mirror of
https://github.com/rfivet/stm32bringup.git
synced 2025-09-24 07:14:02 -04:00
Finalize ADC related code and docs.
This commit is contained in:
@@ -39,7 +39,7 @@ The initialization steps:
|
||||
<li> Configure acquisition direction and mode.
|
||||
</ul>
|
||||
<pre>
|
||||
static void adc_init( void) {
|
||||
const unsigned short *adc_init( unsigned channels) {
|
||||
/* Enable ADC peripheral */
|
||||
RCC_APB2ENR |= RCC_APB2ENR_ADCEN ;
|
||||
/* Setup ADC sampling clock */
|
||||
@@ -64,13 +64,16 @@ static void adc_init( void) {
|
||||
} while( !( ADC_ISR & ADC_ISR_ADRDY)) ;
|
||||
|
||||
/* Select inputs and precision */
|
||||
ADC_CHSELR = 3 << 16 ; /* Channel 16: temperature, Channel 17: Vrefint */
|
||||
ADC_CCR |= ADC_CCR_TSEN | ADC_CCR_VREFEN ;
|
||||
ADC_CHSELR = channels ;
|
||||
ADC_CCR |= (channels & (1 << 17)) << 5 ; /* VREFEN */
|
||||
ADC_CCR |= (channels & (1 << 16)) << 7 ; /* TSEN */
|
||||
ADC_SMPR = 7 ;
|
||||
/* Select acquisition direction and mode */
|
||||
/* Default scan direction (00) is Temperature before Voltage */
|
||||
// ADC_CFGR1 &= ~ADC_CFGR1_SCANDIR ; /* Default 0 is low to high */
|
||||
ADC_CFGR1 |= ADC_CFGR1_DISCEN ; /* Enable Discontinuous mode */
|
||||
|
||||
return TS_CAL1 ;
|
||||
}
|
||||
</pre>
|
||||
|
||||
@@ -88,7 +91,7 @@ command, wait until completion and fetch the result in the ADC Data
|
||||
Register.
|
||||
|
||||
<pre>
|
||||
static unsigned adc_convert( void) {
|
||||
unsigned adc_convert( void) {
|
||||
/* Either only one channel in sequence or Discontinuous mode ON */
|
||||
ADC_CR |= ADC_CR_ADSTART ; /* Start ADC conversion */
|
||||
do {} while( ADC_CR & ADC_CR_ADSTART) ; /* Wait for start command cleared */
|
||||
@@ -196,7 +199,7 @@ calibration value addresses and the following implementation of
|
||||
<pre>
|
||||
void adc_vnt( vnt_cmd_t cmd, short *ptrV, short *ptrC) {
|
||||
if( cmd == VNT_INIT)
|
||||
adc_init() ;
|
||||
adc_init( 3 << 16) ; /* 17: V, 16: T */
|
||||
|
||||
if( cmd <= VNT_CAL) {
|
||||
/* Calibration Values */
|
||||
|
@@ -15,44 +15,113 @@ potentiometers, sliders, joysticks …
|
||||
|
||||
<h2>Voltage Divider Circuit</h2>
|
||||
|
||||
<img alt="Voltage Divider Circuit" src="img/39_vdivider.png">
|
||||
<p>
|
||||
<b>Vout = Vin * Rref / (Rref + Rmeasured)</b>
|
||||
Reading a resistor value is based on the voltage divider circuit.<br>
|
||||
|
||||
<img alt="Voltage Divider Circuit" src="img/39_vdivider.png"><br>
|
||||
The relationship between the two voltages, <b>Vin</b> and <b>Vout</b> is
|
||||
<b><pre>
|
||||
Vout Vin
|
||||
────── = ──────────────
|
||||
Rref Rref + Rmeas
|
||||
</pre></b>
|
||||
|
||||
<h2>ADC Readings</h2>
|
||||
|
||||
Assuming the ADC is configured for 12 bit precision and return a value
|
||||
in the range [0 … 4095]
|
||||
<p>
|
||||
<b>Vout = VADC = VDDA * ADCRAW / 4095</b>
|
||||
<p>
|
||||
<b>Vin = VDDA</b>
|
||||
<p>
|
||||
<b>~VDDA~ * ADCRAW / 4095 = ~VDDA~ * Rref / (Rref + Rmeasured)</b>
|
||||
<p>
|
||||
<b>ADCRAW * Rmeasured = Rref * (4095 – ADCRAW)</b>
|
||||
<p>
|
||||
<b>Rmeasured = Rref * (4095 – ADCRAW) / ADCRAW</b>
|
||||
<p>
|
||||
<b>Rmeasured = Rref * (4095 / ADCRAW – 1)</b>
|
||||
in the range [0 … 4095], I can express the two voltages in terms of ADC values.
|
||||
<br>
|
||||
<b>Vout = VADC = VDDA * ADCraw / 4095</b><br>
|
||||
<b>Vin = VDDA</b>
|
||||
<p>The voltage divider relationship now becomes<br>
|
||||
<b><i>VDDA</i> * ADCraw / 4095 = <i>VDDA</i> * Rref / (Rref + Rmeasured)</b>
|
||||
<p>which can be further simplified as<br>
|
||||
<b>ADCraw * Rmeasured = Rref * (4095 – ADCraw)</b>
|
||||
<p>The resistor value is then given by<br>
|
||||
<b>Rmeasured = Rref * (4095 – ADCraw) / ADCraw</b><br>
|
||||
or<br>
|
||||
<b>Rmeasured = Rref * (4095 / ADCraw – 1)</b>
|
||||
|
||||
<h2>Devil in the whatnots</h2>
|
||||
Some of the things to pay attention to while coding
|
||||
<ul>
|
||||
<li> Avoiding division by zero.
|
||||
|
||||
<li> Integer versus floating point calculation.
|
||||
|
||||
<li> Choosing the reference resistor.
|
||||
|
||||
<li> Calibration of the reference resistor.
|
||||
</ul>
|
||||
<h3>● Division by Zero</h3>
|
||||
In the case where ADC readings would return 0, I chose to return INT_MAX as
|
||||
a value to flag the error.
|
||||
<pre>
|
||||
#include <limits.h>
|
||||
int R = ADCraw ? Rref * (4095 / ADCraw - 1) : INT_MAX ;
|
||||
</pre>
|
||||
|
||||
<h3>● Integer Calculation</h3>
|
||||
As integer based calculation tends to round intermediary results, I use the
|
||||
developped formula
|
||||
<pre>int R = ADCraw ? Rref * 4095 / ADCraw - Rref : INT_MAX ;</pre>
|
||||
|
||||
<hr>© 2020-2024 Renaud Fivet
|
||||
<h3>● Reference Resistor Selection</h3>
|
||||
The pair of resistors, reference and measured, has to be selected according
|
||||
to the use case. For now I am experimenting with the measurement of a
|
||||
photoresistor and use a reference resistor of 10 kOhm.
|
||||
|
||||
<h3>● Calibration</h3>
|
||||
For resistor reading, the reference voltage value VDDA does not influence the
|
||||
calculation. From a hardware design point of view, having a stable reference
|
||||
voltage still remains a key factor in securing reliable ADC readings.<br>
|
||||
For precise resistor value reading, the calibration of the reference resistor
|
||||
will be key. In other cases, the raw ADC reading can be used in combination
|
||||
with dynamic range acquisition.
|
||||
|
||||
<h2>Sampling Code</h2>
|
||||
|
||||
I create <b>adcext.c</b> to take readings every second.
|
||||
|
||||
<pre>
|
||||
#include <limits.h>
|
||||
#include <stdio.h>
|
||||
#include "system.h" /* uptime, yield(), adc_init(), adc_convert() */
|
||||
|
||||
#define RREF 10010 /* Rref is 10kOhm, measured @ 10.01 kOhm */
|
||||
|
||||
int main( void) {
|
||||
unsigned last = 0 ;
|
||||
const unsigned short *calp ; /* TS_CAL, VREFINT_CAL */
|
||||
|
||||
/* Initialize ADC and fetch calibration values */
|
||||
calp = adc_init( 2 | (1 << 17)) ; /* ADC read on GPIOA1 and VREF */
|
||||
short Vcal = calp[ 1] ; /* VREFINT_CAL */
|
||||
|
||||
printf( "factory calibration: %u, %u, %u\n", calp[ 1], calp[ 0], calp[5]) ;
|
||||
|
||||
for( ;;)
|
||||
if( uptime == last)
|
||||
yield() ;
|
||||
else {
|
||||
short Rsample, Vsample ;
|
||||
|
||||
last = uptime ;
|
||||
Vsample = adc_convert() ;
|
||||
Rsample = adc_convert() ;
|
||||
printf( "%i, %i, %i, ", Vcal, Vsample, Rsample) ;
|
||||
int res = Rsample ? RREF * 4095 / Rsample - RREF : INT_MAX ;
|
||||
Vsample = 3300 * Vcal / Vsample ;
|
||||
printf( "%i, %i.%i\n", res, Vsample / 1000, Vsample % 1000) ;
|
||||
}
|
||||
}
|
||||
</pre>
|
||||
|
||||
I add the composition in <b>Makefile</b>
|
||||
|
||||
<pre>SRCS = startup.crc.c adc.c adcext.c</pre>
|
||||
|
||||
<h2>Checkpoint</h2>
|
||||
<p>
|
||||
Building up on the previous ADC reading of internal sensors, sampling of
|
||||
an external resistor pair connected to one of the IO pin is straightforward.
|
||||
</p>
|
||||
<hr>© 2020-2025 Renaud Fivet
|
||||
</body>
|
||||
</html>
|
||||
|
Reference in New Issue
Block a user