1
0
mirror of https://github.com/abakh/nbsdgames.git synced 2024-11-02 16:27:18 -04:00
nbsdgames/checkers.c
2022-07-01 10:45:34 +04:30

735 lines
16 KiB
C

/*
.-.
| '
'._.HECKERS
Authored by abakh <abakh@tuta.io>
To the extent possible under law, the author(s) have dedicated all copyright and related and neighboring rights to this software to the public domain worldwide. This software is distributed without any warranty.
You should have received a copy of the CC0 Public Domain Dedication along with this software. If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
*/
#include "common.h"
#define LIGHT -1
#define DARK 1
#define KING 2
#define DOESNT_MATTER 1
#define IMAGINARY 0
#define NORMAL 1
#define ALT_IMG 2
#define ALT_NRM 3
#define WIN 100000
byte py,px;//cursor
byte cy,cx;//selected(choosen) piece
int dpt;
byte game[8][8];
byte computer[2]={0,0};
char sides[2]={'h','h'};
byte score[2];//set by header()
bool endgame=false;
byte jumpagainy , jumpagainx;
bool kinged;//if a piece jumps over multiple others and becomes a king it cannot continue jumping
bool in(byte A[4],byte B[4],byte a,byte b){
for(byte c=0;c<4;++c)
if(A[c]==a && B[c]==b)
return true;
return false;
}
void rectangle(byte sy,byte sx){
byte y,x;
for(y=0;y<=8+1;++y){
mvaddch(sy+y,sx,ACS_VLINE);
mvaddch(sy+y,sx+8*2,ACS_VLINE);
}
for(x=0;x<=8*2;++x){
mvaddch(sy,sx+x,ACS_HLINE);
mvaddch(sy+8+1,sx+x,ACS_HLINE);
}
mvaddch(sy,sx,ACS_ULCORNER);
mvaddch(sy+8+1,sx,ACS_LLCORNER);
mvaddch(sy,sx+8*2,ACS_URCORNER);
mvaddch(sy+8+1,sx+8*2,ACS_LRCORNER);
}
void header(void){
score[0]=score[1]=0;
byte y,x;
for(y=0;y<8;++y){
for(x=0;x<8;++x){
if(game[y][x]){
if(game[y][x]<0)
score[0]++;
else
score[1]++;
}
}
}
mvprintw(0,0," .-.");
mvprintw(1,0,"| ' %2d:%2d",score[0],score[1]);
mvprintw(2,0,"'._,HECKERS ");
}
void draw(byte sy,byte sx){//the game's board
rectangle(sy,sx);
chtype ch ;
byte y,x;
for(y=0;y<8;++y){
for(x=0;x<8;++x){
ch=A_NORMAL;
if(y==py && x==px)
ch |= A_STANDOUT;
if(y==cy && x==cx)
ch |= A_BOLD;
if(game[y][x]){
if(game[y][x]<0){
if(has_colors())
ch|=COLOR_PAIR(1);
else
ch |= A_UNDERLINE;
}
if(abs(game[y][x])<2)
ch |='O';
else
ch |='K';
}
else if( (y%2) != (x%2) )
ch|='.';
else
ch|=' ';
mvaddch(sy+1+y,sx+x*2+1,ch);
}
}
}
//place the pieces on the board
void fill(void){
byte y,x;
for(y=0;y<8;++y){
for(x=0;x<8;++x){
game[y][x]=0;
if( (y%2) != (x%2)){
if(y<3) game[y][x]=1;
if(y>4) game[y][x]=-1;
}
}
}
}
//fill mvy/x with possible moves
bool moves(byte ty,byte tx,byte mvy[4],byte mvx[4]){
bool ret=0;
byte ndx=0;
byte t= game[ty][tx];
move(15,0);
byte dy,dx;
for(dy=-1;dy<2;++dy){
for(dx=-1;dx<2;++dx){
if( !dy || !dx || (!ty && dy<0) || (!tx && dx<0) || (dy==-t) || (ty+dy>=8) || (tx+dx>=8) )
;
else if(!game[ty+dy][tx+dx]){
ret=1;
mvy[ndx]=ty+dy;
mvx[ndx]=tx+dx;
++ndx;
}
else
++ndx;
}
}
return ret;
}
//would be much faster than applying moves() on every tile
bool can_move(byte side){
byte y , x ,t, dy , dx;
for(y=0;y<8;++y){
for(x=0;x<8;++x){
if( (t=game[y][x])*side > 0 ){
for(dy=-1;dy<2;++dy){
for(dx=-1;dx<2;++dx){
if( !dy || !dx || (!y && dy<0) || (!x && dx<0) || (dy==-t) || (y+dy>=8) || (x+dx>=8) )
;
else if( !game[y+dy][x+dx] )
return 1;
}
}
}
}
}
return 0;
}
//fill mvy/x with possible jumping moves
bool jumps(byte ty,byte tx,byte mvy[4],byte mvx[4]){
bool ret=0;
byte ndx=0;
byte ey,ex;
byte t= game[ty][tx];
byte dy,dx;
for(dy=-1;dy<2;++dy){
for(dx=-1;dx<2;++dx){
ey = dy*2;
ex = dx*2;
if(!dy || !dx ||(dy==-t)|| (ty+ey<0) || (tx+ex<0) || (ty+ey>=8) || (tx+ex>=8) )
;
else if(!game[ty+ey][tx+ex] && game[ty+dy][tx+dx]*t<0){
ret=1;
mvy[ndx]=ty+ey;
mvx[ndx]=tx+ex;
++ndx;
}
else
++ndx;
}
}
return ret;
}
//same as can_move for jumps
byte can_jump(byte ty,byte tx){
byte dy,dx,t=game[ty][tx];
byte ey,ex;
byte ret=0;
for(dy=-1;dy<2;++dy){
for(dx=-1;dx<2;++dx){
ey=dy*2;
ex=dx*2;
if((dy==-t)||(ty+ey<0)||(tx+ex<0)||(ty+ey>=8)||(tx+ex>=8) )
;
else if(!game[ty+dy*2][tx+dx*2]&&game[ty+dy][tx+dx]*t<0){
++ret;
if(ret>1)
return ret;
}
}
}
return ret;
}
//see if the side is forced to do a jump
byte forced_jump(byte side){
byte y,x;
byte foo,ret;
foo=ret=0;
for(y=0;y<8;++y){
for(x=0;x<8;++x){
if(game[y][x]*side>0 && (foo=can_jump(y,x)) )
ret+=foo;
if(ret>1)
return ret;
}
}
return ret;
}
byte cmove(byte fy,byte fx,byte sy,byte sx){//really move/jump , 'move' is a curses function
byte a = game[fy][fx];
byte ret=0;
game[fy][fx]=0;
game[sy][sx]=a;
if(abs(fy-sy) == 2){
ret =game[(fy+sy)/2][(fx+sx)/2];
game[(fy+sy)/2][(fx+sx)/2]=0;
}
return ret;
}
//make the pawn a king
bool king(byte y,byte x){
byte t= (4-y)*game[y][x];
if( (y==7 || !y) && t<0 && t>-5 ){
game[y][x]*=2;
return 1;
}
return 0;
}
double advantage(byte side){
unsigned char own,opp;
own=opp=0;
byte foo;
byte y,x;
for(y=0;y<8;++y){
for(x=0;x<8;++x){
foo=game[y][x]*side;
if(foo>0){
++own;//so it wont sacrfice two pawns for a king ( 2 kings == 3 pawns)
own+=foo;
}
else if(foo<0){
++opp;
opp-=foo;
}
}
}
if(!own)
return 0;
else if(!opp)
return WIN;
else
return (double)own/opp;
}
double posadvantage(byte side){
double adv=0;
double oppadv=0;
byte foo;
byte y,x;
byte goal= (side>0)*7 , oppgoal=(side<0)*7;
/*This encourages the AI to king its pawns and concentrate its kings in the center.
The idea is : With forces concentrated in the center, movements to all of the board would be in the game tree's horizon of sight(given enough depth);
and with forces being focused , its takes less movements to make an attack. */
for(y=0;y<8;++y){
for(x=0;x<8;++x){
foo=game[y][x]*side;
if(foo>0){
adv+=foo;
++adv;
if(foo==1)
adv+= 1/( abs(y-goal) );//adding positional value
else if(foo==2)
adv+= 1/( fabs(y-3.5)+ fabs(x-3.5) );
}
else if( foo<0 ){
oppadv-=foo;
++oppadv;
if(foo==-1)
adv+=1/( abs(y-oppgoal) );
else if(foo==-2)
adv+= 1/( fabs(y-3.5)+ fabs(x-3.5) );
}
}
}
if(!adv)
return 0;
else if( !oppadv )
return WIN;
else
return adv/oppadv;
return adv;
}
//the AI algorithm
double decide(byte side,byte depth,byte s){//s is the type of move, it doesn't stand for anything
byte fj=forced_jump(side);//only one legal jump if returns 1
byte nextturn;
byte mvy[4],mvx[4];
byte n;
bool didking;
byte captured;
double adv=0;
byte toy,tox;
byte y,x;
double wrstadv=WIN+1;
double bestadv=0;
byte besttoy,besttox;
byte besty,bestx;
bestx=besty=besttox=besttoy=-100;
bool canmove=0;
byte nexts ;
if(s == IMAGINARY || s == NORMAL )
nexts=IMAGINARY;
else
nexts=ALT_IMG;
for(y=0;y<8;++y){
for(x=0;x<8;++x){
if(fj && (s==NORMAL || s==ALT_NRM) && jumpagainy>=0 && (jumpagainy!=y || jumpagainx!=x) )
continue;
if(game[y][x]*side>0){
canmove=0;
memset(mvy,-1,4);
memset(mvx,-1,4);
if(fj)
canmove=jumps(y,x,mvy,mvx);
else
canmove=moves(y,x,mvy,mvx);
if(canmove){
for(n=0;n<4;++n){
if(mvy[n] != -1){//a real move
toy=mvy[n];
tox=mvx[n];
captured=cmove(y,x,toy,tox);//do the imaginary move
if(fj && can_jump(toy,tox) ) //its a double jump
nextturn=side;
else
nextturn=-side;
didking=king(toy,tox);
//see the advantage you get
if(fj==1 && (s==ALT_NRM || s==NORMAL) )
adv= DOESNT_MATTER;//you have to do the move anyway
else if(!depth){
if(s==IMAGINARY || s==NORMAL)//calculating advantage only based on numerical superiority
adv=advantage(side);
else
adv=posadvantage(side);//taking to account the position of the pieces
}
else{
if(nextturn==side)
adv=decide(nextturn,depth,nexts);
else{ //best move is the one that gives least advantage to the opponent
adv=decide(nextturn,depth-!fj,nexts);
if(adv==WIN)
adv=0;
else if(adv)
adv=1/adv;
else
adv=WIN;
}
}
//undo the imaginary move
if(didking)
game[toy][tox]/=2;
game[y][x]=game[toy][tox];
game[toy][tox]=0;
if(fj)
game[(toy+y)/2][(tox+x)/2]=captured;
if(besty<0 || adv>bestadv || (adv==bestadv && ( rand()%2 )) ){
besty=y;
bestx=x;
besttoy=toy;
besttox=tox;
bestadv=adv;
}
if(adv<wrstadv)
wrstadv=adv;
if(fj == 1)
goto EndLoop;
}
}
}
}
}
}
EndLoop:
if( (s==NORMAL || s==ALT_NRM) && besty >= 0 ){
if(endgame && fj!=1 && s==NORMAL && bestadv==wrstadv ){//the algorithm is not given enough depth to determine which move is better
if(wrstadv == WIN){//the randomization in the algorithm may cause an illusion of an inevitable win in several moves
if(depth > 1)
decide(side,depth-1,NORMAL);
else
goto Move;
}
else
decide(side,depth,ALT_NRM);//change your opinion about what advantage means
}
else{
Move:
cmove(besty,bestx,besttoy,besttox);
kinged=king(besttoy,besttox);
if(!kinged && can_jump(besttoy,besttox) ){
jumpagainy = besttoy;//so the next player (itself) can only continue the chain of jumps from there
jumpagainx = besttox;
}
else
jumpagainy=jumpagainx=-1;
}
}
return bestadv;
}
//peacefully close when ^C is pressed
void sigint_handler(int x){
endwin();
puts("Quit.");
exit(x);
}
void mouseinput(void){
#ifndef NO_MOUSE
MEVENT minput;
#ifdef PDCURSES
nc_getmouse(&minput);
#else
getmouse(&minput);
#endif
if( minput.y-4 <8 && minput.x-1<16){
py=minput.y-4;
px=(minput.x-1)/2;
}
else
return;
if(minput.bstate & (BUTTON1_CLICKED|BUTTON1_PRESSED|BUTTON1_RELEASED) )
ungetch('\n');
#endif
}
void help(void){
erase();
header();
attron(A_BOLD);
mvprintw(3,0," **** THE CONTROLS ****");
mvprintw(8,0,"YOU CAN ALSO USE THE MOUSE!");
attroff(A_BOLD);
mvprintw(4,0,"RETURN/ENTER : Select or move the piece");
mvprintw(5,0,"hjkl/ARROW KEYS : Move cursor");
mvprintw(6,0,"q : quit");
mvprintw(7,0,"F1 & F2 : Help on controls & gameplay");
mvprintw(10,0,"Press a key to continue");
refresh();
getch();
erase();
}
void gameplay(void){
erase();
header();
attron(A_BOLD);
mvprintw(3,0," **** THE GAMEPLAY ****");
attroff(A_BOLD);
move(4,0);
printw("1) The game starts with each player having 12 men;\n");
printw(" men can only diagonally move forwards \n");
printw(" (toward the opponent's side).\n\n");
printw("2) Men can become kings by reaching the opponent's \n");
printw(" first rank; kings can diagonally move both forwards\n");
printw(" and backwards.\n\n");
printw("3) Pieces can capture opponent's pieces by jumping over them\n");
printw(" also they can capture several pieces at once by doing a\n");
printw(" chain of jumps.\n\n");
printw("4) You have to do a jump if you can.\n\n");
printw("5) A player wins when the opponent can't do a move e. g. \n");
printw(" all of their pieces are captured.\n\n");
refresh();
getch();
erase();
}
int main(int argc,char** argv){
dpt=4;
int opt;
bool sides_chosen=0,no_replay=0;
while( (opt= getopt(argc,argv,"hnp:1:2:"))!= -1 ){
switch(opt){
case '1':
case '2':
if(!strcmp("c",optarg) || !strcmp("h",optarg)){
sides[opt-'1']=optarg[0];
sides_chosen=1;
}
else{
puts("That should be either h or c\n");
return EXIT_FAILURE;
}
break;
case 'p':
if(sscanf(optarg,"%d",&dpt) && dpt<128 && dpt>0)
;
else{
puts("That should be a number from 1 to 127.");
return EXIT_FAILURE;
}
break;
case 'n':
no_replay=1;
break;
case 'h':
default:
printf("Usage: %s [options]\n -p ai power\n -1 type of player 1\n -2 type of player 2\n -h help\n -n dont ask for replay\n",argv[0]);
return EXIT_SUCCESS;
break;
}
}
initscr();
#ifndef NO_MOUSE
mousemask(ALL_MOUSE_EVENTS,NULL);
#endif
noecho();
cbreak();
keypad(stdscr,1);
int input ;
if(!sides_chosen){
printw("Black plays first.\nChoose type of the black player(H/c)\n" );
refresh();
input=getch();
if(input=='c'){
computer[0]=dpt;
sides[0]='c';
printw("Computer.\n");
}
else{
computer[0]=0;
sides[0]='h';
printw("Human.\n");
}
printw("Choose type of the white player(h/C)\n");
refresh();
input=getch();
if(input=='h'){
computer[1]=0;
sides[1]='h';
printw("Human.\n");
}
else{
computer[1]=dpt;
sides[1]='c';
printw("Computer.\n");
}
}
if(has_colors()){
start_color();
use_default_colors();
init_pair(1,COLOR_RED,-1);
}
signal(SIGINT,sigint_handler);
Start:
srand(time(NULL)%UINT_MAX);
fill();
cy=cx=-1;
py=px=0;
byte mvy[4],mvx[4];
memset(mvy,-1,4);
memset(mvx,-1,4);
byte turn=1;
bool t=1;
bool fj;
byte result;
byte todraw=0;
double adv = 1;//used to determine when the game is a draw
double previousadv =1;
Turn:
curs_set(0);
jumpagainy=jumpagainx=-1;
kinged=0;
turn =-turn;
t=!t;//t == turn<0 that's turn in binary/array index format
fj = forced_jump(turn);
erase();
flushinp();
header();
draw(3,0);
if(t){
previousadv=adv;
adv= advantage(1) + (score[0]*score[1]);//just taking the dry scores to account too,nothing special
if(previousadv==adv)
++todraw;
else
todraw=0;
}
if(score[0]==score[1] && !can_move(1) && !can_move(-1) && !forced_jump(1) && !forced_jump(-1)){
result=0;
goto End;
}
else if(!score[0] || (turn==-1 && !fj && !can_move(-1))){
result=1;
goto End;
}
else if(!score[1] || (turn==1 && !fj && !can_move(1))){
result=-1;
goto End;
}
else if(todraw==50){ // 50 turns without any gain for either side
result=0;
goto End;
}
endgame= score[t]<=5 || score[!t]<=5;
draw(3,0);
refresh();
while(sides[t]=='c'){
mvprintw(13,0,"Thinking...");
refresh();
decide(turn,dpt+(score[t]<score[!t])+endgame,1);
if(!(fj && jumpagainy>=0 && !kinged )){
goto Turn;
}
}
while(1){
erase();
draw(3,0);
header();
if(!(computer[0]||computer[1])){
if(t)
addstr(" White's turn");
else{
attron(COLOR_PAIR(1));
addstr(" Black's turn");
attroff(COLOR_PAIR(1));
}
}
refresh();
input=getch();
if( input == KEY_F(1) || input=='?' )
help();
if( (input==KEY_F(2)||input=='!') )
gameplay();
if( input == KEY_MOUSE )
mouseinput();
if( (input=='k' || (input==KEY_UP||input=='w')) && py>0)
--py;
if( (input=='j' || (input==KEY_DOWN||input=='s')) && py<7)
++py;
if( (input=='h' || (input==KEY_LEFT||input=='a')) && px>0)
--px;
if( (input=='l' || (input==KEY_RIGHT||input=='d')) && px<7)
++px;
if( (input=='q'||input==27)){
result=2;
goto End;
}
if(input=='\n' || input==KEY_ENTER){
if(game[py][px]*turn>0){
cy=py;
cx=px;
memset(mvy,-1,4);
memset(mvx,-1,4);
if(!fj)
moves(py,px,mvy,mvx);
jumps(py,px,mvy,mvx);
}
if( in(mvy,mvx,py,px) && !(jumpagainy>=0 && (cy !=jumpagainy || cx != jumpagainx) ) ){
memset(mvy,-1,4);
memset(mvx,-1,4);
cmove(cy,cx,py,px);
kinged=king(py,px);
cy=-1;
cx=-1;
if( !(fj && can_jump(py,px) && !kinged ) ){
goto Turn;
}
else{
jumpagainy=py;
jumpagainx=px;
}
}
}
}
End:
move(13,0);
switch(result){
case -1:
printw("Black side has won the game.");
break;
case 0:
printw("Draw.");
break;
case 1:
printw("White side has won the game.");
break;
case 2:
printw("You resigned.");
}
if(!no_replay){
printw(" Wanna rematch?(y/n)");
refresh();
curs_set(1);
input=getch();
if(result==2){
if (input=='Y' || input=='y')
goto Start;
}
else if(input!='n' && input!='N' && input!= 'q'){
/*byte b=computer[0]; //switch sides, i don't know if it's necessary
computer[0]=computer[1];
computer[1]=b;*/
goto Start;
}
}
else{
printw("Press any key on your keyboard to continue.");
getch();
}
endwin();
return EXIT_SUCCESS;
}