1656 lines
73 KiB
C++
1656 lines
73 KiB
C++
// cryptlib.h - written and placed in the public domain by Wei Dai
|
|
/*! \file
|
|
This file contains the declarations for the abstract base
|
|
classes that provide a uniform interface to this library.
|
|
*/
|
|
|
|
/*! \mainpage Crypto++ Library 5.6.2 API Reference
|
|
<dl>
|
|
<dt>Abstract Base Classes<dd>
|
|
cryptlib.h
|
|
<dt>Authenticated Encryption<dd>
|
|
AuthenticatedSymmetricCipherDocumentation
|
|
<dt>Symmetric Ciphers<dd>
|
|
SymmetricCipherDocumentation
|
|
<dt>Hash Functions<dd>
|
|
SHA1, SHA224, SHA256, SHA384, SHA512, Tiger, Whirlpool, RIPEMD160, RIPEMD320, RIPEMD128, RIPEMD256, Weak1::MD2, Weak1::MD4, Weak1::MD5
|
|
<dt>Non-Cryptographic Checksums<dd>
|
|
CRC32, Adler32
|
|
<dt>Message Authentication Codes<dd>
|
|
VMAC, HMAC, CBC_MAC, CMAC, DMAC, TTMAC, GCM (GMAC)
|
|
<dt>Random Number Generators<dd>
|
|
NullRNG(), LC_RNG, RandomPool, BlockingRng, NonblockingRng, AutoSeededRandomPool, AutoSeededX917RNG, #DefaultAutoSeededRNG
|
|
<dt>Password-based Cryptography<dd>
|
|
PasswordBasedKeyDerivationFunction
|
|
<dt>Public Key Cryptosystems<dd>
|
|
DLIES, ECIES, LUCES, RSAES, RabinES, LUC_IES
|
|
<dt>Public Key Signature Schemes<dd>
|
|
DSA2, GDSA, ECDSA, NR, ECNR, LUCSS, RSASS, RSASS_ISO, RabinSS, RWSS, ESIGN
|
|
<dt>Key Agreement<dd>
|
|
#DH, DH2, #MQV, ECDH, ECMQV, XTR_DH
|
|
<dt>Algebraic Structures<dd>
|
|
Integer, PolynomialMod2, PolynomialOver, RingOfPolynomialsOver,
|
|
ModularArithmetic, MontgomeryRepresentation, GFP2_ONB,
|
|
GF2NP, GF256, GF2_32, EC2N, ECP
|
|
<dt>Secret Sharing and Information Dispersal<dd>
|
|
SecretSharing, SecretRecovery, InformationDispersal, InformationRecovery
|
|
<dt>Compression<dd>
|
|
Deflator, Inflator, Gzip, Gunzip, ZlibCompressor, ZlibDecompressor
|
|
<dt>Input Source Classes<dd>
|
|
StringSource, #ArraySource, FileSource, SocketSource, WindowsPipeSource, RandomNumberSource
|
|
<dt>Output Sink Classes<dd>
|
|
StringSinkTemplate, ArraySink, FileSink, SocketSink, WindowsPipeSink, RandomNumberSink
|
|
<dt>Filter Wrappers<dd>
|
|
StreamTransformationFilter, HashFilter, HashVerificationFilter, SignerFilter, SignatureVerificationFilter
|
|
<dt>Binary to Text Encoders and Decoders<dd>
|
|
HexEncoder, HexDecoder, Base64Encoder, Base64Decoder, Base32Encoder, Base32Decoder
|
|
<dt>Wrappers for OS features<dd>
|
|
Timer, Socket, WindowsHandle, ThreadLocalStorage, ThreadUserTimer
|
|
<dt>FIPS 140 related<dd>
|
|
fips140.h
|
|
</dl>
|
|
|
|
In the DLL version of Crypto++, only the following implementation class are available.
|
|
<dl>
|
|
<dt>Block Ciphers<dd>
|
|
AES, DES_EDE2, DES_EDE3, SKIPJACK
|
|
<dt>Cipher Modes (replace template parameter BC with one of the block ciphers above)<dd>
|
|
ECB_Mode\<BC\>, CTR_Mode\<BC\>, CBC_Mode\<BC\>, CFB_FIPS_Mode\<BC\>, OFB_Mode\<BC\>, GCM\<AES\>
|
|
<dt>Hash Functions<dd>
|
|
SHA1, SHA224, SHA256, SHA384, SHA512
|
|
<dt>Public Key Signature Schemes (replace template parameter H with one of the hash functions above)<dd>
|
|
RSASS\<PKCS1v15, H\>, RSASS\<PSS, H\>, RSASS_ISO\<H\>, RWSS\<P1363_EMSA2, H\>, DSA, ECDSA\<ECP, H\>, ECDSA\<EC2N, H\>
|
|
<dt>Message Authentication Codes (replace template parameter H with one of the hash functions above)<dd>
|
|
HMAC\<H\>, CBC_MAC\<DES_EDE2\>, CBC_MAC\<DES_EDE3\>, GCM\<AES\>
|
|
<dt>Random Number Generators<dd>
|
|
#DefaultAutoSeededRNG (AutoSeededX917RNG\<AES\>)
|
|
<dt>Key Agreement<dd>
|
|
#DH
|
|
<dt>Public Key Cryptosystems<dd>
|
|
RSAES\<OAEP\<SHA1\> \>
|
|
</dl>
|
|
|
|
<p>This reference manual is a work in progress. Some classes are still lacking detailed descriptions.
|
|
<p>Click <a href="CryptoPPRef.zip">here</a> to download a zip archive containing this manual.
|
|
<p>Thanks to Ryan Phillips for providing the Doxygen configuration file
|
|
and getting me started with this manual.
|
|
*/
|
|
|
|
#ifndef CRYPTOPP_CRYPTLIB_H
|
|
#define CRYPTOPP_CRYPTLIB_H
|
|
|
|
#include "config.h"
|
|
#include "stdcpp.h"
|
|
|
|
NAMESPACE_BEGIN(CryptoPP)
|
|
|
|
// forward declarations
|
|
class Integer;
|
|
class RandomNumberGenerator;
|
|
class BufferedTransformation;
|
|
|
|
//! used to specify a direction for a cipher to operate in (encrypt or decrypt)
|
|
enum CipherDir {ENCRYPTION, DECRYPTION};
|
|
|
|
//! used to represent infinite time
|
|
const unsigned long INFINITE_TIME = ULONG_MAX;
|
|
|
|
// VC60 workaround: using enums as template parameters causes problems
|
|
template <typename ENUM_TYPE, int VALUE>
|
|
struct EnumToType
|
|
{
|
|
static ENUM_TYPE ToEnum() {return (ENUM_TYPE)VALUE;}
|
|
};
|
|
|
|
enum ByteOrder {LITTLE_ENDIAN_ORDER = 0, BIG_ENDIAN_ORDER = 1};
|
|
typedef EnumToType<ByteOrder, LITTLE_ENDIAN_ORDER> LittleEndian;
|
|
typedef EnumToType<ByteOrder, BIG_ENDIAN_ORDER> BigEndian;
|
|
|
|
//! base class for all exceptions thrown by Crypto++
|
|
class CRYPTOPP_DLL Exception : public std::exception
|
|
{
|
|
public:
|
|
//! error types
|
|
enum ErrorType {
|
|
//! a method is not implemented
|
|
NOT_IMPLEMENTED,
|
|
//! invalid function argument
|
|
INVALID_ARGUMENT,
|
|
//! BufferedTransformation received a Flush(true) signal but can't flush buffers
|
|
CANNOT_FLUSH,
|
|
//! data integerity check (such as CRC or MAC) failed
|
|
DATA_INTEGRITY_CHECK_FAILED,
|
|
//! received input data that doesn't conform to expected format
|
|
INVALID_DATA_FORMAT,
|
|
//! error reading from input device or writing to output device
|
|
IO_ERROR,
|
|
//! some error not belong to any of the above categories
|
|
OTHER_ERROR
|
|
};
|
|
|
|
explicit Exception(ErrorType errorType, const std::string &s) : m_errorType(errorType), m_what(s) {}
|
|
virtual ~Exception() throw() {}
|
|
const char *what() const throw() {return (m_what.c_str());}
|
|
const std::string &GetWhat() const {return m_what;}
|
|
void SetWhat(const std::string &s) {m_what = s;}
|
|
ErrorType GetErrorType() const {return m_errorType;}
|
|
void SetErrorType(ErrorType errorType) {m_errorType = errorType;}
|
|
|
|
private:
|
|
ErrorType m_errorType;
|
|
std::string m_what;
|
|
};
|
|
|
|
//! exception thrown when an invalid argument is detected
|
|
class CRYPTOPP_DLL InvalidArgument : public Exception
|
|
{
|
|
public:
|
|
explicit InvalidArgument(const std::string &s) : Exception(INVALID_ARGUMENT, s) {}
|
|
};
|
|
|
|
//! exception thrown when input data is received that doesn't conform to expected format
|
|
class CRYPTOPP_DLL InvalidDataFormat : public Exception
|
|
{
|
|
public:
|
|
explicit InvalidDataFormat(const std::string &s) : Exception(INVALID_DATA_FORMAT, s) {}
|
|
};
|
|
|
|
//! exception thrown by decryption filters when trying to decrypt an invalid ciphertext
|
|
class CRYPTOPP_DLL InvalidCiphertext : public InvalidDataFormat
|
|
{
|
|
public:
|
|
explicit InvalidCiphertext(const std::string &s) : InvalidDataFormat(s) {}
|
|
};
|
|
|
|
//! exception thrown by a class if a non-implemented method is called
|
|
class CRYPTOPP_DLL NotImplemented : public Exception
|
|
{
|
|
public:
|
|
explicit NotImplemented(const std::string &s) : Exception(NOT_IMPLEMENTED, s) {}
|
|
};
|
|
|
|
//! exception thrown by a class when Flush(true) is called but it can't completely flush its buffers
|
|
class CRYPTOPP_DLL CannotFlush : public Exception
|
|
{
|
|
public:
|
|
explicit CannotFlush(const std::string &s) : Exception(CANNOT_FLUSH, s) {}
|
|
};
|
|
|
|
//! error reported by the operating system
|
|
class CRYPTOPP_DLL OS_Error : public Exception
|
|
{
|
|
public:
|
|
OS_Error(ErrorType errorType, const std::string &s, const std::string& operation, int errorCode)
|
|
: Exception(errorType, s), m_operation(operation), m_errorCode(errorCode) {}
|
|
~OS_Error() throw() {}
|
|
|
|
// the operating system API that reported the error
|
|
const std::string & GetOperation() const {return m_operation;}
|
|
// the error code return by the operating system
|
|
int GetErrorCode() const {return m_errorCode;}
|
|
|
|
protected:
|
|
std::string m_operation;
|
|
int m_errorCode;
|
|
};
|
|
|
|
//! used to return decoding results
|
|
struct CRYPTOPP_DLL DecodingResult
|
|
{
|
|
explicit DecodingResult() : isValidCoding(false), messageLength(0) {}
|
|
explicit DecodingResult(size_t len) : isValidCoding(true), messageLength(len) {}
|
|
|
|
bool operator==(const DecodingResult &rhs) const {return isValidCoding == rhs.isValidCoding && messageLength == rhs.messageLength;}
|
|
bool operator!=(const DecodingResult &rhs) const {return !operator==(rhs);}
|
|
|
|
bool isValidCoding;
|
|
size_t messageLength;
|
|
|
|
#ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY
|
|
operator size_t() const {return isValidCoding ? messageLength : 0;}
|
|
#endif
|
|
};
|
|
|
|
//! interface for retrieving values given their names
|
|
/*! \note This class is used to safely pass a variable number of arbitrarily typed arguments to functions
|
|
and to read values from keys and crypto parameters.
|
|
\note To obtain an object that implements NameValuePairs for the purpose of parameter
|
|
passing, use the MakeParameters() function.
|
|
\note To get a value from NameValuePairs, you need to know the name and the type of the value.
|
|
Call GetValueNames() on a NameValuePairs object to obtain a list of value names that it supports.
|
|
Then look at the Name namespace documentation to see what the type of each value is, or
|
|
alternatively, call GetIntValue() with the value name, and if the type is not int, a
|
|
ValueTypeMismatch exception will be thrown and you can get the actual type from the exception object.
|
|
*/
|
|
class CRYPTOPP_NO_VTABLE NameValuePairs
|
|
{
|
|
public:
|
|
virtual ~NameValuePairs() {}
|
|
|
|
//! exception thrown when trying to retrieve a value using a different type than expected
|
|
class CRYPTOPP_DLL ValueTypeMismatch : public InvalidArgument
|
|
{
|
|
public:
|
|
ValueTypeMismatch(const std::string &name, const std::type_info &stored, const std::type_info &retrieving)
|
|
: InvalidArgument("NameValuePairs: type mismatch for '" + name + "', stored '" + stored.name() + "', trying to retrieve '" + retrieving.name() + "'")
|
|
, m_stored(stored), m_retrieving(retrieving) {}
|
|
|
|
const std::type_info & GetStoredTypeInfo() const {return m_stored;}
|
|
const std::type_info & GetRetrievingTypeInfo() const {return m_retrieving;}
|
|
|
|
private:
|
|
const std::type_info &m_stored;
|
|
const std::type_info &m_retrieving;
|
|
};
|
|
|
|
//! get a copy of this object or a subobject of it
|
|
template <class T>
|
|
bool GetThisObject(T &object) const
|
|
{
|
|
return GetValue((std::string("ThisObject:")+typeid(T).name()).c_str(), object);
|
|
}
|
|
|
|
//! get a pointer to this object, as a pointer to T
|
|
template <class T>
|
|
bool GetThisPointer(T *&p) const
|
|
{
|
|
return GetValue((std::string("ThisPointer:")+typeid(T).name()).c_str(), p);
|
|
}
|
|
|
|
//! get a named value, returns true if the name exists
|
|
template <class T>
|
|
bool GetValue(const char *name, T &value) const
|
|
{
|
|
return GetVoidValue(name, typeid(T), &value);
|
|
}
|
|
|
|
//! get a named value, returns the default if the name doesn't exist
|
|
template <class T>
|
|
T GetValueWithDefault(const char *name, T defaultValue) const
|
|
{
|
|
GetValue(name, defaultValue);
|
|
return defaultValue;
|
|
}
|
|
|
|
//! get a list of value names that can be retrieved
|
|
CRYPTOPP_DLL std::string GetValueNames() const
|
|
{std::string result; GetValue("ValueNames", result); return result;}
|
|
|
|
//! get a named value with type int
|
|
/*! used to ensure we don't accidentally try to get an unsigned int
|
|
or some other type when we mean int (which is the most common case) */
|
|
CRYPTOPP_DLL bool GetIntValue(const char *name, int &value) const
|
|
{return GetValue(name, value);}
|
|
|
|
//! get a named value with type int, with default
|
|
CRYPTOPP_DLL int GetIntValueWithDefault(const char *name, int defaultValue) const
|
|
{return GetValueWithDefault(name, defaultValue);}
|
|
|
|
//! used by derived classes to check for type mismatch
|
|
CRYPTOPP_DLL static void CRYPTOPP_API ThrowIfTypeMismatch(const char *name, const std::type_info &stored, const std::type_info &retrieving)
|
|
{if (stored != retrieving) throw ValueTypeMismatch(name, stored, retrieving);}
|
|
|
|
template <class T>
|
|
void GetRequiredParameter(const char *className, const char *name, T &value) const
|
|
{
|
|
if (!GetValue(name, value))
|
|
throw InvalidArgument(std::string(className) + ": missing required parameter '" + name + "'");
|
|
}
|
|
|
|
CRYPTOPP_DLL void GetRequiredIntParameter(const char *className, const char *name, int &value) const
|
|
{
|
|
if (!GetIntValue(name, value))
|
|
throw InvalidArgument(std::string(className) + ": missing required parameter '" + name + "'");
|
|
}
|
|
|
|
//! to be implemented by derived classes, users should use one of the above functions instead
|
|
CRYPTOPP_DLL virtual bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const =0;
|
|
};
|
|
|
|
//! namespace containing value name definitions
|
|
/*! value names, types and semantics:
|
|
|
|
ThisObject:ClassName (ClassName, copy of this object or a subobject)
|
|
ThisPointer:ClassName (const ClassName *, pointer to this object or a subobject)
|
|
*/
|
|
DOCUMENTED_NAMESPACE_BEGIN(Name)
|
|
// more names defined in argnames.h
|
|
DOCUMENTED_NAMESPACE_END
|
|
|
|
//! empty set of name-value pairs
|
|
extern CRYPTOPP_DLL const NameValuePairs &g_nullNameValuePairs;
|
|
|
|
// ********************************************************
|
|
|
|
//! interface for cloning objects, this is not implemented by most classes yet
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE Clonable
|
|
{
|
|
public:
|
|
virtual ~Clonable() {}
|
|
//! this is not implemented by most classes yet
|
|
virtual Clonable* Clone() const {throw NotImplemented("Clone() is not implemented yet.");} // TODO: make this =0
|
|
};
|
|
|
|
//! interface for all crypto algorithms
|
|
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE Algorithm : public Clonable
|
|
{
|
|
public:
|
|
/*! When FIPS 140-2 compliance is enabled and checkSelfTestStatus == true,
|
|
this constructor throws SelfTestFailure if the self test hasn't been run or fails. */
|
|
Algorithm(bool checkSelfTestStatus = true);
|
|
//! returns name of this algorithm, not universally implemented yet
|
|
virtual std::string AlgorithmName() const {return "unknown";}
|
|
};
|
|
|
|
//! keying interface for crypto algorithms that take byte strings as keys
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE SimpleKeyingInterface
|
|
{
|
|
public:
|
|
virtual ~SimpleKeyingInterface() {}
|
|
|
|
//! returns smallest valid key length in bytes */
|
|
virtual size_t MinKeyLength() const =0;
|
|
//! returns largest valid key length in bytes */
|
|
virtual size_t MaxKeyLength() const =0;
|
|
//! returns default (recommended) key length in bytes */
|
|
virtual size_t DefaultKeyLength() const =0;
|
|
|
|
//! returns the smallest valid key length in bytes that is >= min(n, GetMaxKeyLength())
|
|
virtual size_t GetValidKeyLength(size_t n) const =0;
|
|
|
|
//! returns whether n is a valid key length
|
|
virtual bool IsValidKeyLength(size_t n) const
|
|
{return n == GetValidKeyLength(n);}
|
|
|
|
//! set or reset the key of this object
|
|
/*! \param params is used to specify Rounds, BlockSize, etc. */
|
|
virtual void SetKey(const byte *key, size_t length, const NameValuePairs ¶ms = g_nullNameValuePairs);
|
|
|
|
//! calls SetKey() with an NameValuePairs object that just specifies "Rounds"
|
|
void SetKeyWithRounds(const byte *key, size_t length, int rounds);
|
|
|
|
//! calls SetKey() with an NameValuePairs object that just specifies "IV"
|
|
void SetKeyWithIV(const byte *key, size_t length, const byte *iv, size_t ivLength);
|
|
|
|
//! calls SetKey() with an NameValuePairs object that just specifies "IV"
|
|
void SetKeyWithIV(const byte *key, size_t length, const byte *iv)
|
|
{SetKeyWithIV(key, length, iv, IVSize());}
|
|
|
|
enum IV_Requirement {UNIQUE_IV = 0, RANDOM_IV, UNPREDICTABLE_RANDOM_IV, INTERNALLY_GENERATED_IV, NOT_RESYNCHRONIZABLE};
|
|
//! returns the minimal requirement for secure IVs
|
|
virtual IV_Requirement IVRequirement() const =0;
|
|
|
|
//! returns whether this object can be resynchronized (i.e. supports initialization vectors)
|
|
/*! If this function returns true, and no IV is passed to SetKey() and CanUseStructuredIVs()==true, an IV of all 0's will be assumed. */
|
|
bool IsResynchronizable() const {return IVRequirement() < NOT_RESYNCHRONIZABLE;}
|
|
//! returns whether this object can use random IVs (in addition to ones returned by GetNextIV)
|
|
bool CanUseRandomIVs() const {return IVRequirement() <= UNPREDICTABLE_RANDOM_IV;}
|
|
//! returns whether this object can use random but possibly predictable IVs (in addition to ones returned by GetNextIV)
|
|
bool CanUsePredictableIVs() const {return IVRequirement() <= RANDOM_IV;}
|
|
//! returns whether this object can use structured IVs, for example a counter (in addition to ones returned by GetNextIV)
|
|
bool CanUseStructuredIVs() const {return IVRequirement() <= UNIQUE_IV;}
|
|
|
|
virtual unsigned int IVSize() const {throw NotImplemented(GetAlgorithm().AlgorithmName() + ": this object doesn't support resynchronization");}
|
|
//! returns default length of IVs accepted by this object
|
|
unsigned int DefaultIVLength() const {return IVSize();}
|
|
//! returns minimal length of IVs accepted by this object
|
|
virtual unsigned int MinIVLength() const {return IVSize();}
|
|
//! returns maximal length of IVs accepted by this object
|
|
virtual unsigned int MaxIVLength() const {return IVSize();}
|
|
//! resynchronize with an IV. ivLength=-1 means use IVSize()
|
|
virtual void Resynchronize(const byte *iv, int ivLength=-1) {throw NotImplemented(GetAlgorithm().AlgorithmName() + ": this object doesn't support resynchronization");}
|
|
//! get a secure IV for the next message
|
|
/*! This method should be called after you finish encrypting one message and are ready to start the next one.
|
|
After calling it, you must call SetKey() or Resynchronize() before using this object again.
|
|
This method is not implemented on decryption objects. */
|
|
virtual void GetNextIV(RandomNumberGenerator &rng, byte *IV);
|
|
|
|
protected:
|
|
virtual const Algorithm & GetAlgorithm() const =0;
|
|
virtual void UncheckedSetKey(const byte *key, unsigned int length, const NameValuePairs ¶ms) =0;
|
|
|
|
void ThrowIfInvalidKeyLength(size_t length);
|
|
void ThrowIfResynchronizable(); // to be called when no IV is passed
|
|
void ThrowIfInvalidIV(const byte *iv); // check for NULL IV if it can't be used
|
|
size_t ThrowIfInvalidIVLength(int size);
|
|
const byte * GetIVAndThrowIfInvalid(const NameValuePairs ¶ms, size_t &size);
|
|
inline void AssertValidKeyLength(size_t length) const
|
|
{assert(IsValidKeyLength(length));}
|
|
};
|
|
|
|
//! interface for the data processing part of block ciphers
|
|
|
|
/*! Classes derived from BlockTransformation are block ciphers
|
|
in ECB mode (for example the DES::Encryption class), which are stateless.
|
|
These classes should not be used directly, but only in combination with
|
|
a mode class (see CipherModeDocumentation in modes.h).
|
|
*/
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE BlockTransformation : public Algorithm
|
|
{
|
|
public:
|
|
//! encrypt or decrypt inBlock, xor with xorBlock, and write to outBlock
|
|
virtual void ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const =0;
|
|
|
|
//! encrypt or decrypt one block
|
|
/*! \pre size of inBlock and outBlock == BlockSize() */
|
|
void ProcessBlock(const byte *inBlock, byte *outBlock) const
|
|
{ProcessAndXorBlock(inBlock, NULL, outBlock);}
|
|
|
|
//! encrypt or decrypt one block in place
|
|
void ProcessBlock(byte *inoutBlock) const
|
|
{ProcessAndXorBlock(inoutBlock, NULL, inoutBlock);}
|
|
|
|
//! block size of the cipher in bytes
|
|
virtual unsigned int BlockSize() const =0;
|
|
|
|
//! returns how inputs and outputs should be aligned for optimal performance
|
|
virtual unsigned int OptimalDataAlignment() const;
|
|
|
|
//! returns true if this is a permutation (i.e. there is an inverse transformation)
|
|
virtual bool IsPermutation() const {return true;}
|
|
|
|
//! returns true if this is an encryption object
|
|
virtual bool IsForwardTransformation() const =0;
|
|
|
|
//! return number of blocks that can be processed in parallel, for bit-slicing implementations
|
|
virtual unsigned int OptimalNumberOfParallelBlocks() const {return 1;}
|
|
|
|
enum {BT_InBlockIsCounter=1, BT_DontIncrementInOutPointers=2, BT_XorInput=4, BT_ReverseDirection=8, BT_AllowParallel=16} FlagsForAdvancedProcessBlocks;
|
|
|
|
//! encrypt and xor blocks according to flags (see FlagsForAdvancedProcessBlocks)
|
|
/*! /note If BT_InBlockIsCounter is set, last byte of inBlocks may be modified. */
|
|
virtual size_t AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) const;
|
|
|
|
inline CipherDir GetCipherDirection() const {return IsForwardTransformation() ? ENCRYPTION : DECRYPTION;}
|
|
};
|
|
|
|
//! interface for the data processing part of stream ciphers
|
|
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE StreamTransformation : public Algorithm
|
|
{
|
|
public:
|
|
//! return a reference to this object, useful for passing a temporary object to a function that takes a non-const reference
|
|
StreamTransformation& Ref() {return *this;}
|
|
|
|
//! returns block size, if input must be processed in blocks, otherwise 1
|
|
virtual unsigned int MandatoryBlockSize() const {return 1;}
|
|
|
|
//! returns the input block size that is most efficient for this cipher
|
|
/*! \note optimal input length is n * OptimalBlockSize() - GetOptimalBlockSizeUsed() for any n > 0 */
|
|
virtual unsigned int OptimalBlockSize() const {return MandatoryBlockSize();}
|
|
//! returns how much of the current block is used up
|
|
virtual unsigned int GetOptimalBlockSizeUsed() const {return 0;}
|
|
|
|
//! returns how input should be aligned for optimal performance
|
|
virtual unsigned int OptimalDataAlignment() const;
|
|
|
|
//! encrypt or decrypt an array of bytes of specified length
|
|
/*! \note either inString == outString, or they don't overlap */
|
|
virtual void ProcessData(byte *outString, const byte *inString, size_t length) =0;
|
|
|
|
//! for ciphers where the last block of data is special, encrypt or decrypt the last block of data
|
|
/*! For now the only use of this function is for CBC-CTS mode. */
|
|
virtual void ProcessLastBlock(byte *outString, const byte *inString, size_t length);
|
|
//! returns the minimum size of the last block, 0 indicating the last block is not special
|
|
virtual unsigned int MinLastBlockSize() const {return 0;}
|
|
|
|
//! same as ProcessData(inoutString, inoutString, length)
|
|
inline void ProcessString(byte *inoutString, size_t length)
|
|
{ProcessData(inoutString, inoutString, length);}
|
|
//! same as ProcessData(outString, inString, length)
|
|
inline void ProcessString(byte *outString, const byte *inString, size_t length)
|
|
{ProcessData(outString, inString, length);}
|
|
//! implemented as {ProcessData(&input, &input, 1); return input;}
|
|
inline byte ProcessByte(byte input)
|
|
{ProcessData(&input, &input, 1); return input;}
|
|
|
|
//! returns whether this cipher supports random access
|
|
virtual bool IsRandomAccess() const =0;
|
|
//! for random access ciphers, seek to an absolute position
|
|
virtual void Seek(lword n)
|
|
{
|
|
assert(!IsRandomAccess());
|
|
throw NotImplemented("StreamTransformation: this object doesn't support random access");
|
|
}
|
|
|
|
//! returns whether this transformation is self-inverting (e.g. xor with a keystream)
|
|
virtual bool IsSelfInverting() const =0;
|
|
//! returns whether this is an encryption object
|
|
virtual bool IsForwardTransformation() const =0;
|
|
};
|
|
|
|
//! interface for hash functions and data processing part of MACs
|
|
|
|
/*! HashTransformation objects are stateful. They are created in an initial state,
|
|
change state as Update() is called, and return to the initial
|
|
state when Final() is called. This interface allows a large message to
|
|
be hashed in pieces by calling Update() on each piece followed by
|
|
calling Final().
|
|
*/
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE HashTransformation : public Algorithm
|
|
{
|
|
public:
|
|
//! return a reference to this object, useful for passing a temporary object to a function that takes a non-const reference
|
|
HashTransformation& Ref() {return *this;}
|
|
|
|
//! process more input
|
|
virtual void Update(const byte *input, size_t length) =0;
|
|
|
|
//! request space to write input into
|
|
virtual byte * CreateUpdateSpace(size_t &size) {size=0; return NULL;}
|
|
|
|
//! compute hash for current message, then restart for a new message
|
|
/*! \pre size of digest == DigestSize(). */
|
|
virtual void Final(byte *digest)
|
|
{TruncatedFinal(digest, DigestSize());}
|
|
|
|
//! discard the current state, and restart with a new message
|
|
virtual void Restart()
|
|
{TruncatedFinal(NULL, 0);}
|
|
|
|
//! size of the hash/digest/MAC returned by Final()
|
|
virtual unsigned int DigestSize() const =0;
|
|
|
|
//! same as DigestSize()
|
|
unsigned int TagSize() const {return DigestSize();}
|
|
|
|
|
|
//! block size of underlying compression function, or 0 if not block based
|
|
virtual unsigned int BlockSize() const {return 0;}
|
|
|
|
//! input to Update() should have length a multiple of this for optimal speed
|
|
virtual unsigned int OptimalBlockSize() const {return 1;}
|
|
|
|
//! returns how input should be aligned for optimal performance
|
|
virtual unsigned int OptimalDataAlignment() const;
|
|
|
|
//! use this if your input is in one piece and you don't want to call Update() and Final() separately
|
|
virtual void CalculateDigest(byte *digest, const byte *input, size_t length)
|
|
{Update(input, length); Final(digest);}
|
|
|
|
//! verify that digest is a valid digest for the current message, then reinitialize the object
|
|
/*! Default implementation is to call Final() and do a bitwise comparison
|
|
between its output and digest. */
|
|
virtual bool Verify(const byte *digest)
|
|
{return TruncatedVerify(digest, DigestSize());}
|
|
|
|
//! use this if your input is in one piece and you don't want to call Update() and Verify() separately
|
|
virtual bool VerifyDigest(const byte *digest, const byte *input, size_t length)
|
|
{Update(input, length); return Verify(digest);}
|
|
|
|
//! truncated version of Final()
|
|
virtual void TruncatedFinal(byte *digest, size_t digestSize) =0;
|
|
|
|
//! truncated version of CalculateDigest()
|
|
virtual void CalculateTruncatedDigest(byte *digest, size_t digestSize, const byte *input, size_t length)
|
|
{Update(input, length); TruncatedFinal(digest, digestSize);}
|
|
|
|
//! truncated version of Verify()
|
|
virtual bool TruncatedVerify(const byte *digest, size_t digestLength);
|
|
|
|
//! truncated version of VerifyDigest()
|
|
virtual bool VerifyTruncatedDigest(const byte *digest, size_t digestLength, const byte *input, size_t length)
|
|
{Update(input, length); return TruncatedVerify(digest, digestLength);}
|
|
|
|
protected:
|
|
void ThrowIfInvalidTruncatedSize(size_t size) const;
|
|
};
|
|
|
|
typedef HashTransformation HashFunction;
|
|
|
|
//! interface for one direction (encryption or decryption) of a block cipher
|
|
/*! \note These objects usually should not be used directly. See BlockTransformation for more details. */
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE BlockCipher : public SimpleKeyingInterface, public BlockTransformation
|
|
{
|
|
protected:
|
|
const Algorithm & GetAlgorithm() const {return *this;}
|
|
};
|
|
|
|
//! interface for one direction (encryption or decryption) of a stream cipher or cipher mode
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE SymmetricCipher : public SimpleKeyingInterface, public StreamTransformation
|
|
{
|
|
protected:
|
|
const Algorithm & GetAlgorithm() const {return *this;}
|
|
};
|
|
|
|
//! interface for message authentication codes
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE MessageAuthenticationCode : public SimpleKeyingInterface, public HashTransformation
|
|
{
|
|
protected:
|
|
const Algorithm & GetAlgorithm() const {return *this;}
|
|
};
|
|
|
|
//! interface for for one direction (encryption or decryption) of a stream cipher or block cipher mode with authentication
|
|
/*! The StreamTransformation part of this interface is used to encrypt/decrypt the data, and the MessageAuthenticationCode part of this
|
|
interface is used to input additional authenticated data (AAD, which is MAC'ed but not encrypted), and to generate/verify the MAC. */
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE AuthenticatedSymmetricCipher : public MessageAuthenticationCode, public StreamTransformation
|
|
{
|
|
public:
|
|
//! this indicates that a member function was called in the wrong state, for example trying to encrypt a message before having set the key or IV
|
|
class BadState : public Exception
|
|
{
|
|
public:
|
|
explicit BadState(const std::string &name, const char *message) : Exception(OTHER_ERROR, name + ": " + message) {}
|
|
explicit BadState(const std::string &name, const char *function, const char *state) : Exception(OTHER_ERROR, name + ": " + function + " was called before " + state) {}
|
|
};
|
|
|
|
//! the maximum length of AAD that can be input before the encrypted data
|
|
virtual lword MaxHeaderLength() const =0;
|
|
//! the maximum length of encrypted data
|
|
virtual lword MaxMessageLength() const =0;
|
|
//! the maximum length of AAD that can be input after the encrypted data
|
|
virtual lword MaxFooterLength() const {return 0;}
|
|
//! if this function returns true, SpecifyDataLengths() must be called before attempting to input data
|
|
/*! This is the case for some schemes, such as CCM. */
|
|
virtual bool NeedsPrespecifiedDataLengths() const {return false;}
|
|
//! this function only needs to be called if NeedsPrespecifiedDataLengths() returns true
|
|
void SpecifyDataLengths(lword headerLength, lword messageLength, lword footerLength=0);
|
|
//! encrypt and generate MAC in one call. will truncate MAC if macSize < TagSize()
|
|
virtual void EncryptAndAuthenticate(byte *ciphertext, byte *mac, size_t macSize, const byte *iv, int ivLength, const byte *header, size_t headerLength, const byte *message, size_t messageLength);
|
|
//! decrypt and verify MAC in one call, returning true iff MAC is valid. will assume MAC is truncated if macLength < TagSize()
|
|
virtual bool DecryptAndVerify(byte *message, const byte *mac, size_t macLength, const byte *iv, int ivLength, const byte *header, size_t headerLength, const byte *ciphertext, size_t ciphertextLength);
|
|
|
|
// redeclare this to avoid compiler ambiguity errors
|
|
virtual std::string AlgorithmName() const =0;
|
|
|
|
protected:
|
|
const Algorithm & GetAlgorithm() const {return *static_cast<const MessageAuthenticationCode *>(this);}
|
|
virtual void UncheckedSpecifyDataLengths(lword headerLength, lword messageLength, lword footerLength) {}
|
|
};
|
|
|
|
#ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY
|
|
typedef SymmetricCipher StreamCipher;
|
|
#endif
|
|
|
|
//! interface for random number generators
|
|
/*! All return values are uniformly distributed over the range specified.
|
|
*/
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE RandomNumberGenerator : public Algorithm
|
|
{
|
|
public:
|
|
//! update RNG state with additional unpredictable values
|
|
virtual void IncorporateEntropy(const byte *input, size_t length) {throw NotImplemented("RandomNumberGenerator: IncorporateEntropy not implemented");}
|
|
|
|
//! returns true if IncorporateEntropy is implemented
|
|
virtual bool CanIncorporateEntropy() const {return false;}
|
|
|
|
//! generate new random byte and return it
|
|
virtual byte GenerateByte();
|
|
|
|
//! generate new random bit and return it
|
|
/*! Default implementation is to call GenerateByte() and return its lowest bit. */
|
|
virtual unsigned int GenerateBit();
|
|
|
|
//! generate a random 32 bit word in the range min to max, inclusive
|
|
virtual word32 GenerateWord32(word32 a=0, word32 b=0xffffffffL);
|
|
|
|
//! generate random array of bytes
|
|
virtual void GenerateBlock(byte *output, size_t size);
|
|
|
|
//! generate and discard n bytes
|
|
virtual void DiscardBytes(size_t n);
|
|
|
|
//! generate random bytes as input to a BufferedTransformation
|
|
virtual void GenerateIntoBufferedTransformation(BufferedTransformation &target, const std::string &channel, lword length);
|
|
|
|
//! randomly shuffle the specified array, resulting permutation is uniformly distributed
|
|
template <class IT> void Shuffle(IT begin, IT end)
|
|
{
|
|
for (; begin != end; ++begin)
|
|
std::iter_swap(begin, begin + GenerateWord32(0, end-begin-1));
|
|
}
|
|
|
|
#ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY
|
|
byte GetByte() {return GenerateByte();}
|
|
unsigned int GetBit() {return GenerateBit();}
|
|
word32 GetLong(word32 a=0, word32 b=0xffffffffL) {return GenerateWord32(a, b);}
|
|
word16 GetShort(word16 a=0, word16 b=0xffff) {return (word16)GenerateWord32(a, b);}
|
|
void GetBlock(byte *output, size_t size) {GenerateBlock(output, size);}
|
|
#endif
|
|
};
|
|
|
|
//! returns a reference that can be passed to functions that ask for a RNG but doesn't actually use it
|
|
CRYPTOPP_DLL RandomNumberGenerator & CRYPTOPP_API NullRNG();
|
|
|
|
class WaitObjectContainer;
|
|
class CallStack;
|
|
|
|
//! interface for objects that you can wait for
|
|
|
|
class CRYPTOPP_NO_VTABLE Waitable
|
|
{
|
|
public:
|
|
virtual ~Waitable() {}
|
|
|
|
//! maximum number of wait objects that this object can return
|
|
virtual unsigned int GetMaxWaitObjectCount() const =0;
|
|
//! put wait objects into container
|
|
/*! \param callStack is used for tracing no wait loops, example:
|
|
something.GetWaitObjects(c, CallStack("my func after X", 0));
|
|
- or in an outer GetWaitObjects() method that itself takes a callStack parameter:
|
|
innerThing.GetWaitObjects(c, CallStack("MyClass::GetWaitObjects at X", &callStack)); */
|
|
virtual void GetWaitObjects(WaitObjectContainer &container, CallStack const& callStack) =0;
|
|
//! wait on this object
|
|
/*! same as creating an empty container, calling GetWaitObjects(), and calling Wait() on the container */
|
|
bool Wait(unsigned long milliseconds, CallStack const& callStack);
|
|
};
|
|
|
|
//! the default channel for BufferedTransformation, equal to the empty string
|
|
extern CRYPTOPP_DLL const std::string DEFAULT_CHANNEL;
|
|
|
|
//! channel for additional authenticated data, equal to "AAD"
|
|
extern CRYPTOPP_DLL const std::string AAD_CHANNEL;
|
|
|
|
//! interface for buffered transformations
|
|
|
|
/*! BufferedTransformation is a generalization of BlockTransformation,
|
|
StreamTransformation, and HashTransformation.
|
|
|
|
A buffered transformation is an object that takes a stream of bytes
|
|
as input (this may be done in stages), does some computation on them, and
|
|
then places the result into an internal buffer for later retrieval. Any
|
|
partial result already in the output buffer is not modified by further
|
|
input.
|
|
|
|
If a method takes a "blocking" parameter, and you
|
|
pass "false" for it, the method will return before all input has been processed if
|
|
the input cannot be processed without waiting (for network buffers to become available, for example).
|
|
In this case the method will return true
|
|
or a non-zero integer value. When this happens you must continue to call the method with the same
|
|
parameters until it returns false or zero, before calling any other method on it or
|
|
attached BufferedTransformation. The integer return value in this case is approximately
|
|
the number of bytes left to be processed, and can be used to implement a progress bar.
|
|
|
|
For functions that take a "propagation" parameter, propagation != 0 means pass on the signal to attached
|
|
BufferedTransformation objects, with propagation decremented at each step until it reaches 0.
|
|
-1 means unlimited propagation.
|
|
|
|
\nosubgrouping
|
|
*/
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE BufferedTransformation : public Algorithm, public Waitable
|
|
{
|
|
public:
|
|
// placed up here for CW8
|
|
static const std::string &NULL_CHANNEL; // same as DEFAULT_CHANNEL, for backwards compatibility
|
|
|
|
BufferedTransformation() : Algorithm(false) {}
|
|
|
|
//! return a reference to this object, useful for passing a temporary object to a function that takes a non-const reference
|
|
BufferedTransformation& Ref() {return *this;}
|
|
|
|
//! \name INPUT
|
|
//@{
|
|
//! input a byte for processing
|
|
size_t Put(byte inByte, bool blocking=true)
|
|
{return Put(&inByte, 1, blocking);}
|
|
//! input multiple bytes
|
|
size_t Put(const byte *inString, size_t length, bool blocking=true)
|
|
{return Put2(inString, length, 0, blocking);}
|
|
|
|
//! input a 16-bit word
|
|
size_t PutWord16(word16 value, ByteOrder order=BIG_ENDIAN_ORDER, bool blocking=true);
|
|
//! input a 32-bit word
|
|
size_t PutWord32(word32 value, ByteOrder order=BIG_ENDIAN_ORDER, bool blocking=true);
|
|
|
|
//! request space which can be written into by the caller, and then used as input to Put()
|
|
/*! \param size is requested size (as a hint) for input, and size of the returned space for output */
|
|
/*! \note The purpose of this method is to help avoid doing extra memory allocations. */
|
|
virtual byte * CreatePutSpace(size_t &size) {size=0; return NULL;}
|
|
|
|
virtual bool CanModifyInput() const {return false;}
|
|
|
|
//! input multiple bytes that may be modified by callee
|
|
size_t PutModifiable(byte *inString, size_t length, bool blocking=true)
|
|
{return PutModifiable2(inString, length, 0, blocking);}
|
|
|
|
bool MessageEnd(int propagation=-1, bool blocking=true)
|
|
{return !!Put2(NULL, 0, propagation < 0 ? -1 : propagation+1, blocking);}
|
|
size_t PutMessageEnd(const byte *inString, size_t length, int propagation=-1, bool blocking=true)
|
|
{return Put2(inString, length, propagation < 0 ? -1 : propagation+1, blocking);}
|
|
|
|
//! input multiple bytes for blocking or non-blocking processing
|
|
/*! \param messageEnd means how many filters to signal MessageEnd to, including this one */
|
|
virtual size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking) =0;
|
|
//! input multiple bytes that may be modified by callee for blocking or non-blocking processing
|
|
/*! \param messageEnd means how many filters to signal MessageEnd to, including this one */
|
|
virtual size_t PutModifiable2(byte *inString, size_t length, int messageEnd, bool blocking)
|
|
{return Put2(inString, length, messageEnd, blocking);}
|
|
|
|
//! thrown by objects that have not implemented nonblocking input processing
|
|
struct BlockingInputOnly : public NotImplemented
|
|
{BlockingInputOnly(const std::string &s) : NotImplemented(s + ": Nonblocking input is not implemented by this object.") {}};
|
|
//@}
|
|
|
|
//! \name WAITING
|
|
//@{
|
|
unsigned int GetMaxWaitObjectCount() const;
|
|
void GetWaitObjects(WaitObjectContainer &container, CallStack const& callStack);
|
|
//@}
|
|
|
|
//! \name SIGNALS
|
|
//@{
|
|
virtual void IsolatedInitialize(const NameValuePairs ¶meters) {throw NotImplemented("BufferedTransformation: this object can't be reinitialized");}
|
|
virtual bool IsolatedFlush(bool hardFlush, bool blocking) =0;
|
|
virtual bool IsolatedMessageSeriesEnd(bool blocking) {return false;}
|
|
|
|
//! initialize or reinitialize this object
|
|
virtual void Initialize(const NameValuePairs ¶meters=g_nullNameValuePairs, int propagation=-1);
|
|
//! flush buffered input and/or output
|
|
/*! \param hardFlush is used to indicate whether all data should be flushed
|
|
\note Hard flushes must be used with care. It means try to process and output everything, even if
|
|
there may not be enough data to complete the action. For example, hard flushing a HexDecoder would
|
|
cause an error if you do it after inputing an odd number of hex encoded characters.
|
|
For some types of filters, for example ZlibDecompressor, hard flushes can only
|
|
be done at "synchronization points". These synchronization points are positions in the data
|
|
stream that are created by hard flushes on the corresponding reverse filters, in this
|
|
example ZlibCompressor. This is useful when zlib compressed data is moved across a
|
|
network in packets and compression state is preserved across packets, as in the ssh2 protocol.
|
|
*/
|
|
virtual bool Flush(bool hardFlush, int propagation=-1, bool blocking=true);
|
|
//! mark end of a series of messages
|
|
/*! There should be a MessageEnd immediately before MessageSeriesEnd. */
|
|
virtual bool MessageSeriesEnd(int propagation=-1, bool blocking=true);
|
|
|
|
//! set propagation of automatically generated and transferred signals
|
|
/*! propagation == 0 means do not automaticly generate signals */
|
|
virtual void SetAutoSignalPropagation(int propagation) {}
|
|
|
|
//!
|
|
virtual int GetAutoSignalPropagation() const {return 0;}
|
|
public:
|
|
|
|
#ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY
|
|
void Close() {MessageEnd();}
|
|
#endif
|
|
//@}
|
|
|
|
//! \name RETRIEVAL OF ONE MESSAGE
|
|
//@{
|
|
//! returns number of bytes that is currently ready for retrieval
|
|
/*! All retrieval functions return the actual number of bytes
|
|
retrieved, which is the lesser of the request number and
|
|
MaxRetrievable(). */
|
|
virtual lword MaxRetrievable() const;
|
|
|
|
//! returns whether any bytes are currently ready for retrieval
|
|
virtual bool AnyRetrievable() const;
|
|
|
|
//! try to retrieve a single byte
|
|
virtual size_t Get(byte &outByte);
|
|
//! try to retrieve multiple bytes
|
|
virtual size_t Get(byte *outString, size_t getMax);
|
|
|
|
//! peek at the next byte without removing it from the output buffer
|
|
virtual size_t Peek(byte &outByte) const;
|
|
//! peek at multiple bytes without removing them from the output buffer
|
|
virtual size_t Peek(byte *outString, size_t peekMax) const;
|
|
|
|
//! try to retrieve a 16-bit word
|
|
size_t GetWord16(word16 &value, ByteOrder order=BIG_ENDIAN_ORDER);
|
|
//! try to retrieve a 32-bit word
|
|
size_t GetWord32(word32 &value, ByteOrder order=BIG_ENDIAN_ORDER);
|
|
|
|
//! try to peek at a 16-bit word
|
|
size_t PeekWord16(word16 &value, ByteOrder order=BIG_ENDIAN_ORDER) const;
|
|
//! try to peek at a 32-bit word
|
|
size_t PeekWord32(word32 &value, ByteOrder order=BIG_ENDIAN_ORDER) const;
|
|
|
|
//! move transferMax bytes of the buffered output to target as input
|
|
lword TransferTo(BufferedTransformation &target, lword transferMax=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL)
|
|
{TransferTo2(target, transferMax, channel); return transferMax;}
|
|
|
|
//! discard skipMax bytes from the output buffer
|
|
virtual lword Skip(lword skipMax=LWORD_MAX);
|
|
|
|
//! copy copyMax bytes of the buffered output to target as input
|
|
lword CopyTo(BufferedTransformation &target, lword copyMax=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL) const
|
|
{return CopyRangeTo(target, 0, copyMax, channel);}
|
|
|
|
//! copy copyMax bytes of the buffered output, starting at position (relative to current position), to target as input
|
|
lword CopyRangeTo(BufferedTransformation &target, lword position, lword copyMax=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL) const
|
|
{lword i = position; CopyRangeTo2(target, i, i+copyMax, channel); return i-position;}
|
|
|
|
#ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY
|
|
unsigned long MaxRetrieveable() const {return MaxRetrievable();}
|
|
#endif
|
|
//@}
|
|
|
|
//! \name RETRIEVAL OF MULTIPLE MESSAGES
|
|
//@{
|
|
//!
|
|
virtual lword TotalBytesRetrievable() const;
|
|
//! number of times MessageEnd() has been received minus messages retrieved or skipped
|
|
virtual unsigned int NumberOfMessages() const;
|
|
//! returns true if NumberOfMessages() > 0
|
|
virtual bool AnyMessages() const;
|
|
//! start retrieving the next message
|
|
/*!
|
|
Returns false if no more messages exist or this message
|
|
is not completely retrieved.
|
|
*/
|
|
virtual bool GetNextMessage();
|
|
//! skip count number of messages
|
|
virtual unsigned int SkipMessages(unsigned int count=UINT_MAX);
|
|
//!
|
|
unsigned int TransferMessagesTo(BufferedTransformation &target, unsigned int count=UINT_MAX, const std::string &channel=DEFAULT_CHANNEL)
|
|
{TransferMessagesTo2(target, count, channel); return count;}
|
|
//!
|
|
unsigned int CopyMessagesTo(BufferedTransformation &target, unsigned int count=UINT_MAX, const std::string &channel=DEFAULT_CHANNEL) const;
|
|
|
|
//!
|
|
virtual void SkipAll();
|
|
//!
|
|
void TransferAllTo(BufferedTransformation &target, const std::string &channel=DEFAULT_CHANNEL)
|
|
{TransferAllTo2(target, channel);}
|
|
//!
|
|
void CopyAllTo(BufferedTransformation &target, const std::string &channel=DEFAULT_CHANNEL) const;
|
|
|
|
virtual bool GetNextMessageSeries() {return false;}
|
|
virtual unsigned int NumberOfMessagesInThisSeries() const {return NumberOfMessages();}
|
|
virtual unsigned int NumberOfMessageSeries() const {return 0;}
|
|
//@}
|
|
|
|
//! \name NON-BLOCKING TRANSFER OF OUTPUT
|
|
//@{
|
|
//! upon return, byteCount contains number of bytes that have finished being transfered, and returns the number of bytes left in the current transfer block
|
|
virtual size_t TransferTo2(BufferedTransformation &target, lword &byteCount, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true) =0;
|
|
//! upon return, begin contains the start position of data yet to be finished copying, and returns the number of bytes left in the current transfer block
|
|
virtual size_t CopyRangeTo2(BufferedTransformation &target, lword &begin, lword end=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true) const =0;
|
|
//! upon return, messageCount contains number of messages that have finished being transfered, and returns the number of bytes left in the current transfer block
|
|
size_t TransferMessagesTo2(BufferedTransformation &target, unsigned int &messageCount, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true);
|
|
//! returns the number of bytes left in the current transfer block
|
|
size_t TransferAllTo2(BufferedTransformation &target, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true);
|
|
//@}
|
|
|
|
//! \name CHANNELS
|
|
//@{
|
|
struct NoChannelSupport : public NotImplemented
|
|
{NoChannelSupport(const std::string &name) : NotImplemented(name + ": this object doesn't support multiple channels") {}};
|
|
struct InvalidChannelName : public InvalidArgument
|
|
{InvalidChannelName(const std::string &name, const std::string &channel) : InvalidArgument(name + ": unexpected channel name \"" + channel + "\"") {}};
|
|
|
|
size_t ChannelPut(const std::string &channel, byte inByte, bool blocking=true)
|
|
{return ChannelPut(channel, &inByte, 1, blocking);}
|
|
size_t ChannelPut(const std::string &channel, const byte *inString, size_t length, bool blocking=true)
|
|
{return ChannelPut2(channel, inString, length, 0, blocking);}
|
|
|
|
size_t ChannelPutModifiable(const std::string &channel, byte *inString, size_t length, bool blocking=true)
|
|
{return ChannelPutModifiable2(channel, inString, length, 0, blocking);}
|
|
|
|
size_t ChannelPutWord16(const std::string &channel, word16 value, ByteOrder order=BIG_ENDIAN_ORDER, bool blocking=true);
|
|
size_t ChannelPutWord32(const std::string &channel, word32 value, ByteOrder order=BIG_ENDIAN_ORDER, bool blocking=true);
|
|
|
|
bool ChannelMessageEnd(const std::string &channel, int propagation=-1, bool blocking=true)
|
|
{return !!ChannelPut2(channel, NULL, 0, propagation < 0 ? -1 : propagation+1, blocking);}
|
|
size_t ChannelPutMessageEnd(const std::string &channel, const byte *inString, size_t length, int propagation=-1, bool blocking=true)
|
|
{return ChannelPut2(channel, inString, length, propagation < 0 ? -1 : propagation+1, blocking);}
|
|
|
|
virtual byte * ChannelCreatePutSpace(const std::string &channel, size_t &size);
|
|
|
|
virtual size_t ChannelPut2(const std::string &channel, const byte *begin, size_t length, int messageEnd, bool blocking);
|
|
virtual size_t ChannelPutModifiable2(const std::string &channel, byte *begin, size_t length, int messageEnd, bool blocking);
|
|
|
|
virtual bool ChannelFlush(const std::string &channel, bool hardFlush, int propagation=-1, bool blocking=true);
|
|
virtual bool ChannelMessageSeriesEnd(const std::string &channel, int propagation=-1, bool blocking=true);
|
|
|
|
virtual void SetRetrievalChannel(const std::string &channel);
|
|
//@}
|
|
|
|
//! \name ATTACHMENT
|
|
/*! Some BufferedTransformation objects (e.g. Filter objects)
|
|
allow other BufferedTransformation objects to be attached. When
|
|
this is done, the first object instead of buffering its output,
|
|
sents that output to the attached object as input. The entire
|
|
attachment chain is deleted when the anchor object is destructed.
|
|
*/
|
|
//@{
|
|
//! returns whether this object allows attachment
|
|
virtual bool Attachable() {return false;}
|
|
//! returns the object immediately attached to this object or NULL for no attachment
|
|
virtual BufferedTransformation *AttachedTransformation() {assert(!Attachable()); return 0;}
|
|
//!
|
|
virtual const BufferedTransformation *AttachedTransformation() const
|
|
{return const_cast<BufferedTransformation *>(this)->AttachedTransformation();}
|
|
//! delete the current attachment chain and replace it with newAttachment
|
|
virtual void Detach(BufferedTransformation *newAttachment = 0)
|
|
{assert(!Attachable()); throw NotImplemented("BufferedTransformation: this object is not attachable");}
|
|
//! add newAttachment to the end of attachment chain
|
|
virtual void Attach(BufferedTransformation *newAttachment);
|
|
//@}
|
|
|
|
protected:
|
|
static int DecrementPropagation(int propagation)
|
|
{return propagation != 0 ? propagation - 1 : 0;}
|
|
|
|
private:
|
|
byte m_buf[4]; // for ChannelPutWord16 and ChannelPutWord32, to ensure buffer isn't deallocated before non-blocking operation completes
|
|
};
|
|
|
|
//! returns a reference to a BufferedTransformation object that discards all input
|
|
BufferedTransformation & TheBitBucket();
|
|
|
|
//! interface for crypto material, such as public and private keys, and crypto parameters
|
|
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE CryptoMaterial : public NameValuePairs
|
|
{
|
|
public:
|
|
//! exception thrown when invalid crypto material is detected
|
|
class CRYPTOPP_DLL InvalidMaterial : public InvalidDataFormat
|
|
{
|
|
public:
|
|
explicit InvalidMaterial(const std::string &s) : InvalidDataFormat(s) {}
|
|
};
|
|
|
|
//! assign values from source to this object
|
|
/*! \note This function can be used to create a public key from a private key. */
|
|
virtual void AssignFrom(const NameValuePairs &source) =0;
|
|
|
|
//! check this object for errors
|
|
/*! \param level denotes the level of thoroughness:
|
|
0 - using this object won't cause a crash or exception (rng is ignored)
|
|
1 - this object will probably function (encrypt, sign, etc.) correctly (but may not check for weak keys and such)
|
|
2 - make sure this object will function correctly, and do reasonable security checks
|
|
3 - do checks that may take a long time
|
|
\return true if the tests pass */
|
|
virtual bool Validate(RandomNumberGenerator &rng, unsigned int level) const =0;
|
|
|
|
//! throws InvalidMaterial if this object fails Validate() test
|
|
virtual void ThrowIfInvalid(RandomNumberGenerator &rng, unsigned int level) const
|
|
{if (!Validate(rng, level)) throw InvalidMaterial("CryptoMaterial: this object contains invalid values");}
|
|
|
|
// virtual std::vector<std::string> GetSupportedFormats(bool includeSaveOnly=false, bool includeLoadOnly=false);
|
|
|
|
//! save key into a BufferedTransformation
|
|
virtual void Save(BufferedTransformation &bt) const
|
|
{throw NotImplemented("CryptoMaterial: this object does not support saving");}
|
|
|
|
//! load key from a BufferedTransformation
|
|
/*! \throws KeyingErr if decode fails
|
|
\note Generally does not check that the key is valid.
|
|
Call ValidateKey() or ThrowIfInvalidKey() to check that. */
|
|
virtual void Load(BufferedTransformation &bt)
|
|
{throw NotImplemented("CryptoMaterial: this object does not support loading");}
|
|
|
|
//! \return whether this object supports precomputation
|
|
virtual bool SupportsPrecomputation() const {return false;}
|
|
//! do precomputation
|
|
/*! The exact semantics of Precompute() is varies, but
|
|
typically it means calculate a table of n objects
|
|
that can be used later to speed up computation. */
|
|
virtual void Precompute(unsigned int n)
|
|
{assert(!SupportsPrecomputation()); throw NotImplemented("CryptoMaterial: this object does not support precomputation");}
|
|
//! retrieve previously saved precomputation
|
|
virtual void LoadPrecomputation(BufferedTransformation &storedPrecomputation)
|
|
{assert(!SupportsPrecomputation()); throw NotImplemented("CryptoMaterial: this object does not support precomputation");}
|
|
//! save precomputation for later use
|
|
virtual void SavePrecomputation(BufferedTransformation &storedPrecomputation) const
|
|
{assert(!SupportsPrecomputation()); throw NotImplemented("CryptoMaterial: this object does not support precomputation");}
|
|
|
|
// for internal library use
|
|
void DoQuickSanityCheck() const {ThrowIfInvalid(NullRNG(), 0);}
|
|
|
|
#if (defined(__SUNPRO_CC) && __SUNPRO_CC < 0x590)
|
|
// Sun Studio 11/CC 5.8 workaround: it generates incorrect code when casting to an empty virtual base class
|
|
char m_sunCCworkaround;
|
|
#endif
|
|
};
|
|
|
|
//! interface for generatable crypto material, such as private keys and crypto parameters
|
|
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE GeneratableCryptoMaterial : virtual public CryptoMaterial
|
|
{
|
|
public:
|
|
//! generate a random key or crypto parameters
|
|
/*! \throws KeyingErr if algorithm parameters are invalid, or if a key can't be generated
|
|
(e.g., if this is a public key object) */
|
|
virtual void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs ¶ms = g_nullNameValuePairs)
|
|
{throw NotImplemented("GeneratableCryptoMaterial: this object does not support key/parameter generation");}
|
|
|
|
//! calls the above function with a NameValuePairs object that just specifies "KeySize"
|
|
void GenerateRandomWithKeySize(RandomNumberGenerator &rng, unsigned int keySize);
|
|
};
|
|
|
|
//! interface for public keys
|
|
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PublicKey : virtual public CryptoMaterial
|
|
{
|
|
};
|
|
|
|
//! interface for private keys
|
|
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PrivateKey : public GeneratableCryptoMaterial
|
|
{
|
|
};
|
|
|
|
//! interface for crypto prameters
|
|
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE CryptoParameters : public GeneratableCryptoMaterial
|
|
{
|
|
};
|
|
|
|
//! interface for asymmetric algorithms
|
|
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE AsymmetricAlgorithm : public Algorithm
|
|
{
|
|
public:
|
|
//! returns a reference to the crypto material used by this object
|
|
virtual CryptoMaterial & AccessMaterial() =0;
|
|
//! returns a const reference to the crypto material used by this object
|
|
virtual const CryptoMaterial & GetMaterial() const =0;
|
|
|
|
//! for backwards compatibility, calls AccessMaterial().Load(bt)
|
|
void BERDecode(BufferedTransformation &bt)
|
|
{AccessMaterial().Load(bt);}
|
|
//! for backwards compatibility, calls GetMaterial().Save(bt)
|
|
void DEREncode(BufferedTransformation &bt) const
|
|
{GetMaterial().Save(bt);}
|
|
};
|
|
|
|
//! interface for asymmetric algorithms using public keys
|
|
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PublicKeyAlgorithm : public AsymmetricAlgorithm
|
|
{
|
|
public:
|
|
// VC60 workaround: no co-variant return type
|
|
CryptoMaterial & AccessMaterial() {return AccessPublicKey();}
|
|
const CryptoMaterial & GetMaterial() const {return GetPublicKey();}
|
|
|
|
virtual PublicKey & AccessPublicKey() =0;
|
|
virtual const PublicKey & GetPublicKey() const {return const_cast<PublicKeyAlgorithm *>(this)->AccessPublicKey();}
|
|
};
|
|
|
|
//! interface for asymmetric algorithms using private keys
|
|
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PrivateKeyAlgorithm : public AsymmetricAlgorithm
|
|
{
|
|
public:
|
|
CryptoMaterial & AccessMaterial() {return AccessPrivateKey();}
|
|
const CryptoMaterial & GetMaterial() const {return GetPrivateKey();}
|
|
|
|
virtual PrivateKey & AccessPrivateKey() =0;
|
|
virtual const PrivateKey & GetPrivateKey() const {return const_cast<PrivateKeyAlgorithm *>(this)->AccessPrivateKey();}
|
|
};
|
|
|
|
//! interface for key agreement algorithms
|
|
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE KeyAgreementAlgorithm : public AsymmetricAlgorithm
|
|
{
|
|
public:
|
|
CryptoMaterial & AccessMaterial() {return AccessCryptoParameters();}
|
|
const CryptoMaterial & GetMaterial() const {return GetCryptoParameters();}
|
|
|
|
virtual CryptoParameters & AccessCryptoParameters() =0;
|
|
virtual const CryptoParameters & GetCryptoParameters() const {return const_cast<KeyAgreementAlgorithm *>(this)->AccessCryptoParameters();}
|
|
};
|
|
|
|
//! interface for public-key encryptors and decryptors
|
|
|
|
/*! This class provides an interface common to encryptors and decryptors
|
|
for querying their plaintext and ciphertext lengths.
|
|
*/
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_CryptoSystem
|
|
{
|
|
public:
|
|
virtual ~PK_CryptoSystem() {}
|
|
|
|
//! maximum length of plaintext for a given ciphertext length
|
|
/*! \note This function returns 0 if ciphertextLength is not valid (too long or too short). */
|
|
virtual size_t MaxPlaintextLength(size_t ciphertextLength) const =0;
|
|
|
|
//! calculate length of ciphertext given length of plaintext
|
|
/*! \note This function returns 0 if plaintextLength is not valid (too long). */
|
|
virtual size_t CiphertextLength(size_t plaintextLength) const =0;
|
|
|
|
//! this object supports the use of the parameter with the given name
|
|
/*! some possible parameter names: EncodingParameters, KeyDerivationParameters */
|
|
virtual bool ParameterSupported(const char *name) const =0;
|
|
|
|
//! return fixed ciphertext length, if one exists, otherwise return 0
|
|
/*! \note "Fixed" here means length of ciphertext does not depend on length of plaintext.
|
|
It usually does depend on the key length. */
|
|
virtual size_t FixedCiphertextLength() const {return 0;}
|
|
|
|
//! return maximum plaintext length given the fixed ciphertext length, if one exists, otherwise return 0
|
|
virtual size_t FixedMaxPlaintextLength() const {return 0;}
|
|
|
|
#ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY
|
|
size_t MaxPlainTextLength(size_t cipherTextLength) const {return MaxPlaintextLength(cipherTextLength);}
|
|
size_t CipherTextLength(size_t plainTextLength) const {return CiphertextLength(plainTextLength);}
|
|
#endif
|
|
};
|
|
|
|
//! interface for public-key encryptors
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_Encryptor : public PK_CryptoSystem, public PublicKeyAlgorithm
|
|
{
|
|
public:
|
|
//! exception thrown when trying to encrypt plaintext of invalid length
|
|
class CRYPTOPP_DLL InvalidPlaintextLength : public Exception
|
|
{
|
|
public:
|
|
InvalidPlaintextLength() : Exception(OTHER_ERROR, "PK_Encryptor: invalid plaintext length") {}
|
|
};
|
|
|
|
//! encrypt a byte string
|
|
/*! \pre CiphertextLength(plaintextLength) != 0 (i.e., plaintext isn't too long)
|
|
\pre size of ciphertext == CiphertextLength(plaintextLength)
|
|
*/
|
|
virtual void Encrypt(RandomNumberGenerator &rng,
|
|
const byte *plaintext, size_t plaintextLength,
|
|
byte *ciphertext, const NameValuePairs ¶meters = g_nullNameValuePairs) const =0;
|
|
|
|
//! create a new encryption filter
|
|
/*! \note The caller is responsible for deleting the returned pointer.
|
|
\note Encoding parameters should be passed in the "EP" channel.
|
|
*/
|
|
virtual BufferedTransformation * CreateEncryptionFilter(RandomNumberGenerator &rng,
|
|
BufferedTransformation *attachment=NULL, const NameValuePairs ¶meters = g_nullNameValuePairs) const;
|
|
};
|
|
|
|
//! interface for public-key decryptors
|
|
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_Decryptor : public PK_CryptoSystem, public PrivateKeyAlgorithm
|
|
{
|
|
public:
|
|
//! decrypt a byte string, and return the length of plaintext
|
|
/*! \pre size of plaintext == MaxPlaintextLength(ciphertextLength) bytes.
|
|
\return the actual length of the plaintext, indication that decryption failed.
|
|
*/
|
|
virtual DecodingResult Decrypt(RandomNumberGenerator &rng,
|
|
const byte *ciphertext, size_t ciphertextLength,
|
|
byte *plaintext, const NameValuePairs ¶meters = g_nullNameValuePairs) const =0;
|
|
|
|
//! create a new decryption filter
|
|
/*! \note caller is responsible for deleting the returned pointer
|
|
*/
|
|
virtual BufferedTransformation * CreateDecryptionFilter(RandomNumberGenerator &rng,
|
|
BufferedTransformation *attachment=NULL, const NameValuePairs ¶meters = g_nullNameValuePairs) const;
|
|
|
|
//! decrypt a fixed size ciphertext
|
|
DecodingResult FixedLengthDecrypt(RandomNumberGenerator &rng, const byte *ciphertext, byte *plaintext, const NameValuePairs ¶meters = g_nullNameValuePairs) const
|
|
{return Decrypt(rng, ciphertext, FixedCiphertextLength(), plaintext, parameters);}
|
|
};
|
|
|
|
#ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY
|
|
typedef PK_CryptoSystem PK_FixedLengthCryptoSystem;
|
|
typedef PK_Encryptor PK_FixedLengthEncryptor;
|
|
typedef PK_Decryptor PK_FixedLengthDecryptor;
|
|
#endif
|
|
|
|
//! interface for public-key signers and verifiers
|
|
|
|
/*! This class provides an interface common to signers and verifiers
|
|
for querying scheme properties.
|
|
*/
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_SignatureScheme
|
|
{
|
|
public:
|
|
//! invalid key exception, may be thrown by any function in this class if the private or public key has a length that can't be used
|
|
class CRYPTOPP_DLL InvalidKeyLength : public Exception
|
|
{
|
|
public:
|
|
InvalidKeyLength(const std::string &message) : Exception(OTHER_ERROR, message) {}
|
|
};
|
|
|
|
//! key too short exception, may be thrown by any function in this class if the private or public key is too short to sign or verify anything
|
|
class CRYPTOPP_DLL KeyTooShort : public InvalidKeyLength
|
|
{
|
|
public:
|
|
KeyTooShort() : InvalidKeyLength("PK_Signer: key too short for this signature scheme") {}
|
|
};
|
|
|
|
virtual ~PK_SignatureScheme() {}
|
|
|
|
//! signature length if it only depends on the key, otherwise 0
|
|
virtual size_t SignatureLength() const =0;
|
|
|
|
//! maximum signature length produced for a given length of recoverable message part
|
|
virtual size_t MaxSignatureLength(size_t recoverablePartLength = 0) const {return SignatureLength();}
|
|
|
|
//! length of longest message that can be recovered, or 0 if this signature scheme does not support message recovery
|
|
virtual size_t MaxRecoverableLength() const =0;
|
|
|
|
//! length of longest message that can be recovered from a signature of given length, or 0 if this signature scheme does not support message recovery
|
|
virtual size_t MaxRecoverableLengthFromSignatureLength(size_t signatureLength) const =0;
|
|
|
|
//! requires a random number generator to sign
|
|
/*! if this returns false, NullRNG() can be passed to functions that take RandomNumberGenerator & */
|
|
virtual bool IsProbabilistic() const =0;
|
|
|
|
//! whether or not a non-recoverable message part can be signed
|
|
virtual bool AllowNonrecoverablePart() const =0;
|
|
|
|
//! if this function returns true, during verification you must input the signature before the message, otherwise you can input it at anytime */
|
|
virtual bool SignatureUpfront() const {return false;}
|
|
|
|
//! whether you must input the recoverable part before the non-recoverable part during signing
|
|
virtual bool RecoverablePartFirst() const =0;
|
|
};
|
|
|
|
//! interface for accumulating messages to be signed or verified
|
|
/*! Only Update() should be called
|
|
on this class. No other functions inherited from HashTransformation should be called.
|
|
*/
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_MessageAccumulator : public HashTransformation
|
|
{
|
|
public:
|
|
//! should not be called on PK_MessageAccumulator
|
|
unsigned int DigestSize() const
|
|
{throw NotImplemented("PK_MessageAccumulator: DigestSize() should not be called");}
|
|
//! should not be called on PK_MessageAccumulator
|
|
void TruncatedFinal(byte *digest, size_t digestSize)
|
|
{throw NotImplemented("PK_MessageAccumulator: TruncatedFinal() should not be called");}
|
|
};
|
|
|
|
//! interface for public-key signers
|
|
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_Signer : public PK_SignatureScheme, public PrivateKeyAlgorithm
|
|
{
|
|
public:
|
|
//! create a new HashTransformation to accumulate the message to be signed
|
|
virtual PK_MessageAccumulator * NewSignatureAccumulator(RandomNumberGenerator &rng) const =0;
|
|
|
|
virtual void InputRecoverableMessage(PK_MessageAccumulator &messageAccumulator, const byte *recoverableMessage, size_t recoverableMessageLength) const =0;
|
|
|
|
//! sign and delete messageAccumulator (even in case of exception thrown)
|
|
/*! \pre size of signature == MaxSignatureLength()
|
|
\return actual signature length
|
|
*/
|
|
virtual size_t Sign(RandomNumberGenerator &rng, PK_MessageAccumulator *messageAccumulator, byte *signature) const;
|
|
|
|
//! sign and restart messageAccumulator
|
|
/*! \pre size of signature == MaxSignatureLength()
|
|
\return actual signature length
|
|
*/
|
|
virtual size_t SignAndRestart(RandomNumberGenerator &rng, PK_MessageAccumulator &messageAccumulator, byte *signature, bool restart=true) const =0;
|
|
|
|
//! sign a message
|
|
/*! \pre size of signature == MaxSignatureLength()
|
|
\return actual signature length
|
|
*/
|
|
virtual size_t SignMessage(RandomNumberGenerator &rng, const byte *message, size_t messageLen, byte *signature) const;
|
|
|
|
//! sign a recoverable message
|
|
/*! \pre size of signature == MaxSignatureLength(recoverableMessageLength)
|
|
\return actual signature length
|
|
*/
|
|
virtual size_t SignMessageWithRecovery(RandomNumberGenerator &rng, const byte *recoverableMessage, size_t recoverableMessageLength,
|
|
const byte *nonrecoverableMessage, size_t nonrecoverableMessageLength, byte *signature) const;
|
|
};
|
|
|
|
//! interface for public-key signature verifiers
|
|
/*! The Recover* functions throw NotImplemented if the signature scheme does not support
|
|
message recovery.
|
|
The Verify* functions throw InvalidDataFormat if the scheme does support message
|
|
recovery and the signature contains a non-empty recoverable message part. The
|
|
Recovery* functions should be used in that case.
|
|
*/
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_Verifier : public PK_SignatureScheme, public PublicKeyAlgorithm
|
|
{
|
|
public:
|
|
//! create a new HashTransformation to accumulate the message to be verified
|
|
virtual PK_MessageAccumulator * NewVerificationAccumulator() const =0;
|
|
|
|
//! input signature into a message accumulator
|
|
virtual void InputSignature(PK_MessageAccumulator &messageAccumulator, const byte *signature, size_t signatureLength) const =0;
|
|
|
|
//! check whether messageAccumulator contains a valid signature and message, and delete messageAccumulator (even in case of exception thrown)
|
|
virtual bool Verify(PK_MessageAccumulator *messageAccumulator) const;
|
|
|
|
//! check whether messageAccumulator contains a valid signature and message, and restart messageAccumulator
|
|
virtual bool VerifyAndRestart(PK_MessageAccumulator &messageAccumulator) const =0;
|
|
|
|
//! check whether input signature is a valid signature for input message
|
|
virtual bool VerifyMessage(const byte *message, size_t messageLen,
|
|
const byte *signature, size_t signatureLength) const;
|
|
|
|
//! recover a message from its signature
|
|
/*! \pre size of recoveredMessage == MaxRecoverableLengthFromSignatureLength(signatureLength)
|
|
*/
|
|
virtual DecodingResult Recover(byte *recoveredMessage, PK_MessageAccumulator *messageAccumulator) const;
|
|
|
|
//! recover a message from its signature
|
|
/*! \pre size of recoveredMessage == MaxRecoverableLengthFromSignatureLength(signatureLength)
|
|
*/
|
|
virtual DecodingResult RecoverAndRestart(byte *recoveredMessage, PK_MessageAccumulator &messageAccumulator) const =0;
|
|
|
|
//! recover a message from its signature
|
|
/*! \pre size of recoveredMessage == MaxRecoverableLengthFromSignatureLength(signatureLength)
|
|
*/
|
|
virtual DecodingResult RecoverMessage(byte *recoveredMessage,
|
|
const byte *nonrecoverableMessage, size_t nonrecoverableMessageLength,
|
|
const byte *signature, size_t signatureLength) const;
|
|
};
|
|
|
|
//! interface for domains of simple key agreement protocols
|
|
|
|
/*! A key agreement domain is a set of parameters that must be shared
|
|
by two parties in a key agreement protocol, along with the algorithms
|
|
for generating key pairs and deriving agreed values.
|
|
*/
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE SimpleKeyAgreementDomain : public KeyAgreementAlgorithm
|
|
{
|
|
public:
|
|
//! return length of agreed value produced
|
|
virtual unsigned int AgreedValueLength() const =0;
|
|
//! return length of private keys in this domain
|
|
virtual unsigned int PrivateKeyLength() const =0;
|
|
//! return length of public keys in this domain
|
|
virtual unsigned int PublicKeyLength() const =0;
|
|
//! generate private key
|
|
/*! \pre size of privateKey == PrivateKeyLength() */
|
|
virtual void GeneratePrivateKey(RandomNumberGenerator &rng, byte *privateKey) const =0;
|
|
//! generate public key
|
|
/*! \pre size of publicKey == PublicKeyLength() */
|
|
virtual void GeneratePublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const =0;
|
|
//! generate private/public key pair
|
|
/*! \note equivalent to calling GeneratePrivateKey() and then GeneratePublicKey() */
|
|
virtual void GenerateKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const;
|
|
//! derive agreed value from your private key and couterparty's public key, return false in case of failure
|
|
/*! \note If you have previously validated the public key, use validateOtherPublicKey=false to save time.
|
|
\pre size of agreedValue == AgreedValueLength()
|
|
\pre length of privateKey == PrivateKeyLength()
|
|
\pre length of otherPublicKey == PublicKeyLength()
|
|
*/
|
|
virtual bool Agree(byte *agreedValue, const byte *privateKey, const byte *otherPublicKey, bool validateOtherPublicKey=true) const =0;
|
|
|
|
#ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY
|
|
bool ValidateDomainParameters(RandomNumberGenerator &rng) const
|
|
{return GetCryptoParameters().Validate(rng, 2);}
|
|
#endif
|
|
};
|
|
|
|
//! interface for domains of authenticated key agreement protocols
|
|
|
|
/*! In an authenticated key agreement protocol, each party has two
|
|
key pairs. The long-lived key pair is called the static key pair,
|
|
and the short-lived key pair is called the ephemeral key pair.
|
|
*/
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE AuthenticatedKeyAgreementDomain : public KeyAgreementAlgorithm
|
|
{
|
|
public:
|
|
//! return length of agreed value produced
|
|
virtual unsigned int AgreedValueLength() const =0;
|
|
|
|
//! return length of static private keys in this domain
|
|
virtual unsigned int StaticPrivateKeyLength() const =0;
|
|
//! return length of static public keys in this domain
|
|
virtual unsigned int StaticPublicKeyLength() const =0;
|
|
//! generate static private key
|
|
/*! \pre size of privateKey == PrivateStaticKeyLength() */
|
|
virtual void GenerateStaticPrivateKey(RandomNumberGenerator &rng, byte *privateKey) const =0;
|
|
//! generate static public key
|
|
/*! \pre size of publicKey == PublicStaticKeyLength() */
|
|
virtual void GenerateStaticPublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const =0;
|
|
//! generate private/public key pair
|
|
/*! \note equivalent to calling GenerateStaticPrivateKey() and then GenerateStaticPublicKey() */
|
|
virtual void GenerateStaticKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const;
|
|
|
|
//! return length of ephemeral private keys in this domain
|
|
virtual unsigned int EphemeralPrivateKeyLength() const =0;
|
|
//! return length of ephemeral public keys in this domain
|
|
virtual unsigned int EphemeralPublicKeyLength() const =0;
|
|
//! generate ephemeral private key
|
|
/*! \pre size of privateKey == PrivateEphemeralKeyLength() */
|
|
virtual void GenerateEphemeralPrivateKey(RandomNumberGenerator &rng, byte *privateKey) const =0;
|
|
//! generate ephemeral public key
|
|
/*! \pre size of publicKey == PublicEphemeralKeyLength() */
|
|
virtual void GenerateEphemeralPublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const =0;
|
|
//! generate private/public key pair
|
|
/*! \note equivalent to calling GenerateEphemeralPrivateKey() and then GenerateEphemeralPublicKey() */
|
|
virtual void GenerateEphemeralKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const;
|
|
|
|
//! derive agreed value from your private keys and couterparty's public keys, return false in case of failure
|
|
/*! \note The ephemeral public key will always be validated.
|
|
If you have previously validated the static public key, use validateStaticOtherPublicKey=false to save time.
|
|
\pre size of agreedValue == AgreedValueLength()
|
|
\pre length of staticPrivateKey == StaticPrivateKeyLength()
|
|
\pre length of ephemeralPrivateKey == EphemeralPrivateKeyLength()
|
|
\pre length of staticOtherPublicKey == StaticPublicKeyLength()
|
|
\pre length of ephemeralOtherPublicKey == EphemeralPublicKeyLength()
|
|
*/
|
|
virtual bool Agree(byte *agreedValue,
|
|
const byte *staticPrivateKey, const byte *ephemeralPrivateKey,
|
|
const byte *staticOtherPublicKey, const byte *ephemeralOtherPublicKey,
|
|
bool validateStaticOtherPublicKey=true) const =0;
|
|
|
|
#ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY
|
|
bool ValidateDomainParameters(RandomNumberGenerator &rng) const
|
|
{return GetCryptoParameters().Validate(rng, 2);}
|
|
#endif
|
|
};
|
|
|
|
// interface for password authenticated key agreement protocols, not implemented yet
|
|
#if 0
|
|
//! interface for protocol sessions
|
|
/*! The methods should be called in the following order:
|
|
|
|
InitializeSession(rng, parameters); // or call initialize method in derived class
|
|
while (true)
|
|
{
|
|
if (OutgoingMessageAvailable())
|
|
{
|
|
length = GetOutgoingMessageLength();
|
|
GetOutgoingMessage(message);
|
|
; // send outgoing message
|
|
}
|
|
|
|
if (LastMessageProcessed())
|
|
break;
|
|
|
|
; // receive incoming message
|
|
ProcessIncomingMessage(message);
|
|
}
|
|
; // call methods in derived class to obtain result of protocol session
|
|
*/
|
|
class ProtocolSession
|
|
{
|
|
public:
|
|
//! exception thrown when an invalid protocol message is processed
|
|
class ProtocolError : public Exception
|
|
{
|
|
public:
|
|
ProtocolError(ErrorType errorType, const std::string &s) : Exception(errorType, s) {}
|
|
};
|
|
|
|
//! exception thrown when a function is called unexpectedly
|
|
/*! for example calling ProcessIncomingMessage() when ProcessedLastMessage() == true */
|
|
class UnexpectedMethodCall : public Exception
|
|
{
|
|
public:
|
|
UnexpectedMethodCall(const std::string &s) : Exception(OTHER_ERROR, s) {}
|
|
};
|
|
|
|
ProtocolSession() : m_rng(NULL), m_throwOnProtocolError(true), m_validState(false) {}
|
|
virtual ~ProtocolSession() {}
|
|
|
|
virtual void InitializeSession(RandomNumberGenerator &rng, const NameValuePairs ¶meters) =0;
|
|
|
|
bool GetThrowOnProtocolError() const {return m_throwOnProtocolError;}
|
|
void SetThrowOnProtocolError(bool throwOnProtocolError) {m_throwOnProtocolError = throwOnProtocolError;}
|
|
|
|
bool HasValidState() const {return m_validState;}
|
|
|
|
virtual bool OutgoingMessageAvailable() const =0;
|
|
virtual unsigned int GetOutgoingMessageLength() const =0;
|
|
virtual void GetOutgoingMessage(byte *message) =0;
|
|
|
|
virtual bool LastMessageProcessed() const =0;
|
|
virtual void ProcessIncomingMessage(const byte *message, unsigned int messageLength) =0;
|
|
|
|
protected:
|
|
void HandleProtocolError(Exception::ErrorType errorType, const std::string &s) const;
|
|
void CheckAndHandleInvalidState() const;
|
|
void SetValidState(bool valid) {m_validState = valid;}
|
|
|
|
RandomNumberGenerator *m_rng;
|
|
|
|
private:
|
|
bool m_throwOnProtocolError, m_validState;
|
|
};
|
|
|
|
class KeyAgreementSession : public ProtocolSession
|
|
{
|
|
public:
|
|
virtual unsigned int GetAgreedValueLength() const =0;
|
|
virtual void GetAgreedValue(byte *agreedValue) const =0;
|
|
};
|
|
|
|
class PasswordAuthenticatedKeyAgreementSession : public KeyAgreementSession
|
|
{
|
|
public:
|
|
void InitializePasswordAuthenticatedKeyAgreementSession(RandomNumberGenerator &rng,
|
|
const byte *myId, unsigned int myIdLength,
|
|
const byte *counterPartyId, unsigned int counterPartyIdLength,
|
|
const byte *passwordOrVerifier, unsigned int passwordOrVerifierLength);
|
|
};
|
|
|
|
class PasswordAuthenticatedKeyAgreementDomain : public KeyAgreementAlgorithm
|
|
{
|
|
public:
|
|
//! return whether the domain parameters stored in this object are valid
|
|
virtual bool ValidateDomainParameters(RandomNumberGenerator &rng) const
|
|
{return GetCryptoParameters().Validate(rng, 2);}
|
|
|
|
virtual unsigned int GetPasswordVerifierLength(const byte *password, unsigned int passwordLength) const =0;
|
|
virtual void GeneratePasswordVerifier(RandomNumberGenerator &rng, const byte *userId, unsigned int userIdLength, const byte *password, unsigned int passwordLength, byte *verifier) const =0;
|
|
|
|
enum RoleFlags {CLIENT=1, SERVER=2, INITIATOR=4, RESPONDER=8};
|
|
|
|
virtual bool IsValidRole(unsigned int role) =0;
|
|
virtual PasswordAuthenticatedKeyAgreementSession * CreateProtocolSession(unsigned int role) const =0;
|
|
};
|
|
#endif
|
|
|
|
//! BER Decode Exception Class, may be thrown during an ASN1 BER decode operation
|
|
class CRYPTOPP_DLL BERDecodeErr : public InvalidArgument
|
|
{
|
|
public:
|
|
BERDecodeErr() : InvalidArgument("BER decode error") {}
|
|
BERDecodeErr(const std::string &s) : InvalidArgument(s) {}
|
|
};
|
|
|
|
//! interface for encoding and decoding ASN1 objects
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE ASN1Object
|
|
{
|
|
public:
|
|
virtual ~ASN1Object() {}
|
|
//! decode this object from a BufferedTransformation, using BER (Basic Encoding Rules)
|
|
virtual void BERDecode(BufferedTransformation &bt) =0;
|
|
//! encode this object into a BufferedTransformation, using DER (Distinguished Encoding Rules)
|
|
virtual void DEREncode(BufferedTransformation &bt) const =0;
|
|
//! encode this object into a BufferedTransformation, using BER
|
|
/*! this may be useful if DEREncode() would be too inefficient */
|
|
virtual void BEREncode(BufferedTransformation &bt) const {DEREncode(bt);}
|
|
};
|
|
|
|
#ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY
|
|
typedef PK_SignatureScheme PK_SignatureSystem;
|
|
typedef SimpleKeyAgreementDomain PK_SimpleKeyAgreementDomain;
|
|
typedef AuthenticatedKeyAgreementDomain PK_AuthenticatedKeyAgreementDomain;
|
|
#endif
|
|
|
|
NAMESPACE_END
|
|
|
|
#endif
|