ubitxv6/ubitx_cat.cpp

426 lines
12 KiB
C++

#include <Arduino.h>
#include "nano_gui.h"
#include "scratch_space.h"
#include "settings.h"
#include "tuner.h"
/**
* The CAT protocol is used by many radios to provide remote control to comptuers through
* the serial port.
*
* This is very much a work in progress. Parts of this code have been liberally
* borrowed from other GPLicensed works like hamlib.
*
* WARNING : This is an unstable version and it has worked with fldigi,
* it gives time out error with WSJTX 1.8.0
*/
static const uint8_t FT817_MESSAGE_SIZE = 5;
static const uint8_t ACK = 0x00;
static const uint8_t RACK = 0xF0;//Re-Acknowledge sent when the state requests is already active
//Data is ordered parameters 1-4, then command code last
enum CatDataIndex_e : uint8_t {
P1 = 0,
P2 = 1,
P3 = 2,
P4 = 3,
CMD = 4
};
enum Ft817Command_e : uint8_t {
//Listed in the order presented by FT-817ND_OM_ENG_E13771011.pdf
OffBit = 0x80,
LockOn = 0x00,
LockOff = LockOn | OffBit,
PttOn = 0x08,
PttOff = PttOn | OffBit,
SetFrequency = 0x01,//P1-P4 are BCD, 0x01 0x42 0x34 0x56 = 14.23456MHz
OperatingMode = 0x07,//See OperatingMode_e for P1 decode
ClarOn = 0x05,
ClarOff = ClarOn | OffBit,
ClarFrequency = 0xF5,//P1 is sign/direction (0x00 = +, - otherwise), P3-P4 are BCD, 0x12 0x34 = 12.34kHz
VfoToggle = 0x81,
SplitOn = 0x02,
SplitOff = SplitOn | OffBit,
RepeaterMode = 0x09,//See RepeaterMode_e for P1 decode
RepeaterOffset = 0xF9,//P1-P4 are BCD
CtcssDcsMode = 0x0A,//See CtcssDcsMode_e for P1 decode
CtcssTone = 0x0B,//P1-P2 are BCD, 0x08 0x85 = 88.5MHz
DcsTone = 0x0C,//P1-P2 are BCD, 0x00 0x23 = code 023
ReadRxStatus = 0xE7,//Returns ReadRxStatus_t
ReadTxStatus = 0xF7,//Returns ReadTxStatus_t
ReadFreqAndMode = 0x03,//Returns current frequency (BCD, 4 bytes), then mode (OperatingMode_e)
PowerOn = 0x0F,
PowerOff = PowerOn | OffBit,
//Unofficial commands
ReadEeprom = 0xBB,
};
enum OperatingMode_e : uint8_t {
LSB = 0x00,
USB = 0x01,
CW = 0x02,
CWR = 0x03,//CW-reverse aka LSB CW
AM = 0x04,
FM = 0x08,
DIG = 0x0A,
PKT = 0x0C,
};
enum RepeaterMode_e : uint8_t {
ShiftMinus = 0x09,
ShiftPlus = 0x49,
Simplex = 0x89,
};
enum CtcssDcsMode_e : uint8_t {
DcsOn = 0x0A,
CtcssOn = 0x2A,
EncoderOn = 0x4A,
Off = 0x8A,
};
struct ReadRxStatus_t {
//Bitfields are not defined by the standard to be portable, which is unfortunate
uint8_t Smeter : 4;//0x00 = S0, 0x09 = S9, etc.
uint8_t Dummy : 1;
uint8_t DiscriminatorCenteringOff : 1;
uint8_t CodeUnmatched : 1;
uint8_t SquelchSuppressionActive : 1;
};
struct ReadTxStatus_t {
//Bitfields are not defined by the standard to be portable, which is unfortunate
uint8_t PowerOutputMeter : 4;
uint8_t Dummy : 1;
uint8_t SplitOff : 1;
uint8_t HighSwrDetected : 1;
uint8_t PttOff : 1;
};
//Values based on http://www.ka7oei.com/ft817_memmap.html
//hamlib likes to read addresses 0x0065 (read as 0x0064) and 0x007A, but including support for some others
enum Ft817Eeprom_e : uint16_t {
VfoAndBankSelect = 0x0055,
TuningModes = 0x0057,
KeyerStatus = 0x0058,
BandSelect = 0x0059,
BeepVolume = 0x005C,
CwPitch = 0x005E,
CwWeight = 0x005F,
CwDelay = 0x0060,
SidetoneVolume = 0x0061,
CwSpeed = 0x0062,
VoxGain = 0x0063,
CatBaudRate = 0x0064,
SsbMicVolume = 0x0067,
AmMicVolume = 0x0068,
FmMicVolume = 0x0069,
TxPower = 0x0079,
AntennaSelectAndSplit = 0x007A,
VfoAPhantomMode = 0x01E9,
};
//for broken protocol
static const uint16_t CAT_RECEIVE_TIMEOUT_MS = 500;
uint8_t setHighNibble(uint8_t b, uint8_t v) {
// Clear the high nibble
b &= 0x0f;
// Set the high nibble
return b | ((v & 0x0f) << 4);
}
uint8_t setLowNibble(uint8_t b, uint8_t v) {
// Clear the low nibble
b &= 0xf0;
// Set the low nibble
return b | (v & 0x0f);
}
uint8_t getHighNibble(uint8_t b) {
return (b >> 4) & 0x0f;
}
uint8_t getLowNibble(uint8_t b) {
return b & 0x0f;
}
// Takes a number and produces the requested number of decimal digits, staring
// from the least significant digit.
//
void getDecimalDigits(unsigned long number, uint8_t* result,int digits) {
for (int i = 0; i < digits; i++) {
// "Mask off" (in a decimal sense) the LSD and return it
result[i] = number % 10;
// "Shift right" (in a decimal sense)
number /= 10;
}
}
// Takes a frequency and writes it into the CAT command buffer in BCD form.
//
void writeFreq(unsigned long freq, uint8_t* cmd) {
// Convert the frequency to a set of decimal digits. We are taking 9 digits
// so that we can get up to 999 MHz. But the protocol doesn't care about the
// LSD (1's place), so we ignore that digit.
uint8_t digits[9];
getDecimalDigits(freq,digits,9);
// Start from the LSB and get each nibble
cmd[P4] = setLowNibble(cmd[P4],digits[1]);
cmd[P4] = setHighNibble(cmd[P4],digits[2]);
cmd[P3] = setLowNibble(cmd[P3],digits[3]);
cmd[P3] = setHighNibble(cmd[P3],digits[4]);
cmd[P2] = setLowNibble(cmd[P2],digits[5]);
cmd[P2] = setHighNibble(cmd[P2],digits[6]);
cmd[P1] = setLowNibble(cmd[P1],digits[7]);
cmd[P1] = setHighNibble(cmd[P1],digits[8]);
}
// This function takes a frquency that is encoded using 4 uint8_ts of BCD
// representation and turns it into an long measured in Hz.
//
// [12][34][56][78] = 123.45678? Mhz
//
uint32_t readFreq(uint8_t* cmd) {
// Pull off each of the digits
unsigned long ret = 0;
for(uint8_t i = 0; i < 4; ++i){
const uint8_t d1 = getHighNibble(cmd[i]);
const uint8_t d0 = getLowNibble(cmd[i]);
ret *= 100;
ret += 10*d1 + d0;
}
return ret*10;
}
void catGetEeprom(const uint16_t read_address, uint8_t* response)
{
switch (read_address)
{
case Ft817Eeprom_e::VfoAndBankSelect:
//0 : VFO A/B 0 = VFO-A, 1 = VFO-B
//1 : MTQMB Select 0 = (Not MTQMB), 1 = MTQMB ("Memory Tune Quick Memory Bank")
//2 : QMB Select 0 = (Not QMB), 1 = QMB ("Quick Memory Bank")
//3 :
//4 : Home Select 0 = (Not HOME), 1 = HOME memory
//5 : Memory/MTUNE select 0 = Memory, 1 = MTUNE
//6 :
//7 : MEM/VFO Select 0 = Memory, 1 = VFO (A or B - see bit 0)
*response = 0x80 //always report VFO mode
| ((VFO_B == globalSettings.activeVfo) ? 0x01 : 0x00);
break;
case Ft817Eeprom_e::CwPitch:
//3-0 : CW Pitch (300-1000 Hz) (#20) From 0 to E (HEX) with 0 = 300 Hz and each step representing 50 Hz
//5-4 : Lock Mode (#32) 00 = Dial, 01 = Freq, 10 = Panel
//7-6 : Op Filter (#38) 00 = Off, 01 = SSB, 10 = CW
*response = (globalSettings.cwSideToneFreq - 300)/50;
break;
case Ft817Eeprom_e::SidetoneVolume:
//Sidetone (Volume) (#44) 0-100
*response = globalSettings.cwSideToneFreq / 100;
break;
case Ft817Eeprom_e::CwDelay:
//CW Delay (10-2500 ms) (#17) From 1 to 250 (decimal) with each step representing 10 ms
*response = globalSettings.cwActiveTimeoutMs / 10;
break;
case Ft817Eeprom_e::CwSpeed:
//5-0 CW Speed (4-60 WPM) (#21) From 0 to 38 (HEX) with 0 = 4 WPM and 38 = 60 WPM (1 WPM steps)
//7-6 Batt-Chg (6/8/10 Hours (#11) 00 = 6 Hours, 01 = 8 Hours, 10 = 10 Hours
*response = (1200 / globalSettings.cwDitDurationMs) - 4;
break;
case Ft817Eeprom_e::CatBaudRate:
//4-0 : VOX Delay (#50) 0 = 100 Ms with each step representing 100 Ms. 24 = 2500 Ms
//5 : Emergency (#28) 0 = Off, 1 = On
//7-6 : CAT Rate (4800, 9600, 38400) (#14) 00 = 4800, 01 = 9600, 10 = 38400 Baud
*response = 0xA5;
break;
case Ft817Eeprom_e::VfoAPhantomMode:
//2-0 : 000 = LSB, 001 = USB, 010 = CW, 011 = CWR, 100 = AM, 101 = FM, 110 = DIG, 111 = PKT
//7-3 : ?
if (VfoMode_e::VFO_MODE_USB == GetActiveVfoMode()){
*response = OperatingMode_e::USB;
}
else{
*response = OperatingMode_e::LSB;
}
break;
case Ft817Eeprom_e::AntennaSelectAndSplit:
//0 : HF Antenna Select 0 = Front, 1 = Rear
//1 : 6 M Antenna Select 0 = Front, 1 = Rear
//2 : FM BCB Antenna Select 0 = Front, 1 = Rear
//3 : Air Antenna Select 0 = Front, 1 = Rear
//4 : 2 M Antenna Select 0 = Front, 1 = Rear
//5 : UHF Antenna Select 0 = Front, 1 = Rear
//6 : ? ?
//7 : SPL On/Off 0 = Off, 1 = On
*response = (globalSettings.splitOn ? 0xFF : 0x7F);
break;
}
}
//Maps some of the fixed memory layout of the FT817's EEPROM
void catReadEEPRom(uint8_t* cmd, uint8_t* response)
{
const uint16_t read_address = cmd[P1] << 8 | cmd[P2];
catGetEeprom(read_address,response);
catGetEeprom(read_address+1,response+1);
}
void processCatCommand(uint8_t* cmd) {
//A response of a single byte, 0x00, is an ACK, so default to that
uint8_t response[FT817_MESSAGE_SIZE] = {ACK};
uint8_t response_length = 1;
switch(cmd[CMD]){
case Ft817Command_e::SetFrequency:
{
uint32_t f = readFreq(cmd);
setFrequency(f);
updateDisplay();
break;
}
case Ft817Command_e::SplitOn:
if(globalSettings.splitOn){
response[0] = RACK;
}
globalSettings.splitOn = true;
break;
case Ft817Command_e::SplitOff:
if(!globalSettings.splitOn){
response[0] = RACK;
}
globalSettings.splitOn = false;
break;
case Ft817Command_e::ReadFreqAndMode:
//First 4 bytes are the frequency
writeFreq(GetActiveVfoFreq(),response);//bytes 0-3
//Last byte is the mode
if (VfoMode_e::VFO_MODE_USB == GetActiveVfoMode()){
response[4] = OperatingMode_e::USB;
}
else{
response[4] = OperatingMode_e::LSB;
}
response_length = 5;
break;
case Ft817Command_e::OperatingMode:
if(OperatingMode_e::LSB == cmd[P1] || OperatingMode_e::CWR == cmd[P1]){
SetActiveVfoMode(VfoMode_e::VFO_MODE_LSB);
}
else{
SetActiveVfoMode(VfoMode_e::VFO_MODE_USB);
}
setFrequency(GetActiveVfoFreq());//Refresh frequency to get new mode to take effect
updateDisplay();
break;
case Ft817Command_e::PttOn:
if (!globalSettings.txActive) {
globalSettings.txCatActive = true;
startTx(globalSettings.tuningMode);
}
else {
response[0] = RACK;
}
updateDisplay();
break;
case Ft817Command_e::PttOff:
if (globalSettings.txActive) {
stopTx();
}
else{
response[0] = RACK;
}
globalSettings.txCatActive = false;
updateDisplay();
break;
case Ft817Command_e::VfoToggle:
if (Vfo_e::VFO_A == globalSettings.activeVfo){
globalSettings.activeVfo = Vfo_e::VFO_B;
}
else{
globalSettings.activeVfo = Vfo_e::VFO_A;
}
updateDisplay();
break;
case Ft817Command_e::ReadEeprom:
catReadEEPRom(cmd,response);
response_length = 2;
break;
case Ft817Command_e::ReadRxStatus:
//We don't have visibility into these values, so just hard code stuff
ReadRxStatus_t reply_status;
reply_status.Dummy = 0;
reply_status.Smeter = 9;//S9
reply_status.SquelchSuppressionActive = 0;
reply_status.DiscriminatorCenteringOff = 1;
reply_status.CodeUnmatched = 0;
response[0] = *(uint8_t*)&reply_status;
break;
case Ft817Command_e::ReadTxStatus:
{
//We don't have visibility into some of these values, so just hard code stuff
ReadTxStatus_t reply_status;
reply_status.Dummy = 0;
reply_status.HighSwrDetected = 0;
reply_status.PowerOutputMeter = 0xF;
reply_status.PttOff = !globalSettings.txActive;
reply_status.SplitOff = globalSettings.splitOn;//Yaesu's documentation says that 1 = split off, but as of 2020-05-04 hamlib reads (*split = (p->tx_status & 0x20) ? RIG_SPLIT_ON : RIG_SPLIT_OFF), so do what hamlib wants
response[0] = *(uint8_t*)&reply_status;
break;
}
default:
//Do something?
break;
}
Serial.write(response, response_length);
}
void checkCAT(){
static uint8_t rx_buffer[FT817_MESSAGE_SIZE];
static uint8_t current_index = 0;
static uint32_t timeout = 0;
//Check Serial Port Buffer
if (Serial.available() == 0) { //Set Buffer Clear status
if(timeout < millis()){
current_index = 0;
timeout = 0;
}
return;
}
else{
if(0 == current_index){
timeout = millis() + CAT_RECEIVE_TIMEOUT_MS;
}
rx_buffer[current_index] = Serial.read();
++current_index;
if(current_index < FT817_MESSAGE_SIZE){
return;
}
}
processCatCommand(rx_buffer);
current_index = 0;
timeout = 0;
}