mirror of
				https://github.com/netwide-assembler/nasm.git
				synced 2025-10-10 00:25:06 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			1192 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1192 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* nasmlib.c	library routines for the Netwide Assembler
 | |
|  *
 | |
|  * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
 | |
|  * Julian Hall. All rights reserved. The software is
 | |
|  * redistributable under the licence given in the file "Licence"
 | |
|  * distributed in the NASM archive.
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <ctype.h>
 | |
| #include <inttypes.h>
 | |
| 
 | |
| #include "nasm.h"
 | |
| #include "nasmlib.h"
 | |
| #include "insns.h"              /* For MAX_KEYWORD */
 | |
| 
 | |
| int globalbits = 0;    /* defined in nasm.h, works better here for ASM+DISASM */
 | |
| 
 | |
| static efunc nasm_malloc_error;
 | |
| 
 | |
| #ifdef LOGALLOC
 | |
| static FILE *logfp;
 | |
| #endif
 | |
| 
 | |
| void nasm_set_malloc_error(efunc error)
 | |
| {
 | |
|     nasm_malloc_error = error;
 | |
| #ifdef LOGALLOC
 | |
|     logfp = fopen("malloc.log", "w");
 | |
|     setvbuf(logfp, NULL, _IOLBF, BUFSIZ);
 | |
|     fprintf(logfp, "null pointer is %p\n", NULL);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef LOGALLOC
 | |
| void *nasm_malloc_log(char *file, int line, size_t size)
 | |
| #else
 | |
| void *nasm_malloc(size_t size)
 | |
| #endif
 | |
| {
 | |
|     void *p = malloc(size);
 | |
|     if (!p)
 | |
|         nasm_malloc_error(ERR_FATAL | ERR_NOFILE, "out of memory");
 | |
| #ifdef LOGALLOC
 | |
|     else
 | |
|         fprintf(logfp, "%s %d malloc(%ld) returns %p\n",
 | |
|                 file, line, (int32_t)size, p);
 | |
| #endif
 | |
|     return p;
 | |
| }
 | |
| 
 | |
| #ifdef LOGALLOC
 | |
| void *nasm_realloc_log(char *file, int line, void *q, size_t size)
 | |
| #else
 | |
| void *nasm_realloc(void *q, size_t size)
 | |
| #endif
 | |
| {
 | |
|     void *p = q ? realloc(q, size) : malloc(size);
 | |
|     if (!p)
 | |
|         nasm_malloc_error(ERR_FATAL | ERR_NOFILE, "out of memory");
 | |
| #ifdef LOGALLOC
 | |
|     else if (q)
 | |
|         fprintf(logfp, "%s %d realloc(%p,%ld) returns %p\n",
 | |
|                 file, line, q, (int32_t)size, p);
 | |
|     else
 | |
|         fprintf(logfp, "%s %d malloc(%ld) returns %p\n",
 | |
|                 file, line, (int32_t)size, p);
 | |
| #endif
 | |
|     return p;
 | |
| }
 | |
| 
 | |
| #ifdef LOGALLOC
 | |
| void nasm_free_log(char *file, int line, void *q)
 | |
| #else
 | |
| void nasm_free(void *q)
 | |
| #endif
 | |
| {
 | |
|     if (q) {
 | |
|         free(q);
 | |
| #ifdef LOGALLOC
 | |
|         fprintf(logfp, "%s %d free(%p)\n", file, line, q);
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifdef LOGALLOC
 | |
| char *nasm_strdup_log(char *file, int line, const char *s)
 | |
| #else
 | |
| char *nasm_strdup(const char *s)
 | |
| #endif
 | |
| {
 | |
|     char *p;
 | |
|     int size = strlen(s) + 1;
 | |
| 
 | |
|     p = malloc(size);
 | |
|     if (!p)
 | |
|         nasm_malloc_error(ERR_FATAL | ERR_NOFILE, "out of memory");
 | |
| #ifdef LOGALLOC
 | |
|     else
 | |
|         fprintf(logfp, "%s %d strdup(%ld) returns %p\n",
 | |
|                 file, line, (int32_t)size, p);
 | |
| #endif
 | |
|     strcpy(p, s);
 | |
|     return p;
 | |
| }
 | |
| 
 | |
| #ifdef LOGALLOC
 | |
| char *nasm_strndup_log(char *file, int line, char *s, size_t len)
 | |
| #else
 | |
| char *nasm_strndup(char *s, size_t len)
 | |
| #endif
 | |
| {
 | |
|     char *p;
 | |
|     int size = len + 1;
 | |
| 
 | |
|     p = malloc(size);
 | |
|     if (!p)
 | |
|         nasm_malloc_error(ERR_FATAL | ERR_NOFILE, "out of memory");
 | |
| #ifdef LOGALLOC
 | |
|     else
 | |
|         fprintf(logfp, "%s %d strndup(%ld) returns %p\n",
 | |
|                 file, line, (int32_t)size, p);
 | |
| #endif
 | |
|     strncpy(p, s, len);
 | |
|     p[len] = '\0';
 | |
|     return p;
 | |
| }
 | |
| 
 | |
| #if !defined(stricmp) && !defined(strcasecmp)
 | |
| int nasm_stricmp(const char *s1, const char *s2)
 | |
| {
 | |
|     while (*s1 && tolower(*s1) == tolower(*s2))
 | |
|         s1++, s2++;
 | |
|     if (!*s1 && !*s2)
 | |
|         return 0;
 | |
|     else if (tolower(*s1) < tolower(*s2))
 | |
|         return -1;
 | |
|     else
 | |
|         return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if !defined(strnicmp) && !defined(strncasecmp)
 | |
| int nasm_strnicmp(const char *s1, const char *s2, int n)
 | |
| {
 | |
|     while (n > 0 && *s1 && tolower(*s1) == tolower(*s2))
 | |
|         s1++, s2++, n--;
 | |
|     if ((!*s1 && !*s2) || n == 0)
 | |
|         return 0;
 | |
|     else if (tolower(*s1) < tolower(*s2))
 | |
|         return -1;
 | |
|     else
 | |
|         return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #define lib_isnumchar(c)   ( isalnum(c) || (c) == '$')
 | |
| #define numvalue(c)  ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0')
 | |
| 
 | |
| int64_t readnum(char *str, int *error)
 | |
| {
 | |
|     char *r = str, *q;
 | |
|     int32_t radix;
 | |
|     uint64_t result, checklimit;
 | |
|     int digit, last;
 | |
|     int warn = FALSE;
 | |
|     int sign = 1;
 | |
| 
 | |
|     *error = FALSE;
 | |
| 
 | |
|     while (isspace(*r))
 | |
|         r++;                    /* find start of number */
 | |
| 
 | |
|     /*
 | |
|      * If the number came from make_tok_num (as a result of an %assign), it
 | |
|      * might have a '-' built into it (rather than in a preceeding token).
 | |
|      */
 | |
|     if (*r == '-') {
 | |
|         r++;
 | |
|         sign = -1;
 | |
|     }
 | |
| 
 | |
|     q = r;
 | |
| 
 | |
|     while (lib_isnumchar(*q))
 | |
|         q++;                    /* find end of number */
 | |
| 
 | |
|     /*
 | |
|      * If it begins 0x, 0X or $, or ends in H, it's in hex. if it
 | |
|      * ends in Q, it's octal. if it ends in B, it's binary.
 | |
|      * Otherwise, it's ordinary decimal.
 | |
|      */
 | |
|     if (*r == '0' && (r[1] == 'x' || r[1] == 'X'))
 | |
|         radix = 16, r += 2;
 | |
|     else if (*r == '$')
 | |
|         radix = 16, r++;
 | |
|     else if (q[-1] == 'H' || q[-1] == 'h')
 | |
|         radix = 16, q--;
 | |
|     else if (q[-1] == 'Q' || q[-1] == 'q' || q[-1] == 'O' || q[-1] == 'o')
 | |
|         radix = 8, q--;
 | |
|     else if (q[-1] == 'B' || q[-1] == 'b')
 | |
|         radix = 2, q--;
 | |
|     else
 | |
|         radix = 10;
 | |
| 
 | |
|     /*
 | |
|      * If this number has been found for us by something other than
 | |
|      * the ordinary scanners, then it might be malformed by having
 | |
|      * nothing between the prefix and the suffix. Check this case
 | |
|      * now.
 | |
|      */
 | |
|     if (r >= q) {
 | |
|         *error = TRUE;
 | |
|         return 0;
 | |
|     }
 | |
|     
 | |
|     /*
 | |
|      * `checklimit' must be 2**(32|64) / radix. We can't do that in
 | |
|      * 32/64-bit arithmetic, which we're (probably) using, so we
 | |
|      * cheat: since we know that all radices we use are even, we
 | |
|      * can divide 2**(31|63) by radix/2 instead.
 | |
|      */
 | |
|     if (globalbits == 64)
 | |
|         checklimit = 0x8000000000000000ULL / (radix >> 1);
 | |
|     else
 | |
|         checklimit = 0x80000000UL / (radix >> 1);
 | |
| 
 | |
|     /*
 | |
|      * Calculate the highest allowable value for the last digit of a
 | |
|      * 32-bit constant... in radix 10, it is 6, otherwise it is 0
 | |
|      */
 | |
|     last = (radix == 10 ? 6 : 0);
 | |
| 
 | |
|     result = 0;
 | |
|     while (*r && r < q) {
 | |
|         if (*r < '0' || (*r > '9' && *r < 'A')
 | |
|             || (digit = numvalue(*r)) >= radix) {
 | |
|             *error = TRUE;
 | |
|             return 0;
 | |
|         }
 | |
|         if (result > checklimit || (result == checklimit && digit >= last)) {
 | |
|             warn = TRUE;
 | |
|         }
 | |
| 
 | |
|         result = radix * result + digit;
 | |
|         r++;
 | |
|     }
 | |
| 
 | |
|     if (warn)
 | |
|         nasm_malloc_error(ERR_WARNING | ERR_PASS1 | ERR_WARN_NOV,
 | |
|                           "numeric constant %s does not fit in 32 bits",
 | |
|                           str);
 | |
| 
 | |
|     return result * sign;
 | |
| }
 | |
| 
 | |
| int64_t readstrnum(char *str, int length, int *warn)
 | |
| {
 | |
|     int64_t charconst = 0;
 | |
|     int i;
 | |
| 
 | |
|     *warn = FALSE;
 | |
| 
 | |
|     str += length;
 | |
|     if (globalbits == 64) {
 | |
|         for (i = 0; i < length; i++) {
 | |
|             if (charconst & 0xFF00000000000000ULL)
 | |
|                 *warn = TRUE;
 | |
|             charconst = (charconst << 8) + (uint8_t)*--str;
 | |
|         }
 | |
|     } else {
 | |
|         for (i = 0; i < length; i++) {
 | |
|             if (charconst & 0xFF000000UL)
 | |
|                 *warn = TRUE;
 | |
|             charconst = (charconst << 8) + (uint8_t)*--str;
 | |
|         }
 | |
|     }
 | |
|     return charconst;
 | |
| }
 | |
| 
 | |
| static int32_t next_seg;
 | |
| 
 | |
| void seg_init(void)
 | |
| {
 | |
|     next_seg = 0;
 | |
| }
 | |
| 
 | |
| int32_t seg_alloc(void)
 | |
| {
 | |
|     return (next_seg += 2) - 2;
 | |
| }
 | |
| 
 | |
| void fwriteint16_t(int data, FILE * fp)
 | |
| {
 | |
|     fputc((int)(data & 255), fp);
 | |
|     fputc((int)((data >> 8) & 255), fp);
 | |
| }
 | |
| 
 | |
| void fwriteint32_t(int32_t data, FILE * fp)
 | |
| {
 | |
|     fputc((int)(data & 255), fp);
 | |
|     fputc((int)((data >> 8) & 255), fp);
 | |
|     fputc((int)((data >> 16) & 255), fp);
 | |
|     fputc((int)((data >> 24) & 255), fp);
 | |
| }
 | |
| 
 | |
| void fwriteint64_t(int64_t data, FILE * fp)
 | |
| {
 | |
|     fputc((int)(data & 255), fp);
 | |
|     fputc((int)((data >> 8) & 255), fp);
 | |
|     fputc((int)((data >> 16) & 255), fp);
 | |
|     fputc((int)((data >> 24) & 255), fp);
 | |
|     fputc((int)((data >> 32) & 255), fp);
 | |
|     fputc((int)((data >> 40) & 255), fp);
 | |
|     fputc((int)((data >> 48) & 255), fp);
 | |
|     fputc((int)((data >> 56) & 255), fp);
 | |
| }
 | |
| 
 | |
| void standard_extension(char *inname, char *outname, char *extension,
 | |
|                         efunc error)
 | |
| {
 | |
|     char *p, *q;
 | |
| 
 | |
|     if (*outname)               /* file name already exists, */
 | |
|         return;                 /* so do nothing */
 | |
|     q = inname;
 | |
|     p = outname;
 | |
|     while (*q)
 | |
|         *p++ = *q++;            /* copy, and find end of string */
 | |
|     *p = '\0';                  /* terminate it */
 | |
|     while (p > outname && *--p != '.') ;        /* find final period (or whatever) */
 | |
|     if (*p != '.')
 | |
|         while (*p)
 | |
|             p++;                /* go back to end if none found */
 | |
|     if (!strcmp(p, extension)) {        /* is the extension already there? */
 | |
|         if (*extension)
 | |
|             error(ERR_WARNING | ERR_NOFILE,
 | |
|                   "file name already ends in `%s': "
 | |
|                   "output will be in `nasm.out'", extension);
 | |
|         else
 | |
|             error(ERR_WARNING | ERR_NOFILE,
 | |
|                   "file name already has no extension: "
 | |
|                   "output will be in `nasm.out'");
 | |
|         strcpy(outname, "nasm.out");
 | |
|     } else
 | |
|         strcpy(p, extension);
 | |
| }
 | |
| 
 | |
| #define LEAFSIZ (sizeof(RAA)-sizeof(RAA_UNION)+sizeof(RAA_LEAF))
 | |
| #define BRANCHSIZ (sizeof(RAA)-sizeof(RAA_UNION)+sizeof(RAA_BRANCH))
 | |
| 
 | |
| #define LAYERSIZ(r) ( (r)->layers==0 ? RAA_BLKSIZE : RAA_LAYERSIZE )
 | |
| 
 | |
| static struct RAA *real_raa_init(int layers)
 | |
| {
 | |
|     struct RAA *r;
 | |
|     int i;
 | |
| 
 | |
|     if (layers == 0) {
 | |
|         r = nasm_malloc(LEAFSIZ);
 | |
|         r->layers = 0;
 | |
|         memset(r->u.l.data, 0, sizeof(r->u.l.data));
 | |
|         r->stepsize = 1L;
 | |
|     } else {
 | |
|         r = nasm_malloc(BRANCHSIZ);
 | |
|         r->layers = layers;
 | |
|         for (i = 0; i < RAA_LAYERSIZE; i++)
 | |
|             r->u.b.data[i] = NULL;
 | |
|         r->stepsize = RAA_BLKSIZE;
 | |
|         while (--layers)
 | |
|             r->stepsize *= RAA_LAYERSIZE;
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| struct RAA *raa_init(void)
 | |
| {
 | |
|     return real_raa_init(0);
 | |
| }
 | |
| 
 | |
| void raa_free(struct RAA *r)
 | |
| {
 | |
|     if (r->layers == 0)
 | |
|         nasm_free(r);
 | |
|     else {
 | |
|         struct RAA **p;
 | |
|         for (p = r->u.b.data; p - r->u.b.data < RAA_LAYERSIZE; p++)
 | |
|             if (*p)
 | |
|                 raa_free(*p);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int32_t raa_read(struct RAA *r, int32_t posn)
 | |
| {
 | |
|     if (posn >= r->stepsize * LAYERSIZ(r))
 | |
|         return 0;               /* Return 0 for undefined entries */
 | |
|     while (r->layers > 0) {
 | |
|         ldiv_t l;
 | |
|         l = ldiv(posn, r->stepsize);
 | |
|         r = r->u.b.data[l.quot];
 | |
|         posn = l.rem;
 | |
|         if (!r)
 | |
|             return 0;           /* Return 0 for undefined entries */
 | |
|     }
 | |
|     return r->u.l.data[posn];
 | |
| }
 | |
| 
 | |
| struct RAA *raa_write(struct RAA *r, int32_t posn, int32_t value)
 | |
| {
 | |
|     struct RAA *result;
 | |
| 
 | |
|     if (posn < 0)
 | |
|         nasm_malloc_error(ERR_PANIC, "negative position in raa_write");
 | |
| 
 | |
|     while (r->stepsize * LAYERSIZ(r) <= posn) {
 | |
|         /*
 | |
|          * Must add a layer.
 | |
|          */
 | |
|         struct RAA *s;
 | |
|         int i;
 | |
| 
 | |
|         s = nasm_malloc(BRANCHSIZ);
 | |
|         for (i = 0; i < RAA_LAYERSIZE; i++)
 | |
|             s->u.b.data[i] = NULL;
 | |
|         s->layers = r->layers + 1;
 | |
|         s->stepsize = LAYERSIZ(r) * r->stepsize;
 | |
|         s->u.b.data[0] = r;
 | |
|         r = s;
 | |
|     }
 | |
| 
 | |
|     result = r;
 | |
| 
 | |
|     while (r->layers > 0) {
 | |
|         ldiv_t l;
 | |
|         struct RAA **s;
 | |
|         l = ldiv(posn, r->stepsize);
 | |
|         s = &r->u.b.data[l.quot];
 | |
|         if (!*s)
 | |
|             *s = real_raa_init(r->layers - 1);
 | |
|         r = *s;
 | |
|         posn = l.rem;
 | |
|     }
 | |
| 
 | |
|     r->u.l.data[posn] = value;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| #define SAA_MAXLEN 8192
 | |
| 
 | |
| struct SAA *saa_init(int32_t elem_len)
 | |
| {
 | |
|     struct SAA *s;
 | |
| 
 | |
|     if (elem_len > SAA_MAXLEN)
 | |
|         nasm_malloc_error(ERR_PANIC | ERR_NOFILE,
 | |
|                           "SAA with huge elements");
 | |
| 
 | |
|     s = nasm_malloc(sizeof(struct SAA));
 | |
|     s->posn = s->start = 0L;
 | |
|     s->elem_len = elem_len;
 | |
|     s->length = SAA_MAXLEN - (SAA_MAXLEN % elem_len);
 | |
|     s->data = nasm_malloc(s->length);
 | |
|     s->next = NULL;
 | |
|     s->end = s;
 | |
| 
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| void saa_free(struct SAA *s)
 | |
| {
 | |
|     struct SAA *t;
 | |
| 
 | |
|     while (s) {
 | |
|         t = s->next;
 | |
|         nasm_free(s->data);
 | |
|         nasm_free(s);
 | |
|         s = t;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void *saa_wstruct(struct SAA *s)
 | |
| {
 | |
|     void *p;
 | |
| 
 | |
|     if (s->end->length - s->end->posn < s->elem_len) {
 | |
|         s->end->next = nasm_malloc(sizeof(struct SAA));
 | |
|         s->end->next->start = s->end->start + s->end->posn;
 | |
|         s->end = s->end->next;
 | |
|         s->end->length = s->length;
 | |
|         s->end->next = NULL;
 | |
|         s->end->posn = 0L;
 | |
|         s->end->data = nasm_malloc(s->length);
 | |
|     }
 | |
| 
 | |
|     p = s->end->data + s->end->posn;
 | |
|     s->end->posn += s->elem_len;
 | |
|     return p;
 | |
| }
 | |
| 
 | |
| void saa_wbytes(struct SAA *s, const void *data, int32_t len)
 | |
| {
 | |
|     const char *d = data;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         int32_t l = s->end->length - s->end->posn;
 | |
|         if (l > len)
 | |
|             l = len;
 | |
|         if (l > 0) {
 | |
|             if (d) {
 | |
|                 memcpy(s->end->data + s->end->posn, d, l);
 | |
|                 d += l;
 | |
|             } else
 | |
|                 memset(s->end->data + s->end->posn, 0, l);
 | |
|             s->end->posn += l;
 | |
|             len -= l;
 | |
|         }
 | |
|         if (len > 0) {
 | |
|             s->end->next = nasm_malloc(sizeof(struct SAA));
 | |
|             s->end->next->start = s->end->start + s->end->posn;
 | |
|             s->end = s->end->next;
 | |
|             s->end->length = s->length;
 | |
|             s->end->next = NULL;
 | |
|             s->end->posn = 0L;
 | |
|             s->end->data = nasm_malloc(s->length);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void saa_rewind(struct SAA *s)
 | |
| {
 | |
|     s->rptr = s;
 | |
|     s->rpos = 0L;
 | |
| }
 | |
| 
 | |
| void *saa_rstruct(struct SAA *s)
 | |
| {
 | |
|     void *p;
 | |
| 
 | |
|     if (!s->rptr)
 | |
|         return NULL;
 | |
| 
 | |
|     if (s->rptr->posn - s->rpos < s->elem_len) {
 | |
|         s->rptr = s->rptr->next;
 | |
|         if (!s->rptr)
 | |
|             return NULL;        /* end of array */
 | |
|         s->rpos = 0L;
 | |
|     }
 | |
| 
 | |
|     p = s->rptr->data + s->rpos;
 | |
|     s->rpos += s->elem_len;
 | |
|     return p;
 | |
| }
 | |
| 
 | |
| void *saa_rbytes(struct SAA *s, int32_t *len)
 | |
| {
 | |
|     void *p;
 | |
| 
 | |
|     if (!s->rptr)
 | |
|         return NULL;
 | |
| 
 | |
|     p = s->rptr->data + s->rpos;
 | |
|     *len = s->rptr->posn - s->rpos;
 | |
|     s->rptr = s->rptr->next;
 | |
|     s->rpos = 0L;
 | |
|     return p;
 | |
| }
 | |
| 
 | |
| void saa_rnbytes(struct SAA *s, void *data, int32_t len)
 | |
| {
 | |
|     char *d = data;
 | |
| 
 | |
|     while (len > 0) {
 | |
|         int32_t l;
 | |
| 
 | |
|         if (!s->rptr)
 | |
|             return;
 | |
| 
 | |
|         l = s->rptr->posn - s->rpos;
 | |
|         if (l > len)
 | |
|             l = len;
 | |
|         if (l > 0) {
 | |
|             memcpy(d, s->rptr->data + s->rpos, l);
 | |
|             d += l;
 | |
|             s->rpos += l;
 | |
|             len -= l;
 | |
|         }
 | |
|         if (len > 0) {
 | |
|             s->rptr = s->rptr->next;
 | |
|             s->rpos = 0L;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void saa_fread(struct SAA *s, int32_t posn, void *data, int32_t len)
 | |
| {
 | |
|     struct SAA *p;
 | |
|     int64_t pos;
 | |
|     char *cdata = data;
 | |
| 
 | |
|     if (!s->rptr || posn < s->rptr->start)
 | |
|         saa_rewind(s);
 | |
|     p = s->rptr;
 | |
|     while (posn >= p->start + p->posn) {
 | |
|         p = p->next;
 | |
|         if (!p)
 | |
|             return;             /* what else can we do?! */
 | |
|     }
 | |
| 
 | |
|     pos = posn - p->start;
 | |
|     while (len) {
 | |
|         int64_t l = p->posn - pos;
 | |
|         if (l > len)
 | |
|             l = len;
 | |
|         memcpy(cdata, p->data + pos, l);
 | |
|         len -= l;
 | |
|         cdata += l;
 | |
|         p = p->next;
 | |
|         if (!p)
 | |
|             return;
 | |
|         pos = 0LL;
 | |
|     }
 | |
|     s->rptr = p;
 | |
| }
 | |
| 
 | |
| void saa_fwrite(struct SAA *s, int32_t posn, void *data, int32_t len)
 | |
| {
 | |
|     struct SAA *p;
 | |
|     int64_t pos;
 | |
|     char *cdata = data;
 | |
| 
 | |
|     if (!s->rptr || posn < s->rptr->start)
 | |
|         saa_rewind(s);
 | |
|     p = s->rptr;
 | |
|     while (posn >= p->start + p->posn) {
 | |
|         p = p->next;
 | |
|         if (!p)
 | |
|             return;             /* what else can we do?! */
 | |
|     }
 | |
| 
 | |
|     pos = posn - p->start;
 | |
|     while (len) {
 | |
|         int64_t l = p->posn - pos;
 | |
|         if (l > len)
 | |
|             l = len;
 | |
|         memcpy(p->data + pos, cdata, l);
 | |
|         len -= l;
 | |
|         cdata += l;
 | |
|         p = p->next;
 | |
|         if (!p)
 | |
|             return;
 | |
|         pos = 0LL;
 | |
|     }
 | |
|     s->rptr = p;
 | |
| }
 | |
| 
 | |
| void saa_fpwrite(struct SAA *s, FILE * fp)
 | |
| {
 | |
|     char *data;
 | |
|     int32_t len;
 | |
| 
 | |
|     saa_rewind(s);
 | |
| //    while ((data = saa_rbytes(s, &len)))
 | |
|     for (; (data = saa_rbytes(s, &len));)
 | |
|         fwrite(data, 1, len, fp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Register, instruction, condition-code and prefix keywords used
 | |
|  * by the scanner.
 | |
|  */
 | |
| #include "names.c"
 | |
| static const char *special_names[] = {
 | |
|     "byte", "dword", "far", "long", "near", "nosplit", "qword",
 | |
|     "short", "strict", "to", "tword", "word"
 | |
| };
 | |
| static const char *prefix_names[] = {
 | |
|     "a16", "a32", "lock", "o16", "o32", "rep", "repe", "repne",
 | |
|     "repnz", "repz", "times"
 | |
| };
 | |
| 
 | |
| const char *prefix_name(int token)
 | |
| {
 | |
|     unsigned int prefix = token-PREFIX_ENUM_START;
 | |
|     if (prefix > sizeof prefix_names / sizeof(const char *))
 | |
| 	return NULL;
 | |
| 
 | |
|     return prefix_names[prefix];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Standard scanner routine used by parser.c and some output
 | |
|  * formats. It keeps a succession of temporary-storage strings in
 | |
|  * stdscan_tempstorage, which can be cleared using stdscan_reset.
 | |
|  */
 | |
| static char **stdscan_tempstorage = NULL;
 | |
| static int stdscan_tempsize = 0, stdscan_templen = 0;
 | |
| #define STDSCAN_TEMP_DELTA 256
 | |
| 
 | |
| static void stdscan_pop(void)
 | |
| {
 | |
|     nasm_free(stdscan_tempstorage[--stdscan_templen]);
 | |
| }
 | |
| 
 | |
| void stdscan_reset(void)
 | |
| {
 | |
|     while (stdscan_templen > 0)
 | |
|         stdscan_pop();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unimportant cleanup is done to avoid confusing people who are trying
 | |
|  * to debug real memory leaks
 | |
|  */
 | |
| void nasmlib_cleanup(void)
 | |
| {
 | |
|     stdscan_reset();
 | |
|     nasm_free(stdscan_tempstorage);
 | |
| }
 | |
| 
 | |
| static char *stdscan_copy(char *p, int len)
 | |
| {
 | |
|     char *text;
 | |
| 
 | |
|     text = nasm_malloc(len + 1);
 | |
|     strncpy(text, p, len);
 | |
|     text[len] = '\0';
 | |
| 
 | |
|     if (stdscan_templen >= stdscan_tempsize) {
 | |
|         stdscan_tempsize += STDSCAN_TEMP_DELTA;
 | |
|         stdscan_tempstorage = nasm_realloc(stdscan_tempstorage,
 | |
|                                            stdscan_tempsize *
 | |
|                                            sizeof(char *));
 | |
|     }
 | |
|     stdscan_tempstorage[stdscan_templen++] = text;
 | |
| 
 | |
|     return text;
 | |
| }
 | |
| 
 | |
| char *stdscan_bufptr = NULL;
 | |
| int stdscan(void *private_data, struct tokenval *tv)
 | |
| {
 | |
|     char ourcopy[MAX_KEYWORD + 1], *r, *s;
 | |
| 
 | |
|     (void)private_data;         /* Don't warn that this parameter is unused */
 | |
| 
 | |
|     while (isspace(*stdscan_bufptr))
 | |
|         stdscan_bufptr++;
 | |
|     if (!*stdscan_bufptr)
 | |
|         return tv->t_type = 0;
 | |
| 
 | |
|     /* we have a token; either an id, a number or a char */
 | |
|     if (isidstart(*stdscan_bufptr) ||
 | |
|         (*stdscan_bufptr == '$' && isidstart(stdscan_bufptr[1]))) {
 | |
|         /* now we've got an identifier */
 | |
|         int i;
 | |
|         int is_sym = FALSE;
 | |
| 
 | |
|         if (*stdscan_bufptr == '$') {
 | |
|             is_sym = TRUE;
 | |
|             stdscan_bufptr++;
 | |
|         }
 | |
| 
 | |
|         r = stdscan_bufptr++;
 | |
|         /* read the entire buffer to advance the buffer pointer but... */
 | |
|         while (isidchar(*stdscan_bufptr))
 | |
|             stdscan_bufptr++;
 | |
| 
 | |
|         /* ... copy only up to IDLEN_MAX-1 characters */
 | |
|         tv->t_charptr = stdscan_copy(r, stdscan_bufptr - r < IDLEN_MAX ?
 | |
|                                      stdscan_bufptr - r : IDLEN_MAX - 1);
 | |
| 
 | |
|         if (is_sym || stdscan_bufptr - r > MAX_KEYWORD)
 | |
|             return tv->t_type = TOKEN_ID;       /* bypass all other checks */
 | |
| 
 | |
|         for (s = tv->t_charptr, r = ourcopy; *s; s++)
 | |
|             *r++ = tolower(*s);
 | |
|         *r = '\0';
 | |
|         /* right, so we have an identifier sitting in temp storage. now,
 | |
|          * is it actually a register or instruction name, or what? */
 | |
|         if ((tv->t_integer = bsi(ourcopy, reg_names,
 | |
|                                  elements(reg_names))) >= 0) {
 | |
|             tv->t_integer += EXPR_REG_START;
 | |
|             return tv->t_type = TOKEN_REG;
 | |
|         } else if ((tv->t_integer = bsi(ourcopy, insn_names,
 | |
|                                         elements(insn_names))) >= 0) {
 | |
|             return tv->t_type = TOKEN_INSN;
 | |
|         }
 | |
|         for (i = 0; i < elements(icn); i++)
 | |
|             if (!strncmp(ourcopy, icn[i], strlen(icn[i]))) {
 | |
|                 char *p = ourcopy + strlen(icn[i]);
 | |
|                 tv->t_integer = ico[i];
 | |
|                 if ((tv->t_inttwo = bsi(p, conditions,
 | |
|                                         elements(conditions))) >= 0)
 | |
|                     return tv->t_type = TOKEN_INSN;
 | |
|             }
 | |
|         if ((tv->t_integer = bsi(ourcopy, prefix_names,
 | |
|                                  elements(prefix_names))) >= 0) {
 | |
|             tv->t_integer += PREFIX_ENUM_START;
 | |
|             return tv->t_type = TOKEN_PREFIX;
 | |
|         }
 | |
|         if ((tv->t_integer = bsi(ourcopy, special_names,
 | |
|                                  elements(special_names))) >= 0)
 | |
|             return tv->t_type = TOKEN_SPECIAL;
 | |
|         if (!nasm_stricmp(ourcopy, "seg"))
 | |
|             return tv->t_type = TOKEN_SEG;
 | |
|         if (!nasm_stricmp(ourcopy, "wrt"))
 | |
|             return tv->t_type = TOKEN_WRT;
 | |
|         return tv->t_type = TOKEN_ID;
 | |
|     } else if (*stdscan_bufptr == '$' && !isnumchar(stdscan_bufptr[1])) {
 | |
|         /*
 | |
|          * It's a $ sign with no following hex number; this must
 | |
|          * mean it's a Here token ($), evaluating to the current
 | |
|          * assembly location, or a Base token ($$), evaluating to
 | |
|          * the base of the current segment.
 | |
|          */
 | |
|         stdscan_bufptr++;
 | |
|         if (*stdscan_bufptr == '$') {
 | |
|             stdscan_bufptr++;
 | |
|             return tv->t_type = TOKEN_BASE;
 | |
|         }
 | |
|         return tv->t_type = TOKEN_HERE;
 | |
|     } else if (isnumstart(*stdscan_bufptr)) {   /* now we've got a number */
 | |
|         int rn_error;
 | |
| 
 | |
|         r = stdscan_bufptr++;
 | |
|         while (isnumchar(*stdscan_bufptr))
 | |
|             stdscan_bufptr++;
 | |
| 
 | |
|         if (*stdscan_bufptr == '.') {
 | |
|             /*
 | |
|              * a floating point constant
 | |
|              */
 | |
|             stdscan_bufptr++;
 | |
|             while (isnumchar(*stdscan_bufptr) ||
 | |
|                    ((stdscan_bufptr[-1] == 'e'
 | |
|                      || stdscan_bufptr[-1] == 'E')
 | |
|                     && (*stdscan_bufptr == '-' || *stdscan_bufptr == '+'))) {
 | |
|                 stdscan_bufptr++;
 | |
|             }
 | |
|             tv->t_charptr = stdscan_copy(r, stdscan_bufptr - r);
 | |
|             return tv->t_type = TOKEN_FLOAT;
 | |
|         }
 | |
|         r = stdscan_copy(r, stdscan_bufptr - r);
 | |
|         tv->t_integer = readnum(r, &rn_error);
 | |
|         stdscan_pop();
 | |
|         if (rn_error)
 | |
|             return tv->t_type = TOKEN_ERRNUM;   /* some malformation occurred */
 | |
|         tv->t_charptr = NULL;
 | |
|         return tv->t_type = TOKEN_NUM;
 | |
|     } else if (*stdscan_bufptr == '\'' || *stdscan_bufptr == '"') {     /* a char constant */
 | |
|         char quote = *stdscan_bufptr++, *r;
 | |
|         int rn_warn;
 | |
|         r = tv->t_charptr = stdscan_bufptr;
 | |
|         while (*stdscan_bufptr && *stdscan_bufptr != quote)
 | |
|             stdscan_bufptr++;
 | |
|         tv->t_inttwo = stdscan_bufptr - r;      /* store full version */
 | |
|         if (!*stdscan_bufptr)
 | |
|             return tv->t_type = TOKEN_ERRNUM;   /* unmatched quotes */
 | |
|         stdscan_bufptr++;       /* skip over final quote */
 | |
|         tv->t_integer = readstrnum(r, tv->t_inttwo, &rn_warn);
 | |
|         /* FIXME: rn_warn is not checked! */
 | |
|         return tv->t_type = TOKEN_NUM;
 | |
|     } else if (*stdscan_bufptr == ';') {        /* a comment has happened - stay */
 | |
|         return tv->t_type = 0;
 | |
|     } else if (stdscan_bufptr[0] == '>' && stdscan_bufptr[1] == '>') {
 | |
|         stdscan_bufptr += 2;
 | |
|         return tv->t_type = TOKEN_SHR;
 | |
|     } else if (stdscan_bufptr[0] == '<' && stdscan_bufptr[1] == '<') {
 | |
|         stdscan_bufptr += 2;
 | |
|         return tv->t_type = TOKEN_SHL;
 | |
|     } else if (stdscan_bufptr[0] == '/' && stdscan_bufptr[1] == '/') {
 | |
|         stdscan_bufptr += 2;
 | |
|         return tv->t_type = TOKEN_SDIV;
 | |
|     } else if (stdscan_bufptr[0] == '%' && stdscan_bufptr[1] == '%') {
 | |
|         stdscan_bufptr += 2;
 | |
|         return tv->t_type = TOKEN_SMOD;
 | |
|     } else if (stdscan_bufptr[0] == '=' && stdscan_bufptr[1] == '=') {
 | |
|         stdscan_bufptr += 2;
 | |
|         return tv->t_type = TOKEN_EQ;
 | |
|     } else if (stdscan_bufptr[0] == '<' && stdscan_bufptr[1] == '>') {
 | |
|         stdscan_bufptr += 2;
 | |
|         return tv->t_type = TOKEN_NE;
 | |
|     } else if (stdscan_bufptr[0] == '!' && stdscan_bufptr[1] == '=') {
 | |
|         stdscan_bufptr += 2;
 | |
|         return tv->t_type = TOKEN_NE;
 | |
|     } else if (stdscan_bufptr[0] == '<' && stdscan_bufptr[1] == '=') {
 | |
|         stdscan_bufptr += 2;
 | |
|         return tv->t_type = TOKEN_LE;
 | |
|     } else if (stdscan_bufptr[0] == '>' && stdscan_bufptr[1] == '=') {
 | |
|         stdscan_bufptr += 2;
 | |
|         return tv->t_type = TOKEN_GE;
 | |
|     } else if (stdscan_bufptr[0] == '&' && stdscan_bufptr[1] == '&') {
 | |
|         stdscan_bufptr += 2;
 | |
|         return tv->t_type = TOKEN_DBL_AND;
 | |
|     } else if (stdscan_bufptr[0] == '^' && stdscan_bufptr[1] == '^') {
 | |
|         stdscan_bufptr += 2;
 | |
|         return tv->t_type = TOKEN_DBL_XOR;
 | |
|     } else if (stdscan_bufptr[0] == '|' && stdscan_bufptr[1] == '|') {
 | |
|         stdscan_bufptr += 2;
 | |
|         return tv->t_type = TOKEN_DBL_OR;
 | |
|     } else                      /* just an ordinary char */
 | |
|         return tv->t_type = (uint8_t)(*stdscan_bufptr++);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return TRUE if the argument is a simple scalar. (Or a far-
 | |
|  * absolute, which counts.)
 | |
|  */
 | |
| int is_simple(expr * vect)
 | |
| {
 | |
|     while (vect->type && !vect->value)
 | |
|         vect++;
 | |
|     if (!vect->type)
 | |
|         return 1;
 | |
|     if (vect->type != EXPR_SIMPLE)
 | |
|         return 0;
 | |
|     do {
 | |
|         vect++;
 | |
|     } while (vect->type && !vect->value);
 | |
|     if (vect->type && vect->type < EXPR_SEGBASE + SEG_ABS)
 | |
|         return 0;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return TRUE if the argument is a simple scalar, _NOT_ a far-
 | |
|  * absolute.
 | |
|  */
 | |
| int is_really_simple(expr * vect)
 | |
| {
 | |
|     while (vect->type && !vect->value)
 | |
|         vect++;
 | |
|     if (!vect->type)
 | |
|         return 1;
 | |
|     if (vect->type != EXPR_SIMPLE)
 | |
|         return 0;
 | |
|     do {
 | |
|         vect++;
 | |
|     } while (vect->type && !vect->value);
 | |
|     if (vect->type)
 | |
|         return 0;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return TRUE if the argument is relocatable (i.e. a simple
 | |
|  * scalar, plus at most one segment-base, plus possibly a WRT).
 | |
|  */
 | |
| int is_reloc(expr * vect)
 | |
| {
 | |
|     while (vect->type && !vect->value)  /* skip initial value-0 terms */
 | |
|         vect++;
 | |
|     if (!vect->type)            /* trivially return TRUE if nothing */
 | |
|         return 1;               /* is present apart from value-0s */
 | |
|     if (vect->type < EXPR_SIMPLE)       /* FALSE if a register is present */
 | |
|         return 0;
 | |
|     if (vect->type == EXPR_SIMPLE) {    /* skip over a pure number term... */
 | |
|         do {
 | |
|             vect++;
 | |
|         } while (vect->type && !vect->value);
 | |
|         if (!vect->type)        /* ...returning TRUE if that's all */
 | |
|             return 1;
 | |
|     }
 | |
|     if (vect->type == EXPR_WRT) {       /* skip over a WRT term... */
 | |
|         do {
 | |
|             vect++;
 | |
|         } while (vect->type && !vect->value);
 | |
|         if (!vect->type)        /* ...returning TRUE if that's all */
 | |
|             return 1;
 | |
|     }
 | |
|     if (vect->value != 0 && vect->value != 1)
 | |
|         return 0;               /* segment base multiplier non-unity */
 | |
|     do {                        /* skip over _one_ seg-base term... */
 | |
|         vect++;
 | |
|     } while (vect->type && !vect->value);
 | |
|     if (!vect->type)            /* ...returning TRUE if that's all */
 | |
|         return 1;
 | |
|     return 0;                   /* And return FALSE if there's more */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return TRUE if the argument contains an `unknown' part.
 | |
|  */
 | |
| int is_unknown(expr * vect)
 | |
| {
 | |
|     while (vect->type && vect->type < EXPR_UNKNOWN)
 | |
|         vect++;
 | |
|     return (vect->type == EXPR_UNKNOWN);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return TRUE if the argument contains nothing but an `unknown'
 | |
|  * part.
 | |
|  */
 | |
| int is_just_unknown(expr * vect)
 | |
| {
 | |
|     while (vect->type && !vect->value)
 | |
|         vect++;
 | |
|     return (vect->type == EXPR_UNKNOWN);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the scalar part of a relocatable vector. (Including
 | |
|  * simple scalar vectors - those qualify as relocatable.)
 | |
|  */
 | |
| int64_t reloc_value(expr * vect)
 | |
| {
 | |
|     while (vect->type && !vect->value)
 | |
|         vect++;
 | |
|     if (!vect->type)
 | |
|         return 0;
 | |
|     if (vect->type == EXPR_SIMPLE)
 | |
|         return vect->value;
 | |
|     else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the segment number of a relocatable vector, or NO_SEG for
 | |
|  * simple scalars.
 | |
|  */
 | |
| int32_t reloc_seg(expr * vect)
 | |
| {
 | |
|     while (vect->type && (vect->type == EXPR_WRT || !vect->value))
 | |
|         vect++;
 | |
|     if (vect->type == EXPR_SIMPLE) {
 | |
|         do {
 | |
|             vect++;
 | |
|         } while (vect->type && (vect->type == EXPR_WRT || !vect->value));
 | |
|     }
 | |
|     if (!vect->type)
 | |
|         return NO_SEG;
 | |
|     else
 | |
|         return vect->type - EXPR_SEGBASE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the WRT segment number of a relocatable vector, or NO_SEG
 | |
|  * if no WRT part is present.
 | |
|  */
 | |
| int32_t reloc_wrt(expr * vect)
 | |
| {
 | |
|     while (vect->type && vect->type < EXPR_WRT)
 | |
|         vect++;
 | |
|     if (vect->type == EXPR_WRT) {
 | |
|         return vect->value;
 | |
|     } else
 | |
|         return NO_SEG;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Binary search.
 | |
|  */
 | |
| int bsi(char *string, const char **array, int size)
 | |
| {
 | |
|     int i = -1, j = size;       /* always, i < index < j */
 | |
|     while (j - i >= 2) {
 | |
|         int k = (i + j) / 2;
 | |
|         int l = strcmp(string, array[k]);
 | |
|         if (l < 0)              /* it's in the first half */
 | |
|             j = k;
 | |
|         else if (l > 0)         /* it's in the second half */
 | |
|             i = k;
 | |
|         else                    /* we've got it :) */
 | |
|             return k;
 | |
|     }
 | |
|     return -1;                  /* we haven't got it :( */
 | |
| }
 | |
| 
 | |
| static char *file_name = NULL;
 | |
| static int32_t line_number = 0;
 | |
| 
 | |
| char *src_set_fname(char *newname)
 | |
| {
 | |
|     char *oldname = file_name;
 | |
|     file_name = newname;
 | |
|     return oldname;
 | |
| }
 | |
| 
 | |
| int32_t src_set_linnum(int32_t newline)
 | |
| {
 | |
|     int32_t oldline = line_number;
 | |
|     line_number = newline;
 | |
|     return oldline;
 | |
| }
 | |
| 
 | |
| int32_t src_get_linnum(void)
 | |
| {
 | |
|     return line_number;
 | |
| }
 | |
| 
 | |
| int src_get(int32_t *xline, char **xname)
 | |
| {
 | |
|     if (!file_name || !*xname || strcmp(*xname, file_name)) {
 | |
|         nasm_free(*xname);
 | |
|         *xname = file_name ? nasm_strdup(file_name) : NULL;
 | |
|         *xline = line_number;
 | |
|         return -2;
 | |
|     }
 | |
|     if (*xline != line_number) {
 | |
|         int32_t tmp = line_number - *xline;
 | |
|         *xline = line_number;
 | |
|         return tmp;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void nasm_quote(char **str)
 | |
| {
 | |
|     int ln = strlen(*str);
 | |
|     char q = (*str)[0];
 | |
|     char *p;
 | |
|     if (ln > 1 && (*str)[ln - 1] == q && (q == '"' || q == '\''))
 | |
|         return;
 | |
|     q = '"';
 | |
|     if (strchr(*str, q))
 | |
|         q = '\'';
 | |
|     p = nasm_malloc(ln + 3);
 | |
|     strcpy(p + 1, *str);
 | |
|     nasm_free(*str);
 | |
|     p[ln + 1] = p[0] = q;
 | |
|     p[ln + 2] = 0;
 | |
|     *str = p;
 | |
| }
 | |
| 
 | |
| char *nasm_strcat(char *one, char *two)
 | |
| {
 | |
|     char *rslt;
 | |
|     int l1 = strlen(one);
 | |
|     rslt = nasm_malloc(l1 + strlen(two) + 1);
 | |
|     strcpy(rslt, one);
 | |
|     strcpy(rslt + l1, two);
 | |
|     return rslt;
 | |
| }
 | |
| 
 | |
| void null_debug_init(struct ofmt *of, void *id, FILE * fp, efunc error)
 | |
| {
 | |
| 	(void)of;
 | |
| 	(void)id;
 | |
| 	(void)fp;
 | |
| 	(void)error;
 | |
| }
 | |
| void null_debug_linenum(const char *filename, int32_t linenumber, int32_t segto)
 | |
| {
 | |
| 	(void)filename;
 | |
| 	(void)linenumber;
 | |
| 	(void)segto;	
 | |
| }
 | |
| void null_debug_deflabel(char *name, int32_t segment, int32_t offset,
 | |
|                          int is_global, char *special)
 | |
| {
 | |
| 	(void)name;
 | |
| 	(void)segment;
 | |
| 	(void)offset;
 | |
| 	(void)is_global;
 | |
| 	(void)special;
 | |
| }
 | |
| void null_debug_routine(const char *directive, const char *params)
 | |
| {
 | |
| 	(void)directive;
 | |
| 	(void)params;
 | |
| }
 | |
| void null_debug_typevalue(int32_t type)
 | |
| {
 | |
| 	(void)type;
 | |
| }
 | |
| void null_debug_output(int type, void *param)
 | |
| {
 | |
| 	(void)type;
 | |
| 	(void)param;
 | |
| }
 | |
| void null_debug_cleanup(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| struct dfmt null_debug_form = {
 | |
|     "Null debug format",
 | |
|     "null",
 | |
|     null_debug_init,
 | |
|     null_debug_linenum,
 | |
|     null_debug_deflabel,
 | |
|     null_debug_routine,
 | |
|     null_debug_typevalue,
 | |
|     null_debug_output,
 | |
|     null_debug_cleanup
 | |
| };
 | |
| 
 | |
| struct dfmt *null_debug_arr[2] = { &null_debug_form, NULL };
 |