1
0
cuberite-2a/src/ByteBuffer.cpp
madmaxoft 2423fbf2ef Normalized comments.
This was mostly done automatically and then visually inspected for obvious errors.
All //-style comments should have a 2-space separation from the code, and 1 space after the comment sign.
2014-07-17 22:15:34 +02:00

899 lines
16 KiB
C++

// ByteBuffer.cpp
// Implements the cByteBuffer class representing a ringbuffer of bytes
#include "Globals.h"
#include "ByteBuffer.h"
#include "Endianness.h"
#include "OSSupport/IsThread.h"
// Try to determine endianness:
#if ( \
defined(__i386__) || defined(__alpha__) || \
defined(__ia64) || defined(__ia64__) || \
defined(_M_IX86) || defined(_M_IA64) || \
defined(_M_ALPHA) || defined(__amd64) || \
defined(__amd64__) || defined(_M_AMD64) || \
defined(__x86_64) || defined(__x86_64__) || \
defined(_M_X64) || defined(__bfin__) || \
defined(__ARMEL__) || \
(defined(_WIN32) && defined(__ARM__) && defined(_MSC_VER)) \
)
#define IS_LITTLE_ENDIAN
#elif ( \
defined (__ARMEB__) || defined(__sparc) \
)
#define IS_BIG_ENDIAN
#else
#error Cannot determine endianness of this platform
#endif
// If a string sent over the protocol is larger than this, a warning is emitted to the console
#define MAX_STRING_SIZE (512 KiB)
#define NEEDBYTES(Num) if (!CanReadBytes(Num)) return false; // Check if at least Num bytes can be read from the buffer, return false if not
#define PUTBYTES(Num) if (!CanWriteBytes(Num)) return false; // Check if at least Num bytes can be written to the buffer, return false if not
#ifdef SELF_TEST
/// Self-test of the VarInt-reading and writing code
static class cByteBufferSelfTest
{
public:
cByteBufferSelfTest(void)
{
TestRead();
TestWrite();
TestWrap();
}
void TestRead(void)
{
cByteBuffer buf(50);
buf.Write("\x05\xac\x02\x00", 4);
UInt32 v1;
assert_test(buf.ReadVarInt(v1) && (v1 == 5));
UInt32 v2;
assert_test(buf.ReadVarInt(v2) && (v2 == 300));
UInt32 v3;
assert_test(buf.ReadVarInt(v3) && (v3 == 0));
}
void TestWrite(void)
{
cByteBuffer buf(50);
buf.WriteVarInt(5);
buf.WriteVarInt(300);
buf.WriteVarInt(0);
AString All;
buf.ReadAll(All);
assert_test(All.size() == 4);
assert_test(memcmp(All.data(), "\x05\xac\x02\x00", All.size()) == 0);
}
void TestWrap(void)
{
cByteBuffer buf(3);
for (int i = 0; i < 1000; i++)
{
size_t FreeSpace = buf.GetFreeSpace();
assert_test(buf.GetReadableSpace() == 0);
assert_test(FreeSpace > 0);
assert_test(buf.Write("a", 1));
assert_test(buf.CanReadBytes(1));
assert_test(buf.GetReadableSpace() == 1);
unsigned char v = 0;
assert_test(buf.ReadByte(v));
assert_test(v == 'a');
assert_test(buf.GetReadableSpace() == 0);
buf.CommitRead();
assert_test(buf.GetFreeSpace() == FreeSpace); // We're back to normal
}
}
} g_ByteBufferTest;
#endif
#ifdef _DEBUG
/// Simple RAII class that uses one internal unsigned long for checking if two threads are using an object simultanously
class cSingleThreadAccessChecker
{
public:
cSingleThreadAccessChecker(unsigned long * a_ThreadID) :
m_ThreadID(a_ThreadID)
{
ASSERT((*a_ThreadID == 0) || (*a_ThreadID == cIsThread::GetCurrentID()));
}
~cSingleThreadAccessChecker()
{
*m_ThreadID = 0;
}
protected:
unsigned long * m_ThreadID;
} ;
#define CHECK_THREAD cSingleThreadAccessChecker Checker(const_cast<unsigned long *>(&m_ThreadID))
#else
#define CHECK_THREAD
#endif
////////////////////////////////////////////////////////////////////////////////
// cByteBuffer:
cByteBuffer::cByteBuffer(size_t a_BufferSize) :
m_Buffer(new char[a_BufferSize + 1]),
m_BufferSize(a_BufferSize + 1),
#ifdef _DEBUG
m_ThreadID(0),
#endif // _DEBUG
m_DataStart(0),
m_WritePos(0),
m_ReadPos(0)
{
// Allocating one byte more than the buffer size requested, so that we can distinguish between
// completely-full and completely-empty states
}
cByteBuffer::~cByteBuffer()
{
CheckValid();
delete[] m_Buffer;
m_Buffer = NULL;
}
bool cByteBuffer::Write(const void * a_Bytes, size_t a_Count)
{
CHECK_THREAD;
CheckValid();
// Store the current free space for a check after writing:
size_t CurFreeSpace = GetFreeSpace();
size_t CurReadableSpace = GetReadableSpace();
size_t WrittenBytes = 0;
if (CurFreeSpace < a_Count)
{
return false;
}
ASSERT(m_BufferSize >= m_WritePos);
size_t TillEnd = m_BufferSize - m_WritePos;
const char * Bytes = (const char *)a_Bytes;
if (TillEnd <= a_Count)
{
// Need to wrap around the ringbuffer end
if (TillEnd > 0)
{
memcpy(m_Buffer + m_WritePos, Bytes, TillEnd);
Bytes += TillEnd;
a_Count -= TillEnd;
WrittenBytes = TillEnd;
}
m_WritePos = 0;
}
// We're guaranteed that we'll fit in a single write op
if (a_Count > 0)
{
memcpy(m_Buffer + m_WritePos, Bytes, a_Count);
m_WritePos += a_Count;
WrittenBytes += a_Count;
}
ASSERT(GetFreeSpace() == CurFreeSpace - WrittenBytes);
ASSERT(GetReadableSpace() == CurReadableSpace + WrittenBytes);
return true;
}
size_t cByteBuffer::GetFreeSpace(void) const
{
CHECK_THREAD;
CheckValid();
if (m_WritePos >= m_DataStart)
{
// Wrap around the buffer end:
ASSERT(m_BufferSize >= m_WritePos);
ASSERT((m_BufferSize - m_WritePos + m_DataStart) >= 1);
return m_BufferSize - m_WritePos + m_DataStart - 1;
}
// Single free space partition:
ASSERT(m_BufferSize >= m_WritePos);
ASSERT(m_BufferSize - m_WritePos >= 1);
return m_DataStart - m_WritePos - 1;
}
/// Returns the number of bytes that are currently in the ringbuffer. Note GetReadableBytes()
size_t cByteBuffer::GetUsedSpace(void) const
{
CHECK_THREAD;
CheckValid();
ASSERT(m_BufferSize >= GetFreeSpace());
ASSERT((m_BufferSize - GetFreeSpace()) >= 1);
return m_BufferSize - GetFreeSpace() - 1;
}
/// Returns the number of bytes that are currently available for reading (may be less than UsedSpace due to some data having been read already)
size_t cByteBuffer::GetReadableSpace(void) const
{
CHECK_THREAD;
CheckValid();
if (m_ReadPos > m_WritePos)
{
// Wrap around the buffer end:
ASSERT(m_BufferSize >= m_ReadPos);
return m_BufferSize - m_ReadPos + m_WritePos;
}
// Single readable space partition:
ASSERT(m_WritePos >= m_ReadPos);
return m_WritePos - m_ReadPos ;
}
bool cByteBuffer::CanReadBytes(size_t a_Count) const
{
CHECK_THREAD;
CheckValid();
return (a_Count <= GetReadableSpace());
}
bool cByteBuffer::CanWriteBytes(size_t a_Count) const
{
CHECK_THREAD;
CheckValid();
return (a_Count <= GetFreeSpace());
}
bool cByteBuffer::ReadChar(char & a_Value)
{
CHECK_THREAD;
CheckValid();
NEEDBYTES(1);
ReadBuf(&a_Value, 1);
return true;
}
bool cByteBuffer::ReadByte(unsigned char & a_Value)
{
CHECK_THREAD;
CheckValid();
NEEDBYTES(1);
ReadBuf(&a_Value, 1);
return true;
}
bool cByteBuffer::ReadBEShort(short & a_Value)
{
CHECK_THREAD;
CheckValid();
NEEDBYTES(2);
ReadBuf(&a_Value, 2);
a_Value = (short)ntohs((u_short)a_Value);
return true;
}
bool cByteBuffer::ReadBEInt(int & a_Value)
{
CHECK_THREAD;
CheckValid();
NEEDBYTES(4);
ReadBuf(&a_Value, 4);
a_Value = (int)ntohl((u_long)a_Value);
return true;
}
bool cByteBuffer::ReadBEInt64(Int64 & a_Value)
{
CHECK_THREAD;
CheckValid();
NEEDBYTES(8);
ReadBuf(&a_Value, 8);
a_Value = NetworkToHostLong8(&a_Value);
return true;
}
bool cByteBuffer::ReadBEFloat(float & a_Value)
{
CHECK_THREAD;
CheckValid();
NEEDBYTES(4);
ReadBuf(&a_Value, 4);
a_Value = NetworkToHostFloat4(&a_Value);
return true;
}
bool cByteBuffer::ReadBEDouble(double & a_Value)
{
CHECK_THREAD;
CheckValid();
NEEDBYTES(8);
ReadBuf(&a_Value, 8);
a_Value = NetworkToHostDouble8(&a_Value);
return true;
}
bool cByteBuffer::ReadBool(bool & a_Value)
{
CHECK_THREAD;
CheckValid();
NEEDBYTES(1);
char Value = 0;
ReadBuf(&Value, 1);
a_Value = (Value != 0);
return true;
}
bool cByteBuffer::ReadBEUTF16String16(AString & a_Value)
{
CHECK_THREAD;
CheckValid();
short Length;
if (!ReadBEShort(Length))
{
return false;
}
if (Length < 0)
{
ASSERT(!"Negative string length? Are you sure?");
return true;
}
return ReadUTF16String(a_Value, (size_t)Length);
}
bool cByteBuffer::ReadVarInt(UInt32 & a_Value)
{
CHECK_THREAD;
CheckValid();
UInt32 Value = 0;
int Shift = 0;
unsigned char b = 0;
do
{
NEEDBYTES(1);
ReadBuf(&b, 1);
Value = Value | (((UInt32)(b & 0x7f)) << Shift);
Shift += 7;
} while ((b & 0x80) != 0);
a_Value = Value;
return true;
}
bool cByteBuffer::ReadVarUTF8String(AString & a_Value)
{
CHECK_THREAD;
CheckValid();
UInt32 Size = 0;
if (!ReadVarInt(Size))
{
return false;
}
if (Size > MAX_STRING_SIZE)
{
LOGWARNING("%s: String too large: %u (%u KiB)", __FUNCTION__, Size, Size / 1024);
}
return ReadString(a_Value, (size_t)Size);
}
bool cByteBuffer::ReadLEInt(int & a_Value)
{
CHECK_THREAD;
CheckValid();
NEEDBYTES(4);
ReadBuf(&a_Value, 4);
#ifdef IS_BIG_ENDIAN
// Convert:
a_Value = ((a_Value >> 24) & 0xff) | ((a_Value >> 16) & 0xff00) | ((a_Value >> 8) & 0xff0000) | (a_Value & 0xff000000);
#endif
return true;
}
bool cByteBuffer::WriteChar(char a_Value)
{
CHECK_THREAD;
CheckValid();
PUTBYTES(1);
return WriteBuf(&a_Value, 1);
}
bool cByteBuffer::WriteByte(unsigned char a_Value)
{
CHECK_THREAD;
CheckValid();
PUTBYTES(1);
return WriteBuf(&a_Value, 1);
}
bool cByteBuffer::WriteBEShort(short a_Value)
{
CHECK_THREAD;
CheckValid();
PUTBYTES(2);
u_short Converted = htons((u_short)a_Value);
return WriteBuf(&Converted, 2);
}
bool cByteBuffer::WriteBEInt(int a_Value)
{
CHECK_THREAD;
CheckValid();
PUTBYTES(4);
UInt32 Converted = HostToNetwork4(&a_Value);
return WriteBuf(&Converted, 4);
}
bool cByteBuffer::WriteBEInt64(Int64 a_Value)
{
CHECK_THREAD;
CheckValid();
PUTBYTES(8);
UInt64 Converted = HostToNetwork8(&a_Value);
return WriteBuf(&Converted, 8);
}
bool cByteBuffer::WriteBEFloat(float a_Value)
{
CHECK_THREAD;
CheckValid();
PUTBYTES(4);
UInt32 Converted = HostToNetwork4(&a_Value);
return WriteBuf(&Converted, 4);
}
bool cByteBuffer::WriteBEDouble(double a_Value)
{
CHECK_THREAD;
CheckValid();
PUTBYTES(8);
UInt64 Converted = HostToNetwork8(&a_Value);
return WriteBuf(&Converted, 8);
}
bool cByteBuffer::WriteBool(bool a_Value)
{
CHECK_THREAD;
CheckValid();
return WriteChar(a_Value ? 1 : 0);
}
bool cByteBuffer::WriteBEUTF16String16(const AString & a_Value)
{
CHECK_THREAD;
CheckValid();
PUTBYTES(2);
AString UTF16BE;
UTF8ToRawBEUTF16(a_Value.data(), a_Value.size(), UTF16BE);
WriteBEShort((short)(UTF16BE.size() / 2));
PUTBYTES(UTF16BE.size());
WriteBuf(UTF16BE.data(), UTF16BE.size());
return true;
}
bool cByteBuffer::WriteVarInt(UInt32 a_Value)
{
CHECK_THREAD;
CheckValid();
// A 32-bit integer can be encoded by at most 5 bytes:
unsigned char b[5];
size_t idx = 0;
do
{
b[idx] = (a_Value & 0x7f) | ((a_Value > 0x7f) ? 0x80 : 0x00);
a_Value = a_Value >> 7;
idx++;
} while (a_Value > 0);
return WriteBuf(b, idx);
}
bool cByteBuffer::WriteVarUTF8String(const AString & a_Value)
{
CHECK_THREAD;
CheckValid();
PUTBYTES(a_Value.size() + 1); // This is a lower-bound on the bytes that will be actually written. Fail early.
bool res = WriteVarInt((UInt32)(a_Value.size()));
if (!res)
{
return false;
}
return WriteBuf(a_Value.data(), a_Value.size());
}
bool cByteBuffer::WriteLEInt(int a_Value)
{
CHECK_THREAD;
CheckValid();
#ifdef IS_LITTLE_ENDIAN
return WriteBuf((const char *)&a_Value, 4);
#else
int Value = ((a_Value >> 24) & 0xff) | ((a_Value >> 16) & 0xff00) | ((a_Value >> 8) & 0xff0000) | (a_Value & 0xff000000);
return WriteBuf((const char *)&Value, 4);
#endif
}
bool cByteBuffer::ReadBuf(void * a_Buffer, size_t a_Count)
{
CHECK_THREAD;
CheckValid();
NEEDBYTES(a_Count);
char * Dst = (char *)a_Buffer; // So that we can do byte math
ASSERT(m_BufferSize >= m_ReadPos);
size_t BytesToEndOfBuffer = m_BufferSize - m_ReadPos;
if (BytesToEndOfBuffer <= a_Count)
{
// Reading across the ringbuffer end, read the first part and adjust parameters:
if (BytesToEndOfBuffer > 0)
{
memcpy(Dst, m_Buffer + m_ReadPos, BytesToEndOfBuffer);
Dst += BytesToEndOfBuffer;
a_Count -= BytesToEndOfBuffer;
}
m_ReadPos = 0;
}
// Read the rest of the bytes in a single read (guaranteed to fit):
if (a_Count > 0)
{
memcpy(Dst, m_Buffer + m_ReadPos, a_Count);
m_ReadPos += a_Count;
}
return true;
}
bool cByteBuffer::WriteBuf(const void * a_Buffer, size_t a_Count)
{
CHECK_THREAD;
CheckValid();
PUTBYTES(a_Count);
char * Src = (char *)a_Buffer; // So that we can do byte math
ASSERT(m_BufferSize >= m_ReadPos);
size_t BytesToEndOfBuffer = m_BufferSize - m_WritePos;
if (BytesToEndOfBuffer <= a_Count)
{
// Reading across the ringbuffer end, read the first part and adjust parameters:
memcpy(m_Buffer + m_WritePos, Src, BytesToEndOfBuffer);
Src += BytesToEndOfBuffer;
a_Count -= BytesToEndOfBuffer;
m_WritePos = 0;
}
// Read the rest of the bytes in a single read (guaranteed to fit):
if (a_Count > 0)
{
memcpy(m_Buffer + m_WritePos, Src, a_Count);
m_WritePos += a_Count;
}
return true;
}
bool cByteBuffer::ReadString(AString & a_String, size_t a_Count)
{
CHECK_THREAD;
CheckValid();
NEEDBYTES(a_Count);
a_String.clear();
a_String.reserve(a_Count);
ASSERT(m_BufferSize >= m_ReadPos);
size_t BytesToEndOfBuffer = m_BufferSize - m_ReadPos;
if (BytesToEndOfBuffer <= a_Count)
{
// Reading across the ringbuffer end, read the first part and adjust parameters:
if (BytesToEndOfBuffer > 0)
{
a_String.assign(m_Buffer + m_ReadPos, BytesToEndOfBuffer);
ASSERT(a_Count >= BytesToEndOfBuffer);
a_Count -= BytesToEndOfBuffer;
}
m_ReadPos = 0;
}
// Read the rest of the bytes in a single read (guaranteed to fit):
if (a_Count > 0)
{
a_String.append(m_Buffer + m_ReadPos, a_Count);
m_ReadPos += a_Count;
}
return true;
}
bool cByteBuffer::ReadUTF16String(AString & a_String, size_t a_NumChars)
{
// Reads 2 * a_NumChars bytes and interprets it as a UTF16 string, converting it into UTF8 string a_String
CHECK_THREAD;
CheckValid();
AString RawData;
if (!ReadString(RawData, a_NumChars * 2))
{
return false;
}
RawBEToUTF8(RawData.data(), a_NumChars, a_String);
return true;
}
bool cByteBuffer::SkipRead(size_t a_Count)
{
CHECK_THREAD;
CheckValid();
if (!CanReadBytes(a_Count))
{
return false;
}
AdvanceReadPos(a_Count);
return true;
}
void cByteBuffer::ReadAll(AString & a_Data)
{
CHECK_THREAD;
CheckValid();
ReadString(a_Data, GetReadableSpace());
}
bool cByteBuffer::ReadToByteBuffer(cByteBuffer & a_Dst, size_t a_NumBytes)
{
if (!a_Dst.CanWriteBytes(a_NumBytes) || !CanReadBytes(a_NumBytes))
{
// There's not enough source bytes or space in the dest BB
return false;
}
char buf[1024];
// > 0 without generating warnings about unsigned comparisons where size_t is unsigned
while (a_NumBytes != 0)
{
size_t num = (a_NumBytes > sizeof(buf)) ? sizeof(buf) : a_NumBytes;
VERIFY(ReadBuf(buf, num));
VERIFY(a_Dst.Write(buf, num));
ASSERT(a_NumBytes >= num);
a_NumBytes -= num;
}
return true;
}
void cByteBuffer::CommitRead(void)
{
CHECK_THREAD;
CheckValid();
m_DataStart = m_ReadPos;
}
void cByteBuffer::ResetRead(void)
{
CHECK_THREAD;
CheckValid();
m_ReadPos = m_DataStart;
}
void cByteBuffer::ReadAgain(AString & a_Out)
{
// Return the data between m_DataStart and m_ReadPos (the data that has been read but not committed)
// Used by ProtoProxy to repeat communication twice, once for parsing and the other time for the remote party
CHECK_THREAD;
CheckValid();
size_t DataStart = m_DataStart;
if (m_ReadPos < m_DataStart)
{
// Across the ringbuffer end, read the first part and adjust next part's start:
ASSERT(m_BufferSize >= m_DataStart);
a_Out.append(m_Buffer + m_DataStart, m_BufferSize - m_DataStart);
DataStart = 0;
}
ASSERT(m_ReadPos >= DataStart);
a_Out.append(m_Buffer + DataStart, m_ReadPos - DataStart);
}
void cByteBuffer::AdvanceReadPos(size_t a_Count)
{
CHECK_THREAD;
CheckValid();
m_ReadPos += a_Count;
if (m_ReadPos >= m_BufferSize)
{
m_ReadPos -= m_BufferSize;
}
}
void cByteBuffer::CheckValid(void) const
{
ASSERT(m_ReadPos < m_BufferSize);
ASSERT(m_WritePos < m_BufferSize);
}