286 lines
8.7 KiB
C++
286 lines
8.7 KiB
C++
#ifndef CRYPTOPP_ALGEBRA_H
|
|
#define CRYPTOPP_ALGEBRA_H
|
|
|
|
#include "config.h"
|
|
|
|
NAMESPACE_BEGIN(CryptoPP)
|
|
|
|
class Integer;
|
|
|
|
// "const Element&" returned by member functions are references
|
|
// to internal data members. Since each object may have only
|
|
// one such data member for holding results, the following code
|
|
// will produce incorrect results:
|
|
// abcd = group.Add(group.Add(a,b), group.Add(c,d));
|
|
// But this should be fine:
|
|
// abcd = group.Add(a, group.Add(b, group.Add(c,d));
|
|
|
|
//! Abstract Group
|
|
template <class T> class CRYPTOPP_NO_VTABLE AbstractGroup
|
|
{
|
|
public:
|
|
typedef T Element;
|
|
|
|
virtual ~AbstractGroup() {}
|
|
|
|
virtual bool Equal(const Element &a, const Element &b) const =0;
|
|
virtual const Element& Identity() const =0;
|
|
virtual const Element& Add(const Element &a, const Element &b) const =0;
|
|
virtual const Element& Inverse(const Element &a) const =0;
|
|
virtual bool InversionIsFast() const {return false;}
|
|
|
|
virtual const Element& Double(const Element &a) const;
|
|
virtual const Element& Subtract(const Element &a, const Element &b) const;
|
|
virtual Element& Accumulate(Element &a, const Element &b) const;
|
|
virtual Element& Reduce(Element &a, const Element &b) const;
|
|
|
|
virtual Element ScalarMultiply(const Element &a, const Integer &e) const;
|
|
virtual Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const;
|
|
|
|
virtual void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
|
|
};
|
|
|
|
//! Abstract Ring
|
|
template <class T> class CRYPTOPP_NO_VTABLE AbstractRing : public AbstractGroup<T>
|
|
{
|
|
public:
|
|
typedef T Element;
|
|
|
|
AbstractRing() {m_mg.m_pRing = this;}
|
|
AbstractRing(const AbstractRing &source) {m_mg.m_pRing = this;}
|
|
AbstractRing& operator=(const AbstractRing &source) {return *this;}
|
|
|
|
virtual bool IsUnit(const Element &a) const =0;
|
|
virtual const Element& MultiplicativeIdentity() const =0;
|
|
virtual const Element& Multiply(const Element &a, const Element &b) const =0;
|
|
virtual const Element& MultiplicativeInverse(const Element &a) const =0;
|
|
|
|
virtual const Element& Square(const Element &a) const;
|
|
virtual const Element& Divide(const Element &a, const Element &b) const;
|
|
|
|
virtual Element Exponentiate(const Element &a, const Integer &e) const;
|
|
virtual Element CascadeExponentiate(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const;
|
|
|
|
virtual void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
|
|
|
|
virtual const AbstractGroup<T>& MultiplicativeGroup() const
|
|
{return m_mg;}
|
|
|
|
private:
|
|
class MultiplicativeGroupT : public AbstractGroup<T>
|
|
{
|
|
public:
|
|
const AbstractRing<T>& GetRing() const
|
|
{return *m_pRing;}
|
|
|
|
bool Equal(const Element &a, const Element &b) const
|
|
{return GetRing().Equal(a, b);}
|
|
|
|
const Element& Identity() const
|
|
{return GetRing().MultiplicativeIdentity();}
|
|
|
|
const Element& Add(const Element &a, const Element &b) const
|
|
{return GetRing().Multiply(a, b);}
|
|
|
|
Element& Accumulate(Element &a, const Element &b) const
|
|
{return a = GetRing().Multiply(a, b);}
|
|
|
|
const Element& Inverse(const Element &a) const
|
|
{return GetRing().MultiplicativeInverse(a);}
|
|
|
|
const Element& Subtract(const Element &a, const Element &b) const
|
|
{return GetRing().Divide(a, b);}
|
|
|
|
Element& Reduce(Element &a, const Element &b) const
|
|
{return a = GetRing().Divide(a, b);}
|
|
|
|
const Element& Double(const Element &a) const
|
|
{return GetRing().Square(a);}
|
|
|
|
Element ScalarMultiply(const Element &a, const Integer &e) const
|
|
{return GetRing().Exponentiate(a, e);}
|
|
|
|
Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const
|
|
{return GetRing().CascadeExponentiate(x, e1, y, e2);}
|
|
|
|
void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const
|
|
{GetRing().SimultaneousExponentiate(results, base, exponents, exponentsCount);}
|
|
|
|
const AbstractRing<T> *m_pRing;
|
|
};
|
|
|
|
MultiplicativeGroupT m_mg;
|
|
};
|
|
|
|
// ********************************************************
|
|
|
|
//! Base and Exponent
|
|
template <class T, class E = Integer>
|
|
struct BaseAndExponent
|
|
{
|
|
public:
|
|
BaseAndExponent() {}
|
|
BaseAndExponent(const T &base, const E &exponent) : base(base), exponent(exponent) {}
|
|
bool operator<(const BaseAndExponent<T, E> &rhs) const {return exponent < rhs.exponent;}
|
|
T base;
|
|
E exponent;
|
|
};
|
|
|
|
// VC60 workaround: incomplete member template support
|
|
template <class Element, class Iterator>
|
|
Element GeneralCascadeMultiplication(const AbstractGroup<Element> &group, Iterator begin, Iterator end);
|
|
template <class Element, class Iterator>
|
|
Element GeneralCascadeExponentiation(const AbstractRing<Element> &ring, Iterator begin, Iterator end);
|
|
|
|
// ********************************************************
|
|
|
|
//! Abstract Euclidean Domain
|
|
template <class T> class CRYPTOPP_NO_VTABLE AbstractEuclideanDomain : public AbstractRing<T>
|
|
{
|
|
public:
|
|
typedef T Element;
|
|
|
|
virtual void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const =0;
|
|
|
|
virtual const Element& Mod(const Element &a, const Element &b) const =0;
|
|
virtual const Element& Gcd(const Element &a, const Element &b) const;
|
|
|
|
protected:
|
|
mutable Element result;
|
|
};
|
|
|
|
// ********************************************************
|
|
|
|
//! EuclideanDomainOf
|
|
template <class T> class EuclideanDomainOf : public AbstractEuclideanDomain<T>
|
|
{
|
|
public:
|
|
typedef T Element;
|
|
|
|
EuclideanDomainOf() {}
|
|
|
|
bool Equal(const Element &a, const Element &b) const
|
|
{return a==b;}
|
|
|
|
const Element& Identity() const
|
|
{return Element::Zero();}
|
|
|
|
const Element& Add(const Element &a, const Element &b) const
|
|
{return result = a+b;}
|
|
|
|
Element& Accumulate(Element &a, const Element &b) const
|
|
{return a+=b;}
|
|
|
|
const Element& Inverse(const Element &a) const
|
|
{return result = -a;}
|
|
|
|
const Element& Subtract(const Element &a, const Element &b) const
|
|
{return result = a-b;}
|
|
|
|
Element& Reduce(Element &a, const Element &b) const
|
|
{return a-=b;}
|
|
|
|
const Element& Double(const Element &a) const
|
|
{return result = a.Doubled();}
|
|
|
|
const Element& MultiplicativeIdentity() const
|
|
{return Element::One();}
|
|
|
|
const Element& Multiply(const Element &a, const Element &b) const
|
|
{return result = a*b;}
|
|
|
|
const Element& Square(const Element &a) const
|
|
{return result = a.Squared();}
|
|
|
|
bool IsUnit(const Element &a) const
|
|
{return a.IsUnit();}
|
|
|
|
const Element& MultiplicativeInverse(const Element &a) const
|
|
{return result = a.MultiplicativeInverse();}
|
|
|
|
const Element& Divide(const Element &a, const Element &b) const
|
|
{return result = a/b;}
|
|
|
|
const Element& Mod(const Element &a, const Element &b) const
|
|
{return result = a%b;}
|
|
|
|
void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const
|
|
{Element::Divide(r, q, a, d);}
|
|
|
|
bool operator==(const EuclideanDomainOf<T> &rhs) const
|
|
{return true;}
|
|
|
|
private:
|
|
mutable Element result;
|
|
};
|
|
|
|
//! Quotient Ring
|
|
template <class T> class QuotientRing : public AbstractRing<typename T::Element>
|
|
{
|
|
public:
|
|
typedef T EuclideanDomain;
|
|
typedef typename T::Element Element;
|
|
|
|
QuotientRing(const EuclideanDomain &domain, const Element &modulus)
|
|
: m_domain(domain), m_modulus(modulus) {}
|
|
|
|
const EuclideanDomain & GetDomain() const
|
|
{return m_domain;}
|
|
|
|
const Element& GetModulus() const
|
|
{return m_modulus;}
|
|
|
|
bool Equal(const Element &a, const Element &b) const
|
|
{return m_domain.Equal(m_domain.Mod(m_domain.Subtract(a, b), m_modulus), m_domain.Identity());}
|
|
|
|
const Element& Identity() const
|
|
{return m_domain.Identity();}
|
|
|
|
const Element& Add(const Element &a, const Element &b) const
|
|
{return m_domain.Add(a, b);}
|
|
|
|
Element& Accumulate(Element &a, const Element &b) const
|
|
{return m_domain.Accumulate(a, b);}
|
|
|
|
const Element& Inverse(const Element &a) const
|
|
{return m_domain.Inverse(a);}
|
|
|
|
const Element& Subtract(const Element &a, const Element &b) const
|
|
{return m_domain.Subtract(a, b);}
|
|
|
|
Element& Reduce(Element &a, const Element &b) const
|
|
{return m_domain.Reduce(a, b);}
|
|
|
|
const Element& Double(const Element &a) const
|
|
{return m_domain.Double(a);}
|
|
|
|
bool IsUnit(const Element &a) const
|
|
{return m_domain.IsUnit(m_domain.Gcd(a, m_modulus));}
|
|
|
|
const Element& MultiplicativeIdentity() const
|
|
{return m_domain.MultiplicativeIdentity();}
|
|
|
|
const Element& Multiply(const Element &a, const Element &b) const
|
|
{return m_domain.Mod(m_domain.Multiply(a, b), m_modulus);}
|
|
|
|
const Element& Square(const Element &a) const
|
|
{return m_domain.Mod(m_domain.Square(a), m_modulus);}
|
|
|
|
const Element& MultiplicativeInverse(const Element &a) const;
|
|
|
|
bool operator==(const QuotientRing<T> &rhs) const
|
|
{return m_domain == rhs.m_domain && m_modulus == rhs.m_modulus;}
|
|
|
|
protected:
|
|
EuclideanDomain m_domain;
|
|
Element m_modulus;
|
|
};
|
|
|
|
NAMESPACE_END
|
|
|
|
#ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES
|
|
#include "algebra.cpp"
|
|
#endif
|
|
|
|
#endif
|