211 lines
6.0 KiB
C++
211 lines
6.0 KiB
C++
|
// luc.cpp - written and placed in the public domain by Wei Dai
|
||
|
|
||
|
#include "pch.h"
|
||
|
#include "luc.h"
|
||
|
#include "asn.h"
|
||
|
#include "nbtheory.h"
|
||
|
#include "sha.h"
|
||
|
#include "algparam.h"
|
||
|
|
||
|
NAMESPACE_BEGIN(CryptoPP)
|
||
|
|
||
|
void LUC_TestInstantiations()
|
||
|
{
|
||
|
LUC_HMP<SHA>::Signer t1;
|
||
|
LUCFunction t2;
|
||
|
InvertibleLUCFunction t3;
|
||
|
}
|
||
|
|
||
|
void DL_Algorithm_LUC_HMP::Sign(const DL_GroupParameters<Integer> ¶ms, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
|
||
|
{
|
||
|
const Integer &q = params.GetSubgroupOrder();
|
||
|
r = params.ExponentiateBase(k);
|
||
|
s = (k + x*(r+e)) % q;
|
||
|
}
|
||
|
|
||
|
bool DL_Algorithm_LUC_HMP::Verify(const DL_GroupParameters<Integer> ¶ms, const DL_PublicKey<Integer> &publicKey, const Integer &e, const Integer &r, const Integer &s) const
|
||
|
{
|
||
|
Integer p = params.GetGroupOrder()-1;
|
||
|
const Integer &q = params.GetSubgroupOrder();
|
||
|
|
||
|
Integer Vsg = params.ExponentiateBase(s);
|
||
|
Integer Vry = publicKey.ExponentiatePublicElement((r+e)%q);
|
||
|
return (Vsg*Vsg + Vry*Vry + r*r) % p == (Vsg * Vry * r + 4) % p;
|
||
|
}
|
||
|
|
||
|
Integer DL_BasePrecomputation_LUC::Exponentiate(const DL_GroupPrecomputation<Element> &group, const Integer &exponent) const
|
||
|
{
|
||
|
return Lucas(exponent, m_g, static_cast<const DL_GroupPrecomputation_LUC &>(group).GetModulus());
|
||
|
}
|
||
|
|
||
|
void DL_GroupParameters_LUC::SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const
|
||
|
{
|
||
|
for (unsigned int i=0; i<exponentsCount; i++)
|
||
|
results[i] = Lucas(exponents[i], base, GetModulus());
|
||
|
}
|
||
|
|
||
|
void LUCFunction::BERDecode(BufferedTransformation &bt)
|
||
|
{
|
||
|
BERSequenceDecoder seq(bt);
|
||
|
m_n.BERDecode(seq);
|
||
|
m_e.BERDecode(seq);
|
||
|
seq.MessageEnd();
|
||
|
}
|
||
|
|
||
|
void LUCFunction::DEREncode(BufferedTransformation &bt) const
|
||
|
{
|
||
|
DERSequenceEncoder seq(bt);
|
||
|
m_n.DEREncode(seq);
|
||
|
m_e.DEREncode(seq);
|
||
|
seq.MessageEnd();
|
||
|
}
|
||
|
|
||
|
Integer LUCFunction::ApplyFunction(const Integer &x) const
|
||
|
{
|
||
|
DoQuickSanityCheck();
|
||
|
return Lucas(m_e, x, m_n);
|
||
|
}
|
||
|
|
||
|
bool LUCFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const
|
||
|
{
|
||
|
bool pass = true;
|
||
|
pass = pass && m_n > Integer::One() && m_n.IsOdd();
|
||
|
pass = pass && m_e > Integer::One() && m_e.IsOdd() && m_e < m_n;
|
||
|
return pass;
|
||
|
}
|
||
|
|
||
|
bool LUCFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
|
||
|
{
|
||
|
return GetValueHelper(this, name, valueType, pValue).Assignable()
|
||
|
CRYPTOPP_GET_FUNCTION_ENTRY(Modulus)
|
||
|
CRYPTOPP_GET_FUNCTION_ENTRY(PublicExponent)
|
||
|
;
|
||
|
}
|
||
|
|
||
|
void LUCFunction::AssignFrom(const NameValuePairs &source)
|
||
|
{
|
||
|
AssignFromHelper(this, source)
|
||
|
CRYPTOPP_SET_FUNCTION_ENTRY(Modulus)
|
||
|
CRYPTOPP_SET_FUNCTION_ENTRY(PublicExponent)
|
||
|
;
|
||
|
}
|
||
|
|
||
|
// *****************************************************************************
|
||
|
// private key operations:
|
||
|
|
||
|
class LUCPrimeSelector : public PrimeSelector
|
||
|
{
|
||
|
public:
|
||
|
LUCPrimeSelector(const Integer &e) : m_e(e) {}
|
||
|
bool IsAcceptable(const Integer &candidate) const
|
||
|
{
|
||
|
return RelativelyPrime(m_e, candidate+1) && RelativelyPrime(m_e, candidate-1);
|
||
|
}
|
||
|
Integer m_e;
|
||
|
};
|
||
|
|
||
|
void InvertibleLUCFunction::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg)
|
||
|
{
|
||
|
int modulusSize = 2048;
|
||
|
alg.GetIntValue("ModulusSize", modulusSize) || alg.GetIntValue("KeySize", modulusSize);
|
||
|
|
||
|
if (modulusSize < 16)
|
||
|
throw InvalidArgument("InvertibleLUCFunction: specified modulus size is too small");
|
||
|
|
||
|
m_e = alg.GetValueWithDefault("PublicExponent", Integer(17));
|
||
|
|
||
|
if (m_e < 5 || m_e.IsEven())
|
||
|
throw InvalidArgument("InvertibleLUCFunction: invalid public exponent");
|
||
|
|
||
|
LUCPrimeSelector selector(m_e);
|
||
|
AlgorithmParameters primeParam = MakeParametersForTwoPrimesOfEqualSize(modulusSize)
|
||
|
("PointerToPrimeSelector", selector.GetSelectorPointer());
|
||
|
m_p.GenerateRandom(rng, primeParam);
|
||
|
m_q.GenerateRandom(rng, primeParam);
|
||
|
|
||
|
m_n = m_p * m_q;
|
||
|
m_u = m_q.InverseMod(m_p);
|
||
|
}
|
||
|
|
||
|
void InvertibleLUCFunction::Initialize(RandomNumberGenerator &rng, unsigned int keybits, const Integer &e)
|
||
|
{
|
||
|
GenerateRandom(rng, MakeParameters("ModulusSize", (int)keybits)("PublicExponent", e));
|
||
|
}
|
||
|
|
||
|
void InvertibleLUCFunction::BERDecode(BufferedTransformation &bt)
|
||
|
{
|
||
|
BERSequenceDecoder seq(bt);
|
||
|
|
||
|
Integer version(seq);
|
||
|
if (!!version) // make sure version is 0
|
||
|
BERDecodeError();
|
||
|
|
||
|
m_n.BERDecode(seq);
|
||
|
m_e.BERDecode(seq);
|
||
|
m_p.BERDecode(seq);
|
||
|
m_q.BERDecode(seq);
|
||
|
m_u.BERDecode(seq);
|
||
|
seq.MessageEnd();
|
||
|
}
|
||
|
|
||
|
void InvertibleLUCFunction::DEREncode(BufferedTransformation &bt) const
|
||
|
{
|
||
|
DERSequenceEncoder seq(bt);
|
||
|
|
||
|
const byte version[] = {INTEGER, 1, 0};
|
||
|
seq.Put(version, sizeof(version));
|
||
|
m_n.DEREncode(seq);
|
||
|
m_e.DEREncode(seq);
|
||
|
m_p.DEREncode(seq);
|
||
|
m_q.DEREncode(seq);
|
||
|
m_u.DEREncode(seq);
|
||
|
seq.MessageEnd();
|
||
|
}
|
||
|
|
||
|
Integer InvertibleLUCFunction::CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const
|
||
|
{
|
||
|
// not clear how to do blinding with LUC
|
||
|
DoQuickSanityCheck();
|
||
|
return InverseLucas(m_e, x, m_q, m_p, m_u);
|
||
|
}
|
||
|
|
||
|
bool InvertibleLUCFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const
|
||
|
{
|
||
|
bool pass = LUCFunction::Validate(rng, level);
|
||
|
pass = pass && m_p > Integer::One() && m_p.IsOdd() && m_p < m_n;
|
||
|
pass = pass && m_q > Integer::One() && m_q.IsOdd() && m_q < m_n;
|
||
|
pass = pass && m_u.IsPositive() && m_u < m_p;
|
||
|
if (level >= 1)
|
||
|
{
|
||
|
pass = pass && m_p * m_q == m_n;
|
||
|
pass = pass && RelativelyPrime(m_e, m_p+1);
|
||
|
pass = pass && RelativelyPrime(m_e, m_p-1);
|
||
|
pass = pass && RelativelyPrime(m_e, m_q+1);
|
||
|
pass = pass && RelativelyPrime(m_e, m_q-1);
|
||
|
pass = pass && m_u * m_q % m_p == 1;
|
||
|
}
|
||
|
if (level >= 2)
|
||
|
pass = pass && VerifyPrime(rng, m_p, level-2) && VerifyPrime(rng, m_q, level-2);
|
||
|
return pass;
|
||
|
}
|
||
|
|
||
|
bool InvertibleLUCFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
|
||
|
{
|
||
|
return GetValueHelper<LUCFunction>(this, name, valueType, pValue).Assignable()
|
||
|
CRYPTOPP_GET_FUNCTION_ENTRY(Prime1)
|
||
|
CRYPTOPP_GET_FUNCTION_ENTRY(Prime2)
|
||
|
CRYPTOPP_GET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
|
||
|
;
|
||
|
}
|
||
|
|
||
|
void InvertibleLUCFunction::AssignFrom(const NameValuePairs &source)
|
||
|
{
|
||
|
AssignFromHelper<LUCFunction>(this, source)
|
||
|
CRYPTOPP_SET_FUNCTION_ENTRY(Prime1)
|
||
|
CRYPTOPP_SET_FUNCTION_ENTRY(Prime2)
|
||
|
CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
|
||
|
;
|
||
|
}
|
||
|
|
||
|
NAMESPACE_END
|