with new CW Logic
char update_PaddleLatch(byte isUpdateKeyState) { char update_PaddleLatch(byte isUpdateKeyState) {
int paddle = analogRead(ANALOG_KEYER);
unsigned char tmpKeyerControl; unsigned char tmpKeyerControl;
int paddle = analogRead(ANALOG_KEYER);
if (paddle > 800) // above 4v is up if (paddle > cwAdcDashFrom && paddle < cwAdcDashTo)
tmpKeyerControl = 0;
else if (paddle > 600) // 4-3v is DASH
tmpKeyerControl |= DAH_L; tmpKeyerControl |= DAH_L;
else if (paddle > 300) //1-2v is DOT else if (paddle > cwAdcDotFrom && paddle < cwAdcDotTo)
tmpKeyerControl |= DIT_L; tmpKeyerControl |= DIT_L;
else if (paddle > 50) else if (paddle > cwAdcBothFrom && paddle < cwAdcBothTo)
tmpKeyerControl |= (DAH_L | DIT_L) ; //both are between 1 and 2v tmpKeyerControl |= (DAH_L | DIT_L) ;
else else
{ //STRAIGHT KEY in original code {
if (Iambic_Key) if (Iambic_Key)
tmpKeyerControl = 0 ; tmpKeyerControl = 0 ;
else else if (paddle > cwAdcSTFrom && paddle < cwAdcSTTo)
tmpKeyerControl = DIT_L ; tmpKeyerControl = DIT_L ;
else
tmpKeyerControl = 0 ;
} }
if (isUpdateKeyState == 1) if (isUpdateKeyState == 1)
@ -164,123 +123,128 @@ char update_PaddleLatch(byte isUpdateKeyState) {
return tmpKeyerControl; return tmpKeyerControl;
} }
//This function is Ron's Logic. /*****************************************************************************
// New logic, by RON
// modified by KD8CEC
******************************************************************************/
void cwKeyer(void){ void cwKeyer(void){
byte paddle; byte paddle;
lastPaddle = 0; lastPaddle = 0;
int dot,dash; int dot,dash;
bool continue_loop = true; bool continue_loop = true;
unsigned tmpKeyControl = 0; unsigned tmpKeyControl = 0;
if( Iambic_Key ){
while(continue_loop){ if( Iambic_Key ) {
switch (keyerState) { while(continue_loop) {
case IDLE: switch (keyerState) {
tmpKeyControl = update_PaddleLatch(0); case IDLE:
if ( tmpKeyControl == DAH_L || tmpKeyControl == DIT_L || tmpKeyControl = update_PaddleLatch(0);
tmpKeyControl == (DAH_L | DIT_L) || (keyerControl & 0x03)) { if ( tmpKeyControl == DAH_L || tmpKeyControl == DIT_L ||
//DIT or DASH or current state DIT & DASH tmpKeyControl == (DAH_L | DIT_L) || (keyerControl & 0x03)) {
//(analogRead(ANALOG_DOT) < 600) || //DIT update_PaddleLatch(1);
//(analogRead(ANALOG_DASH) < 600) || //DIT keyerState = CHK_DIT;
// (keyerControl & 0x03)) { }else{
update_PaddleLatch(1); if (0 < cwTimeout && cwTimeout < millis()){
keyerState = CHK_DIT; cwTimeout = 0;
}else{ stopTx();
}
continue_loop = false;
}
break;
case CHK_DIT:
if (keyerControl & DIT_L) {
keyerControl |= DIT_PROC;
ktimer = cwSpeed;
keyerState = KEYED_PREP;
}else{
keyerState = CHK_DAH;
}
break;
case CHK_DAH:
if (keyerControl & DAH_L) {
ktimer = cwSpeed*3;
keyerState = KEYED_PREP;
}else{
keyerState = IDLE;
}
break;
case KEYED_PREP:
ktimer += millis(); // set ktimer to interval end time
keyerControl &= ~(DIT_L + DAH_L); // clear both paddle latch bits
keyerState = KEYED; // next state
if (!inTx){
keyDown = 0;
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
startTx(TX_CW, 1);
}
cwKeydown();
break;
case KEYED:
if (millis() > ktimer) { // are we at end of key down ?
cwKeyUp();
ktimer = millis() + cwSpeed; // inter-element time
keyerState = INTER_ELEMENT; // next state
}else if (keyerControl & IAMBICB) {
update_PaddleLatch(1); // early paddle latch in Iambic B mode
}
break;
case INTER_ELEMENT:
// Insert time between dits/dahs
update_PaddleLatch(1); // latch paddle state
if (millis() > ktimer) { // are we at end of inter-space ?
if (keyerControl & DIT_PROC) { // was it a dit or dah ?
keyerControl &= ~(DIT_L + DIT_PROC); // clear two bits
keyerState = CHK_DAH; // dit done, check for dah
}else{
keyerControl &= ~(DAH_L); // clear dah latch
keyerState = IDLE; // go idle
}
}
break;
}
Check_Cat(3);
} //end of while
}
else{
while(1){
if (update_PaddleLatch(0) == DIT_L) {
// if we are here, it is only because the key is pressed
if (!inTx){
keyDown = 0;
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
startTx(TX_CW, 1);
}
cwKeydown();
while ( update_PaddleLatch(0) == DIT_L )
delay_background(1, 3);
cwKeyUp();
}
else{
if (0 < cwTimeout && cwTimeout < millis()){ if (0 < cwTimeout && cwTimeout < millis()){
cwTimeout = 0; cwTimeout = 0;
keyDown = 0;
stopTx(); stopTx();
} }
continue_loop = false; if (!cwTimeout)
return;
// got back to the beginning of the loop, if no further activity happens on straight key
// we will time out, and return out of this routine
//delay(5);
delay_background(5, 3);
continue;
} }
break;
case CHK_DIT: Check_Cat(2);
if (keyerControl & DIT_L) { } //end of while
keyerControl |= DIT_PROC; } //end of elese
ktimer = cwSpeed;
keyerState = KEYED_PREP;
}else{
keyerState = CHK_DAH;
}
break;
case CHK_DAH:
if (keyerControl & DAH_L) {
ktimer = cwSpeed*3;
keyerState = KEYED_PREP;
}else{
keyerState = IDLE;
}
break;
case KEYED_PREP:
ktimer += millis(); // set ktimer to interval end time
keyerControl &= ~(DIT_L + DAH_L); // clear both paddle latch bits
keyerState = KEYED; // next state
if (!inTx){
keyDown = 0;
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
startTx(TX_CW, 1);
}
cwKeydown();
break;
case KEYED:
if (millis() > ktimer) { // are we at end of key down ?
cwKeyUp();
ktimer = millis() + cwSpeed; // inter-element time
keyerState = INTER_ELEMENT; // next state
}else if (keyerControl & IAMBICB) {
update_PaddleLatch(1); // early paddle latch in Iambic B mode
}
break;
case INTER_ELEMENT:
// Insert time between dits/dahs
update_PaddleLatch(1); // latch paddle state
if (millis() > ktimer) { // are we at end of inter-space ?
if (keyerControl & DIT_PROC) { // was it a dit or dah ?
keyerControl &= ~(DIT_L + DIT_PROC); // clear two bits
keyerState = CHK_DAH; // dit done, check for dah
}else{
keyerControl &= ~(DAH_L); // clear dah latch
keyerState = IDLE; // go idle
}
}
break;
}
} //end of while
}else{
while(1){
//if (analogRead(ANALOG_DOT) < 600){
if (update_PaddleLatch(0) == DIT_L) {
// if we are here, it is only because the key is pressed
if (!inTx){
keyDown = 0;
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
startTx(TX_CW, 1);
}
// start the transmission)
cwKeydown();
//while ( analogRead(ANALOG_DOT) < 600 ) delay(1);
while ( update_PaddleLatch(0) == DIT_L ) delay(1);
cwKeyUp();
}else{
if (0 < cwTimeout && cwTimeout < millis()){
cwTimeout = 0;
keyDown = 0;
stopTx();
}
if (!cwTimeout)
return;
// got back to the beginning of the loop, if no further activity happens on straight key
// we will time out, and return out of this routine
delay(5);
continue;
}
} //end of else
}
} }

View File

@ -13,6 +13,7 @@
#define printLineF1(x) (printLineF(1, x)) #define printLineF1(x) (printLineF(1, x))
#define printLineF2(x) (printLineF(0, x)) #define printLineF2(x) (printLineF(0, x))
//Ham band move by KD8CEC
void menuBand(int btn){ void menuBand(int btn){
int knob = 0; int knob = 0;
int stepChangeCount = 0; int stepChangeCount = 0;
@ -117,6 +118,7 @@ void menuBand(int btn){
menuOn = 0; menuOn = 0;
} }
//Convert Mode, Number by KD8CEC
//0: default, 1:not use, 2:LSB, 3:USB, 4:CW, 5:AM, 6:FM //0: default, 1:not use, 2:LSB, 3:USB, 4:CW, 5:AM, 6:FM
byte modeToByte(){ byte modeToByte(){
if (isUSB) if (isUSB)
@ -125,12 +127,15 @@ byte modeToByte(){
return 2; return 2;
} }
//Convert Number to Mode by KD8CEC
void byteToMode(byte modeValue){ void byteToMode(byte modeValue){
if (modeValue == 3) if (modeValue == 3)
isUSB = 1; isUSB = 1;
else else
isUSB = 0; isUSB = 0;
} }
//Convert Number to Mode by KD8CEC
void byteWithFreqToMode(byte modeValue){ void byteWithFreqToMode(byte modeValue){
if (modeValue == 3) if (modeValue == 3)
isUSB = 1; isUSB = 1;
@ -140,6 +145,7 @@ void byteWithFreqToMode(byte modeValue){
isUSB = 0; isUSB = 0;
} }
//VFO Toggle and save VFO Information, modified by KD8CEC
void menuVfoToggle(int btn, char isUseDelayTime) void menuVfoToggle(int btn, char isUseDelayTime)
{ {
if (!btn){ if (!btn){
@ -229,6 +235,7 @@ void menuSidebandToggle(int btn){
} }
} }
//Select CW Key Type by KD8CEC
void menuSetupKeyType(int btn){ void menuSetupKeyType(int btn){
if (!btn && digitalRead(PTT) == HIGH){ if (!btn && digitalRead(PTT) == HIGH){
if (Iambic_Key) if (Iambic_Key)
@ -263,7 +270,88 @@ void menuSetupKeyType(int btn){
} }
} }
//Analog pin monitoring with CW Key and function keys connected.
//by KD8CEC
void menuADCMonitor(int btn){
int adcPinA0 = 0; //A0(BLACK, EncoderA)
int adcPinA1 = 0; //A1(BROWN, EncoderB)
int adcPinA2 = 0; //A2(RED, Function Key)
int adcPinA3 = 0; //A3(ORANGE, CW Key)
int adcPinA6 = 0; //A6(BLUE, Ptt)
int adcPinA7 = 0; //A7(VIOLET, Spare)
unsigned long pressKeyTime = 0;
if (!btn){
printLineF2(F("ADC Line Monitor"));
return;
}
printLineF2(F("Exit:Long PTT"));
delay_background(2000, 0);
printLineF1(F("A0 A1 A2"));
printLineF2(F("A3 A6 A7"));
delay_background(3000, 0);
while (true) {
adcPinA0 = analogRead(A0); //A0(BLACK, EncoderA)
adcPinA1 = analogRead(A1); //A1(BROWN, EncoderB)
adcPinA2 = analogRead(A2); //A2(RED, Function Key)
adcPinA3 = analogRead(A3); //A3(ORANGE, CW Key)
adcPinA6 = analogRead(A6); //A6(BLUE, Ptt)
adcPinA7 = analogRead(A7); //A7(VIOLET, Spare)
/*
sprintf(c, "%4d %4d %4d", adcPinA0, adcPinA1, adcPinA2);
printLine1(c);
sprintf(c, "%4d %4d %4d", adcPinA3, adcPinA6, adcPinA7);
printLine2(c);
*/
if (adcPinA6 < 10) {
if (pressKeyTime == 0)
pressKeyTime = millis();
else if (pressKeyTime < (millis() - 3000))
break;
}
else
pressKeyTime = 0;
ltoa(adcPinA0, c, 10);
//strcat(b, c);
strcpy(b, c);
strcat(b, ", ");
ltoa(adcPinA1, c, 10);
strcat(b, c);
strcat(b, ", ");
ltoa(adcPinA2, c, 10);
strcat(b, c);
printLine1(b);
//strcpy(b, " ");
ltoa(adcPinA3, c, 10);
strcpy(b, c);
strcat(b, ", ");
ltoa(adcPinA6, c, 10);
strcat(b, c);
strcat(b, ", ");
ltoa(adcPinA7, c, 10);
strcat(b, c);
printLine2(b);
delay_background(200, 0);
} //end of while
printLine2ClearAndUpdate();
menuOn = 0;
}
//Function to disbled transmission
//by KD8CEC
void menuTxOnOff(int btn, byte optionType){ void menuTxOnOff(int btn, byte optionType){
if (!btn){ if (!btn){
if ((isTxType & optionType) == 0) if ((isTxType & optionType) == 0)
@ -377,6 +465,7 @@ void menuCWSpeed(int btn){
menuOn = 0; menuOn = 0;
} }
//Builtin CW Keyer Logic by KD8CEC
void menuCWAutoKey(int btn){ void menuCWAutoKey(int btn){
if (!btn){ if (!btn){
printLineF2(F("CW AutoKey Mode?")); printLineF2(F("CW AutoKey Mode?"));
@ -400,6 +489,7 @@ void menuCWAutoKey(int btn){
menuOn = 0; menuOn = 0;
} }
//Modified by KD8CEC
void menuSetupCwDelay(int btn){ void menuSetupCwDelay(int btn){
int knob = 0; int knob = 0;
int tmpCWDelay = cwDelayTime * 10; int tmpCWDelay = cwDelayTime * 10;
@ -448,6 +538,7 @@ void menuSetupCwDelay(int btn){
menuOn = 0; menuOn = 0;
} }
//CW Time delay by KD8CEC
void menuSetupTXCWInterval(int btn){ void menuSetupTXCWInterval(int btn){
int knob = 0; int knob = 0;
int tmpTXCWInterval = delayBeforeCWStartTime * 2; int tmpTXCWInterval = delayBeforeCWStartTime * 2;
@ -659,6 +750,7 @@ void printCarrierFreq(unsigned long freq){
printLine2(c); printLine2(c);
} }
//modified by KD8CEC (just 1 line remarked //usbCarrier = ...
void menuSetupCarrier(int btn){ void menuSetupCarrier(int btn){
int knob = 0; int knob = 0;
unsigned long prevCarrier; unsigned long prevCarrier;
@ -712,6 +804,7 @@ void menuSetupCarrier(int btn){
menuOn = 0; menuOn = 0;
} }
//Modified by KD8CEC
void menuSetupCwTone(int btn){ void menuSetupCwTone(int btn){
int knob = 0; int knob = 0;
int prev_sideTone; int prev_sideTone;
@ -760,6 +853,7 @@ void menuSetupCwTone(int btn){
menuOn = 0; menuOn = 0;
} }
//Lock Dial move by KD8CEC
void setDialLock(byte tmpLock, byte fromMode) { void setDialLock(byte tmpLock, byte fromMode) {
if (tmpLock == 1) if (tmpLock == 1)
isDialLock |= (vfoActive == VFO_A ? 0x01 : 0x02); isDialLock |= (vfoActive == VFO_A ? 0x01 : 0x02);
@ -782,6 +876,7 @@ unsigned int btnDownTimeCount;
#define PRESS_ADJUST_TUNE 1000 #define PRESS_ADJUST_TUNE 1000
#define PRESS_LOCK_CONTROL 2000 #define PRESS_LOCK_CONTROL 2000
//Modified by KD8CEC
void doMenu(){ void doMenu(){
int select=0, i,btnState; int select=0, i,btnState;
char isNeedDisplay = 0; char isNeedDisplay = 0;
@ -865,7 +960,7 @@ void doMenu(){
btnState = btnDown(); btnState = btnDown();
if (i > 0){ if (i > 0){
if (modeCalibrate && select + i < 160) if (modeCalibrate && select + i < 170)
select += i; select += i;
if (!modeCalibrate && select + i < 80) if (!modeCalibrate && select + i < 80)
select += i; select += i;
@ -905,8 +1000,10 @@ void doMenu(){
else if (select < 140 && modeCalibrate) else if (select < 140 && modeCalibrate)
menuSetupKeyType(btnState); menuSetupKeyType(btnState);
else if (select < 150 && modeCalibrate) else if (select < 150 && modeCalibrate)
menuTxOnOff(btnState, 0x01); //TX OFF / ON menuADCMonitor(btnState);
else if (select < 160 && modeCalibrate) else if (select < 160 && modeCalibrate)
menuTxOnOff(btnState, 0x01); //TX OFF / ON
else if (select < 170 && modeCalibrate)
menuExit(btnState); menuExit(btnState);
Check_Cat(0); //To prevent disconnections Check_Cat(0); //To prevent disconnections