1
1
mirror of https://github.com/OpenDiablo2/OpenDiablo2 synced 2024-11-19 19:06:45 -05:00

vector implementation with big.Float (#527)

This commit is contained in:
dk 2020-07-02 23:26:59 -07:00 committed by GitHub
parent e21e39e227
commit 48bde64a7e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 410 additions and 0 deletions

View File

@ -0,0 +1,43 @@
package d2interface
import "math/big"
// Vector is a 2-dimensional vector implementation using big.Float
type Vector interface {
X() *big.Float
Y() *big.Float
Marshal() ([]byte, error)
Unmarshal(buf []byte) error
Clone() Vector
Copy(src Vector) Vector
// SetFromEntity(entity WorldEntity) Vector
Set(x, y *big.Float) Vector
SetToPolar(azimuth, radius *big.Float) Vector
Equals(src Vector) bool
FuzzyEquals(src Vector) bool
Abs() Vector
Angle() *big.Float
SetAngle(angle *big.Float) Vector
Add(src Vector) Vector
Subtract(src Vector) Vector
Multiply(src Vector) Vector
Scale(value *big.Float) Vector
Divide(src Vector) Vector
Negate() Vector
Distance(src Vector) *big.Float
DistanceSq(src Vector) *big.Float
Length() *big.Float
SetLength(length *big.Float) Vector
LengthSq() (*big.Float, *big.Float)
Normalize() Vector
NormalizeRightHand() Vector
NormalizeLeftHand() Vector
Dot(src Vector) *big.Float
Cross(src Vector) *big.Float
Lerp(src Vector, t *big.Float) Vector
Reset() Vector
Limit(max *big.Float) Vector
Reflect(normal Vector) Vector
Mirror(axis Vector) Vector
Rotate(delta *big.Float) Vector
}

367
d2common/d2math/vector.go Normal file
View File

@ -0,0 +1,367 @@
package d2math
import (
"math"
"math/big"
"github.com/OpenDiablo2/OpenDiablo2/d2common/d2interface"
)
// I want to put these somewhere convenient...
// ZERO *Vector = &Vector{}
// ONE *Vector = &Vector{1, 1}
// RIGHT *Vector = &Vector{1, 0}
// LEFT *Vector = &Vector{-1, 0}
// UP *Vector = &Vector{0, -1}
// DOWN *Vector = &Vector{0, 1}
const (
// Epsilon is the threshold for what is `smol enough`
epsilon float64 = 0.0001
// d2precision is how much precision we want from big.Float
d2precision uint = 64 // was chosen arbitrarily
// for convenience in negating sign
negative1 float64 = -1.0
// for convenience
zero float64 = 0.0
)
// NewVector2 creates a new Vector
func NewVector2(x, y float64) *Vector2 {
xbf, ybf := big.NewFloat(x), big.NewFloat(y)
xbf.SetPrec(d2precision)
ybf.SetPrec(d2precision)
result := &Vector2{xbf, ybf}
return result
}
// Vector is an Implementation of 2-dimensional vectors with
// big.Float components
type Vector2 struct {
x *big.Float
y *big.Float
}
// X returns the x member of the Vector
func (v *Vector2) X() *big.Float {
return v.x
}
// Y returns the y member of the Vector
func (v *Vector2) Y() *big.Float {
return v.y
}
// Marshal converts the Vector into a slice of bytes
func (v *Vector2) Marshal() ([]byte, error) {
// TODO not sure how to do this properly
return nil, nil
}
// Unmarshal converts a slice of bytes to x/y *big.Float
// and assigns them to itself
func (v *Vector2) Unmarshal(buf []byte) error {
// TODO not sure how to do this properly
return nil
}
// Clone creates a copy of this Vector
func (v *Vector2) Clone() d2interface.Vector {
result := &Vector2{}
result.Copy(v)
return result
}
// Copy copies the src x/y members to this Vector x/y members
func (v *Vector2) Copy(src d2interface.Vector) d2interface.Vector {
v.x.Copy(src.X())
v.y.Copy(src.Y())
return v
}
// SetFromEntity copies the vector of a world entity
// func (v *Vector2) SetFromEntity(entity d2interface.WorldEntity) d2interface.Vector {
// return v.Copy(entity.Position())
// }
// Set the x,y members of the Vector
func (v *Vector2) Set(x, y *big.Float) d2interface.Vector {
v.x = x
v.y = y
return v
}
// SetToPolar sets the `x` and `y` values of this object
// from a given polar coordinate.
func (v *Vector2) SetToPolar(azimuth, radius *big.Float) d2interface.Vector {
// HACK we should do this better, with the big.Float
a, _ := azimuth.Float64()
r, _ := radius.Float64()
v.x.SetFloat64(math.Cos(a) * r)
v.y.SetFloat64(math.Sin(a) * r)
return v
}
// Equals check whether this Vector is equal to a given Vector.
func (v *Vector2) Equals(src d2interface.Vector) bool {
return v.x.Cmp(src.X()) == 0 && v.y.Cmp(src.Y()) == 0
}
// FuzzyEquals checks if the Vector is approximately equal
// to the given Vector. epsilon is what we consider `smol enough`
func (v *Vector2) FuzzyEquals(src d2interface.Vector) bool {
smol := big.NewFloat(epsilon)
d := v.Distance(src)
d.Abs(d)
return d.Cmp(smol) < 1 || d.Cmp(smol) < 1
}
// Abs returns a clone that is positive
func (v *Vector2) Abs() d2interface.Vector {
clone := v.Clone()
neg1 := big.NewFloat(-1.0)
if clone.X().Sign() == -1 { // is negative1
clone.X().Mul(clone.X(), neg1)
}
if v.Y().Sign() == -1 { // is negative1
clone.Y().Mul(clone.Y(), neg1)
}
return clone
}
// Angle computes the angle in radians with respect
// to the positive x-axis
func (v *Vector2) Angle() *big.Float {
// HACK we should find a way to do this purely
// with big.Float
floatX, _ := v.X().Float64()
floatY, _ := v.Y().Float64()
floatAngle := math.Atan2(floatY, floatX)
if floatAngle < 0 {
floatAngle += 2.0 * math.Pi
}
return big.NewFloat(floatAngle)
}
// SetAngle sets the angle of this Vector
func (v *Vector2) SetAngle(angle *big.Float) d2interface.Vector {
return v.SetToPolar(angle, v.Length())
}
// Add to this Vector the components of the given Vector
func (v *Vector2) Add(src d2interface.Vector) d2interface.Vector {
v.x.Add(v.x, src.X())
v.y.Add(v.y, src.Y())
return v
}
// Subtract from this Vector the components of the given Vector
func (v *Vector2) Subtract(src d2interface.Vector) d2interface.Vector {
v.x.Sub(v.x, src.X())
v.y.Sub(v.y, src.Y())
return v
}
// Multiply this Vector with the components of the given Vector
func (v *Vector2) Multiply(src d2interface.Vector) d2interface.Vector {
v.x.Mul(v.x, src.X())
v.y.Mul(v.y, src.Y())
return v
}
// Scale this Vector by the given value
func (v *Vector2) Scale(s *big.Float) d2interface.Vector {
v.x.Sub(v.x, s)
v.y.Sub(v.y, s)
return v
}
// Divide this Vector by the given Vector
func (v *Vector2) Divide(src d2interface.Vector) d2interface.Vector {
v.x.Quo(v.x, src.X())
v.y.Quo(v.y, src.Y())
return v
}
// Negate thex and y components of this Vector
func (v *Vector2) Negate() d2interface.Vector {
return v.Scale(big.NewFloat(negative1))
}
// Distance calculate the distance between this Vector and the given Vector
func (v *Vector2) Distance(src d2interface.Vector) *big.Float {
dist := v.DistanceSq(src)
return dist.Sqrt(dist)
}
// DistanceSq calculate the distance suared between this Vector and the given
// Vector
func (v *Vector2) DistanceSq(src d2interface.Vector) *big.Float {
delta := src.Clone().Subtract(v)
deltaSq := delta.Multiply(delta)
return big.NewFloat(zero).Add(deltaSq.X(), deltaSq.Y())
}
// Length returns the length of this Vector
func (v *Vector2) Length() *big.Float {
xsq, ysq := v.LengthSq()
return xsq.Add(xsq, ysq)
}
func (v *Vector2) LengthSq() (*big.Float, *big.Float) {
clone := v.Clone()
x, y := clone.X(), clone.Y()
return x.Mul(x, x), y.Mul(y, y)
}
// SetLength sets the length of this Vector
func (v *Vector2) SetLength(length *big.Float) d2interface.Vector {
return v.Normalize().Scale(length)
}
// Normalize Makes the vector a unit length vector (magnitude of 1) in the same
// direction.
func (v *Vector2) Normalize() d2interface.Vector {
xsq, ysq := v.LengthSq()
length := big.NewFloat(zero).Add(xsq, ysq)
one := big.NewFloat(1.0)
if length.Cmp(one) > 0 {
length.Quo(one, length.Sqrt(length))
v.x.Mul(v.x, length)
v.y.Mul(v.y, length)
}
return v
}
// NormalizeRightHand rotate this Vector to its perpendicular,
//in the positive direction.
func (v *Vector2) NormalizeRightHand() d2interface.Vector {
x := v.x
v.x = v.y.Mul(v.y, big.NewFloat(negative1))
v.y = x
return v
}
// NormalizeLeftHand rotate this Vector to its perpendicular,
//in the negative1 direction.
func (v *Vector2) NormalizeLeftHand() d2interface.Vector {
x := v.x
v.x = v.y
v.y = x.Mul(x, big.NewFloat(negative1))
return v
}
// Calculate the dot product of this Vector and the given Vector
func (v *Vector2) Dot(src d2interface.Vector) *big.Float {
c := v.Clone()
c.X().Mul(c.X(), src.X())
c.Y().Mul(c.Y(), src.Y())
return c.X().Add(c.X(), c.Y())
}
// Cross Calculate the cross product of this Vector and the given Vector.
func (v *Vector2) Cross(src d2interface.Vector) *big.Float {
c := v.Clone()
c.X().Mul(c.X(), src.X())
c.Y().Mul(c.Y(), src.Y())
return c.X().Sub(c.X(), c.Y())
}
// Lerp Linearly interpolate between this Vector and the given Vector.
func (v *Vector2) Lerp(
src d2interface.Vector,
t *big.Float,
) d2interface.Vector {
vc, sc := v.Clone(), src.Clone()
x, y := vc.X(), vc.Y()
v.x.Set(x.Add(x, t.Mul(t, sc.X().Sub(sc.X(), x))))
v.y.Set(y.Add(y, t.Mul(t, sc.Y().Sub(sc.Y(), y))))
return v
}
// Reset this Vector the zero vector (0, 0).
func (v *Vector2) Reset() d2interface.Vector {
v.x.SetFloat64(zero)
v.y.SetFloat64(zero)
return v
}
// Limit the length (or magnitude) of this Vector
func (v *Vector2) Limit(max *big.Float) d2interface.Vector {
length := v.Length()
if max.Cmp(length) < 0 {
v.Scale(length.Quo(max, length))
}
return v
}
// Reflect this Vector off a line defined by a normal.
func (v *Vector2) Reflect(normal d2interface.Vector) d2interface.Vector {
clone := v.Clone()
clone.Normalize()
two := big.NewFloat(2.0) // there's some matrix algebra magic here
dot := v.Clone().Dot(normal)
normal.Scale(two.Mul(two, dot))
return v.Subtract(normal)
}
// Mirror reflect this Vector across another.
func (v *Vector2) Mirror(axis d2interface.Vector) d2interface.Vector {
return v.Reflect(axis).Negate()
}
// Rotate this Vector by an angle amount.
func (v *Vector2) Rotate(angle *big.Float) d2interface.Vector {
// HACK we should do this only with big.Float, not float64
// we are throwing away the precision here
floatAngle, _ := angle.Float64()
cos := math.Cos(floatAngle)
sin := math.Sin(floatAngle)
oldX, _ := v.x.Float64()
oldY, _ := v.y.Float64()
newX := big.NewFloat(cos*oldX - sin*oldY)
newY := big.NewFloat(sin*oldX + cos*oldY)
v.Set(newX, newY)
return v
}