0
0
mirror of https://github.com/netwide-assembler/nasm.git synced 2025-07-24 10:25:42 -04:00
nasm/include/nasm.h
H. Peter Anvin 6389ac8e47 scanner: generalize the handling of {dfv=}
Change the handling of {dfv=} to a more general "braced constant"
expression, to be tagged with an instruction flag to make sure they
match the instruction in question.

This really ought to be an operand flag, but the opflags are precious;
as the CCMP/CTEST instructions can also take an immediate it probably
is necessary to invent a "special immediate" operand type that can
fold these together.

Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2024-07-27 18:06:51 -07:00

1472 lines
48 KiB
C

/* ----------------------------------------------------------------------- *
*
* Copyright 1996-2024 The NASM Authors - All Rights Reserved
* See the file AUTHORS included with the NASM distribution for
* the specific copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following
* conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ----------------------------------------------------------------------- */
/*
* nasm.h main header file for the Netwide Assembler: inter-module interface
*/
#ifndef NASM_NASM_H
#define NASM_NASM_H
#include "compiler.h"
#include <time.h>
#include "nasmlib.h"
#include "nctype.h"
#include "strlist.h"
#include "preproc.h"
#include "insnsi.h" /* For enum opcode */
#include "directiv.h" /* For enum directive */
#include "labels.h" /* For enum mangle_index, enum label_type */
#include "opflags.h"
#include "regs.h"
#include "x86const.h"
#include "srcfile.h"
#include "error.h"
/* Program name for error messages etc. */
extern const char *_progname;
/* Time stamp for the official start of compilation */
struct compile_time {
time_t t;
bool have_local, have_gm, have_posix;
int64_t posix;
struct tm local;
struct tm gm;
};
extern struct compile_time official_compile_time;
/* POSIX timestamp if and only if we are not a reproducible build */
extern bool reproducible;
static inline int64_t posix_timestamp(void)
{
return reproducible ? 0 : official_compile_time.posix;
}
#define NO_SEG INT32_C(-1) /* null segment value */
#define SEG_ABS 0x40000000L /* mask for far-absolute segments */
#define IDLEN_MAX 4096
#define DECOLEN_MAX 32
/*
* Name pollution problems: <time.h> on Digital UNIX pulls in some
* strange hardware header file which sees fit to define R_SP. We
* undefine it here so as not to break the enum below.
*/
#ifdef R_SP
#undef R_SP
#endif
/*
* We must declare the existence of this structure type up here,
* since we have to reference it before we define it...
*/
struct ofmt;
/*
* Values for the `type' parameter to an output function.
*/
enum out_type {
OUT_RAWDATA, /* Plain bytes */
OUT_RESERVE, /* Reserved bytes (RESB et al) */
OUT_ZERODATA, /* Initialized data, but all zero */
OUT_ADDRESS, /* An address (symbol value) */
OUT_RELADDR, /* A relative address */
OUT_SEGMENT, /* A segment number */
/*
* These values are used by the legacy backend interface only;
* see output/legacy.c for more information. These should never
* be used otherwise. Once all backends have been migrated to the
* new interface they should be removed.
*/
OUT_REL1ADR,
OUT_REL2ADR,
OUT_REL4ADR,
OUT_REL8ADR
};
enum out_flags {
OUT_WRAP = 0, /* Undefined signedness (wraps) */
OUT_SIGNED = 1, /* Value is signed */
OUT_UNSIGNED = 2, /* Value is unsigned */
OUT_SIGNMASK = 3 /* Mask for signedness bits */
};
/*
* The data we send down to the backend.
* XXX: We still want to push down the base address symbol if
* available, and replace the segment numbers with a structure.
*/
struct out_data {
int64_t offset; /* Offset within segment */
int32_t segment; /* Segment written to */
enum out_type type; /* See above */
enum out_flags flags; /* See above */
int inslen; /* Length of instruction */
int insoffs; /* Offset inside instruction */
int bits; /* Bits mode of compilation */
uint64_t size; /* Size of output */
const struct itemplate *itemp; /* Instruction template */
const void *data; /* Data for OUT_RAWDATA */
uint64_t toffset; /* Target address offset for relocation */
int32_t tsegment; /* Target segment for relocation */
int32_t twrt; /* Relocation with respect to */
int64_t relbase; /* Relative base for OUT_RELADDR */
struct src_location where; /* Source file and line */
};
/*
* And a label-definition function. The boolean parameter
* `is_norm' states whether the label is a `normal' label (which
* should affect the local-label system), or something odder like
* an EQU or a segment-base symbol, which shouldn't.
*/
typedef void (*ldfunc)(char *label, int32_t segment, int64_t offset,
char *special, bool is_norm);
/*
* Token types returned by the scanner, in addition to ordinary
* ASCII character values, and zero for end-of-string.
*/
enum token_type { /* token types, other than chars */
/* Token values shared between assembler and preprocessor */
/* Special codes */
TOKEN_INVALID = -1, /* a placeholder value */
TOKEN_BLOCK = -2, /* used for storage management */
TOKEN_FREE = -3, /* free token marker, use to catch leaks */
TOKEN_EOS = 0, /* end of string */
/*
* Single-character operators. Enumerated here to keep strict
* compilers happy, and for documentation.
*/
TOKEN_WHITESPACE = ' ', /* Preprocessor use */
TOKEN_BOOL_NOT = '!',
TOKEN_AND = '&',
TOKEN_OR = '|',
TOKEN_XOR = '^',
TOKEN_NOT = '~',
TOKEN_MULT = '*',
TOKEN_DIV = '/',
TOKEN_MOD = '%',
TOKEN_LPAR = '(',
TOKEN_RPAR = ')',
TOKEN_PLUS = '+',
TOKEN_MINUS = '-',
TOKEN_COMMA = ',',
TOKEN_LBRACE = '{',
TOKEN_RBRACE = '}',
TOKEN_LBRACKET = '[',
TOKEN_RBRACKET = ']',
TOKEN_QMARK = '?',
TOKEN_EQ = '=', /* = or == */
TOKEN_GT = '>',
TOKEN_LT = '<',
/* Multi-character operators */
TOKEN_SHL = 256, /* << or <<< */
TOKEN_SHR, /* >> */
TOKEN_SAR, /* >>> */
TOKEN_SDIV, /* // */
TOKEN_SMOD, /* %% */
TOKEN_GE, /* >= */
TOKEN_LE, /* <= */
TOKEN_NE, /* <> (!= is same as <>) */
TOKEN_LEG, /* <=> */
TOKEN_DBL_AND, /* && */
TOKEN_DBL_OR, /* || */
TOKEN_DBL_XOR, /* ^^ */
TOKEN_MAX_OPERATOR,
TOKEN_NUM, /* numeric constant */
TOKEN_ERRNUM, /* malformed numeric constant */
TOKEN_STR, /* string constant */
TOKEN_ERRSTR, /* unterminated string constant */
TOKEN_ID, /* identifier */
TOKEN_FLOAT, /* floating-point constant */
TOKEN_HERE, /* $, not '$' because it is not an operator */
TOKEN_BASE, /* $$ */
/* Token values only used by the assembler */
TOKEN_START_ASM,
TOKEN_SEG, /* SEG */
TOKEN_WRT, /* WRT */
TOKEN_TIMES, /* TIMES */
TOKEN_FLOATIZE, /* __?floatX?__ */
TOKEN_STRFUNC, /* __utf16*__, __utf32*__ */
TOKEN_IFUNC, /* __ilog2*__ */
TOKEN_DECORATOR, /* decorators such as {...} */
TOKEN_MASM_PTR, /* __?masm_ptr?__ for the masm package */
TOKEN_MASM_FLAT, /* __?masm_flat?__ for the masm package */
TOKEN_OPMASK, /* translated token for opmask registers */
TOKEN_SIZE, /* BYTE, WORD, DWORD, QWORD, etc */
TOKEN_SPECIAL, /* REL, FAR, NEAR, STRICT, NOSPLIT, etc */
TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
TOKEN_BRCCONST, /* braced constant expression */
TOKEN_REG, /* register name */
TOKEN_INSN, /* instruction name */
TOKEN_END_ASM,
/* Token values only used by the preprocessor */
TOKEN_START_PP = TOKEN_END_ASM,
TOKEN_OTHER, /* % sequence without (current) meaning */
TOKEN_PREPROC_ID, /* Preprocessor ID, e.g. %symbol */
TOKEN_MMACRO_PARAM, /* MMacro parameter, e.g. %1 */
TOKEN_LOCAL_SYMBOL, /* Local symbol, e.g. %%symbol */
TOKEN_LOCAL_MACRO, /* Context-local macro, e.g. %$symbol */
TOKEN_ENVIRON, /* %! */
TOKEN_INTERNAL_STR, /* Unquoted string that should remain so */
TOKEN_NAKED_STR, /* Unquoted string that can be re-quoted */
TOKEN_PREPROC_Q, /* %? */
TOKEN_PREPROC_QQ, /* %?? */
TOKEN_PREPROC_SQ, /* %*? */
TOKEN_PREPROC_SQQ, /* %*?? */
TOKEN_PASTE, /* %+ */
TOKEN_COND_COMMA, /* %, */
TOKEN_INDIRECT, /* %[...] */
TOKEN_XDEF_PARAM, /* Used during %xdefine processing */
/* smacro parameters starting here; an arbitrary number. */
TOKEN_SMAC_START_PARAMS, /* MUST BE LAST IN THE LIST!!! */
TOKEN_MAX = INT_MAX /* Keep compiler from reducing the range */
};
/*
* Token flags
*/
enum token_flags {
TFLAG_BRC = 1 << 0, /* valid only with braces. {1to8}, {rd-sae}, ...*/
TFLAG_BRC_OPT = 1 << 1, /* may or may not have braces. opmasks {k1} */
TFLAG_BRC_ANY = TFLAG_BRC | TFLAG_BRC_OPT,
TFLAG_BRDCAST = 1 << 2, /* broadcasting decorator */
TFLAG_WARN = 1 << 3, /* warning only, treat as ID */
TFLAG_DUP = 1 << 4, /* valid ID but also has context-specific use */
TFLAG_ORBIT = 1 << 5 /* OR in the bit given in t_inttwo */
};
/* Must match the fp_formats[] array in asm/floats.c */
enum floatize {
FLOAT_8,
FLOAT_16,
FLOAT_B16,
FLOAT_32,
FLOAT_64,
FLOAT_80M,
FLOAT_80E,
FLOAT_128L,
FLOAT_128H,
FLOAT_ERR /* Invalid format, MUST BE LAST */
};
/* Must match the list in string_transform(), in strfunc.c */
enum strfunc {
STRFUNC_UTF16,
STRFUNC_UTF16LE,
STRFUNC_UTF16BE,
STRFUNC_UTF32,
STRFUNC_UTF32LE,
STRFUNC_UTF32BE
};
enum ifunc {
IFUNC_ILOG2E,
IFUNC_ILOG2W,
IFUNC_ILOG2F,
IFUNC_ILOG2C
};
size_t string_transform(char *, size_t, char **, enum strfunc);
/*
* The expression evaluator must be passed a scanner function; a
* standard scanner is provided as part of nasmlib.c. The
* preprocessor will use a different one. Scanners, and the
* token-value structures they return, look like this.
*
* The return value from the scanner is always a copy of the
* `t_type' field in the structure.
*/
struct tokenval {
int64_t t_integer;
int64_t t_inttwo;
char *t_charptr;
const char *t_start; /* Pointer to token in input buffer */
int t_len; /* Length of token in input buffer */
enum token_type t_type;
enum token_flags t_flag;
};
typedef int (*scanner)(void *private_data, struct tokenval *tv);
struct location {
int64_t offset;
int32_t segment;
int known;
};
extern struct location location;
/*
* Expression-evaluator datatype. Expressions, within the
* evaluator, are stored as an array of these beasts, terminated by
* a record with type==0. Mostly, it's a vector type: each type
* denotes some kind of a component, and the value denotes the
* multiple of that component present in the expression. The
* exception is the WRT type, whose `value' field denotes the
* segment to which the expression is relative. These segments will
* be segment-base types, i.e. either odd segment values or SEG_ABS
* types. So it is still valid to assume that anything with a
* `value' field of zero is insignificant.
*/
typedef struct {
int32_t type; /* a register, or EXPR_xxx */
int64_t value; /* must be >= 32 bits */
} expr;
/*
* Library routines to manipulate expression data types.
*/
bool is_reloc(const expr *vect);
bool is_simple(const expr *vect);
bool is_really_simple(const expr *vect);
bool is_unknown(const expr *vect);
bool is_just_unknown(const expr *vect);
int64_t reloc_value(const expr *vect);
int32_t reloc_seg(const expr *vect);
int32_t reloc_wrt(const expr *vect);
bool is_self_relative(const expr *vect);
void dump_expr(const expr *vect);
/*
* The evaluator can also return hints about which of two registers
* used in an expression should be the base register. See also the
* `operand' structure.
*/
struct eval_hints {
int64_t base;
int type;
};
/*
* The actual expression evaluator function looks like this. When
* called, it expects the first token of its expression to already
* be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
* it will start by calling the scanner.
*
* If a forward reference happens during evaluation, the evaluator
* must set `*fwref' to true if `fwref' is non-NULL.
*
* `critical' is non-zero if the expression may not contain forward
* references. The evaluator will report its own error if this
* occurs; if `critical' is 1, the error will be "symbol not
* defined before use", whereas if `critical' is 2, the error will
* be "symbol undefined".
*
* If `critical' has bit 8 set (in addition to its main value: 0x101
* and 0x102 correspond to 1 and 2) then an extended expression
* syntax is recognised, in which relational operators such as =, <
* and >= are accepted, as well as low-precedence logical operators
* &&, ^^ and ||.
*
* If `hints' is non-NULL, it gets filled in with some hints as to
* the base register in complex effective addresses.
*/
#define CRITICAL 0x100
typedef expr *(*evalfunc)(scanner sc, void *scprivate,
struct tokenval *tv, int *fwref, int critical,
struct eval_hints *hints);
/*
* Special values for expr->type.
* These come after EXPR_REG_END as defined in regs.h.
* Expr types : 0 ~ EXPR_REG_END, EXPR_UNKNOWN, EXPR_...., EXPR_RDSAE,
* EXPR_SEGBASE ~ EXPR_SEGBASE + SEG_ABS, ...
*/
#define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
#define EXPR_SIMPLE (EXPR_REG_END+2)
#define EXPR_WRT (EXPR_REG_END+3)
#define EXPR_RDSAE (EXPR_REG_END+4)
#define EXPR_SEGBASE (EXPR_REG_END+5)
/*
* preprocessors ought to look like this:
*/
enum preproc_mode {
PP_NORMAL, /* Assembly */
PP_DEPS, /* Dependencies only */
PP_PREPROC /* Preprocessing only */
};
enum preproc_opt {
PP_TRIVIAL = 1, /* Only %line or # directives */
PP_NOLINE = 2, /* Ignore %line and # directives */
PP_TASM = 4 /* TASM compatibility hacks */
};
/*
* Called once at the very start of assembly.
*/
void pp_init(enum preproc_opt opt);
/*
* Called at the start of a pass; given a file name, the number
* of the pass, an error reporting function, an evaluator
* function, and a listing generator to talk to.
*/
void pp_reset(const char *file, enum preproc_mode mode,
struct strlist *deplist);
/*
* Called to fetch a line of preprocessed source. The line
* returned has been malloc'ed, and so should be freed after
* use.
*/
char *pp_getline(void);
/* Called at the end of each pass. */
void pp_cleanup_pass(void);
/*
* Called at the end of the assembly session,
* after cleanup_pass() has been called for the
* last pass.
*/
void pp_cleanup_session(void);
/* Additional macros specific to output format */
void pp_extra_stdmac(macros_t *macros);
/* Early definitions and undefinitions for macros */
void pp_pre_define(char *definition);
void pp_pre_undefine(char *definition);
/* Include file from command line */
void pp_pre_include(char *fname);
/* Add a command from the command line */
void pp_pre_command(const char *what, char *str);
/* Include path from command line */
void pp_include_path(struct strlist *ipath);
/* Unwind the macro stack when printing an error message */
void pp_error_list_macros(errflags severity);
/* Return true if an error message should be suppressed */
bool pp_suppress_error(errflags severity);
/* List of dependency files */
extern struct strlist *depend_list;
/* TASM mode changes some properties */
extern bool tasm_compatible_mode;
/*
* inline function to skip past an identifier; returns the first character past
* the identifier if valid, otherwise NULL.
*/
static inline char *nasm_skip_identifier(const char *str)
{
const char *p = str;
if (!nasm_isidstart(*p++)) {
p = NULL;
} else {
while (nasm_isidchar(*p++))
;
}
return (char *)p;
}
/*
* Data-type flags that get passed to listing-file routines.
*/
enum {
LIST_READ,
LIST_MACRO,
LIST_INCLUDE,
LIST_INCBIN,
LIST_TIMES
};
/*
* -----------------------------------------------------------
* Format of the `insn' structure returned from `parser.c' and
* passed into `assemble.c'
* -----------------------------------------------------------
*/
/* Verify value to be a valid register */
static inline bool is_register(int reg)
{
return reg >= EXPR_REG_START && reg < REG_ENUM_LIMIT;
}
/*
* REX flags
*/
#define REX_MASK 0x4f /* Actual REX prefix bits */
#define REX_B 0x01 /* ModRM r/m extension */
#define REX_X 0x02 /* SIB index extension */
#define REX_R 0x04 /* ModRM reg extension */
#define REX_W 0x08 /* 64-bit operand size */
#define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
#define REX_P 0x40 /* REX prefix present/required */
#define REX_H 0x80 /* High register present, REX forbidden */
#define REX_V 0x0100 /* Instruction uses VEX/XOP instead of REX */
#define REX_NH 0x0200 /* Instruction which doesn't use high regs */
#define REX_EV 0x0400 /* Instruction uses EVEX instead of REX */
/*
* EVEX bit field
*/
#define EVEX_P0MM 0x0f /* EVEX P[3:0] : Opcode map */
#define EVEX_P0RP 0x10 /* EVEX P[4] : High-16 reg */
#define EVEX_P0X 0x40 /* EVEX P[6] : High-16 rm */
#define EVEX_P1PP 0x03 /* EVEX P[9:8] : Legacy prefix */
#define EVEX_P1VVVV 0x78 /* EVEX P[14:11] : NDS register */
#define EVEX_P1W 0x80 /* EVEX P[15] : Osize extension */
#define EVEX_P2AAA 0x07 /* EVEX P[18:16] : Embedded opmask */
#define EVEX_P2VP 0x08 /* EVEX P[19] : High-16 NDS reg */
#define EVEX_P2B 0x10 /* EVEX P[20] : Broadcast / RC / SAE */
#define EVEX_P2LL 0x60 /* EVEX P[22:21] : Vector length */
#define EVEX_P2RC EVEX_P2LL /* EVEX P[22:21] : Rounding control */
#define EVEX_P2Z 0x80 /* EVEX P[23] : Zeroing/Merging */
/*
* REX_V "classes" (prefixes which behave like VEX)
*/
enum vex_class {
RV_VEX = 0, /* C4/C5 */
RV_XOP = 1, /* 8F */
RV_EVEX = 2 /* 62 */
};
/*
* Note that because segment registers may be used as instruction
* prefixes, we must ensure the enumerations for prefixes and
* register names do not overlap.
*/
enum prefixes { /* instruction prefixes */
P_none = 0,
PREFIX_ENUM_START = REG_ENUM_LIMIT,
P_A16 = PREFIX_ENUM_START,
P_A32,
P_A64,
P_ASP,
P_LOCK,
P_O16,
P_O32,
P_O64,
P_OSP,
P_REP,
P_REPE,
P_REPNE,
P_REPNZ,
P_REPZ,
P_TIMES,
P_WAIT,
P_XACQUIRE,
P_XRELEASE,
P_BND,
P_NOBND,
P_REX,
P_EVEX,
P_VEX,
P_VEX3,
P_VEX2,
PREFIX_ENUM_LIMIT
};
enum ea_flags { /* special EA flags */
EAF_BYTEOFFS = 1, /* force offset part to byte size */
EAF_WORDOFFS = 2, /* force offset part to [d]word size */
EAF_TIMESTWO = 4, /* really do EAX*2 not EAX+EAX */
EAF_REL = 8, /* IP-relative addressing */
EAF_ABS = 16, /* non-IP-relative addressing */
EAF_FSGS = 32, /* fs/gs segment override present */
EAF_MIB = 64, /* mib operand */
EAF_SIB = 128 /* SIB encoding obligatory */
};
enum eval_hint { /* values for `hinttype' */
EAH_NOHINT = 0, /* no hint at all - our discretion */
EAH_MAKEBASE = 1, /* try to make given reg the base */
EAH_NOTBASE = 2, /* try _not_ to make reg the base */
EAH_SUMMED = 3 /* base and index are summed into index */
};
typedef struct operand { /* operand to an instruction */
opflags_t type; /* type of operand */
int disp_size; /* 0 means default; 16; 32; 64 */
enum reg_enum basereg;
enum reg_enum indexreg; /* address registers */
int scale; /* index scale */
int hintbase;
enum eval_hint hinttype; /* hint as to real base register */
int32_t segment; /* immediate segment, if needed */
int64_t offset; /* any immediate number */
int32_t wrt; /* segment base it's relative to */
int eaflags; /* special EA flags */
int opflags; /* see OPFLAG_* defines below */
decoflags_t decoflags; /* decorator flags such as {...} */
} operand;
#define OPFLAG_FORWARD 1 /* operand is a forward reference */
#define OPFLAG_EXTERN 2 /* operand is an external reference */
#define OPFLAG_UNKNOWN 4 /* operand is an unknown reference
(always a forward reference also) */
#define OPFLAG_RELATIVE 8 /* operand is self-relative, e.g. [foo - $]
where foo is not in the current segment */
enum extop_type { /* extended operand types */
EOT_NOTHING = 0,
EOT_EXTOP, /* Subexpression */
EOT_DB_STRING, /* Byte string */
EOT_DB_FLOAT, /* Floating-pointer number (special byte string) */
EOT_DB_STRING_FREE, /* Byte string which should be nasm_free'd*/
EOT_DB_NUMBER, /* Integer */
EOT_DB_RESERVE /* ? */
};
typedef struct extop { /* extended operand */
struct extop *next; /* linked list */
union {
struct { /* text or byte string */
char *data;
size_t len;
} string;
struct { /* numeric expression */
int64_t offset; /* numeric value or address offset */
int32_t segment; /* address segment */
int32_t wrt; /* address wrt */
bool relative; /* self-relative expression */
} num;
struct extop *subexpr; /* actual expressions */
} val;
size_t dup; /* duplicated? */
enum extop_type type; /* defined above */
int elem; /* element size override, if any (bytes) */
} extop;
enum ea_type {
EA_INVALID, /* Not a valid EA at all */
EA_SCALAR, /* Scalar EA */
EA_XMMVSIB, /* XMM vector EA */
EA_YMMVSIB, /* YMM vector EA */
EA_ZMMVSIB /* ZMM vector EA */
};
/*
* Prefix positions: each type of prefix goes in a specific slot.
* This affects the final ordering of the assembled output, which
* shouldn't matter to the processor, but if you have stylistic
* preferences, you can change this. REX prefixes are handled
* differently for the time being.
*
* LOCK and REP used to be one slot; this is no longer the case since
* the introduction of HLE.
*
* Note: these are stored in an PPS_BITS-bit field in the token hash!
*
*/
enum prefix_pos {
PPS_WAIT = 0, /* WAIT (technically not a prefix!) */
PPS_REP, /* REP/HLE prefix */
PPS_LOCK, /* LOCK prefix */
PPS_SEG, /* Segment override prefix */
PPS_OSIZE, /* Operand size prefix */
PPS_ASIZE, /* Address size prefix */
PPS_REX, /* REX/VEX type */
MAXPREFIX /* Total number of prefix slots */
};
/*
* Tuple types that are used when determining Disp8*N eligibility
* The order must match with a hash %tuple_codes in insns.pl
*/
enum ttypes {
FV = 001,
HV = 002,
FVM = 003,
T1S8 = 004,
T1S16 = 005,
T1S = 006,
T1F32 = 007,
T1F64 = 010,
T2 = 011,
T4 = 012,
T8 = 013,
HVM = 014,
QVM = 015,
OVM = 016,
M128 = 017,
DUP = 020
};
/* EVEX.L'L : Vector length on vector insns */
enum vectlens {
VL128 = 0,
VL256 = 1,
VL512 = 2,
VLMAX = 3
};
/* If you need to change this, also change it in insns.pl */
#define MAX_OPERANDS 5
typedef struct insn { /* an instruction itself */
char *label; /* the label defined, or NULL */
int prefixes[MAXPREFIX]; /* instruction prefixes, if any */
enum opcode opcode; /* the opcode - not just the string */
int operands; /* how many operands? 0-3 (more if db et al) */
int addr_size; /* address size */
operand oprs[MAX_OPERANDS]; /* the operands, defined as above */
extop *eops; /* extended operands */
int eops_float; /* true if DD and floating */
int32_t times; /* repeat count (TIMES prefix) */
bool forw_ref; /* is there a forward reference? */
bool rex_done; /* REX prefix emitted? */
int rex; /* Special REX Prefix */
int vexreg; /* Register encoded in VEX prefix */
int vex_cm; /* Class and M field for VEX prefix */
int vex_wlp; /* W, P and L information for VEX prefix */
uint8_t evex_p[3]; /* EVEX.P0: [RXB,R',00,mm], P1: [W,vvvv,1,pp] */
/* EVEX.P2: [z,L'L,b,V',aaa] */
enum ttypes evex_tuple; /* Tuple type for compressed Disp8*N */
int evex_rm; /* static rounding mode for AVX512 (EVEX) */
int8_t evex_brerop; /* BR/ER/SAE operand position */
} insn;
/* Instruction flags type: IF_* flags are defined in insns.h */
typedef uint64_t iflags_t;
/*
* What to return from a directive- or pragma-handling function.
* Currently DIRR_OK and DIRR_ERROR are treated the same way;
* in both cases the backend is expected to produce the appropriate
* error message on its own.
*
* DIRR_BADPARAM causes a generic error message to be printed. Note
* that it is an error, not a warning, even in the case of pragmas;
* don't use it where forward compatibility would be compromised
* (instead consider adding a DIRR_WARNPARAM.)
*/
enum directive_result {
DIRR_UNKNOWN, /* Directive not handled by backend */
DIRR_OK, /* Directive processed */
DIRR_ERROR, /* Directive processed unsuccessfully */
DIRR_BADPARAM /* Print bad argument error message */
};
/*
* A pragma facility: this structure is used to request passing a
* parsed pragma directive for a specific facility. If the handler is
* NULL then this pragma facility is recognized but ignored; pragma
* processing stops at that point.
*
* Note that the handler is passed a pointer to the facility structure
* as part of the struct pragma.
*/
struct pragma;
typedef enum directive_result (*pragma_handler)(const struct pragma *);
struct pragma_facility {
const char *name;
pragma_handler handler;
};
/*
* This structure defines how a pragma directive is passed to a
* facility. This structure may be augmented in the future.
*
* Any facility MAY, but is not required to, add its operations
* keywords or a subset thereof into asm/directiv.dat, in which case
* the "opcode" field will be set to the corresponding D_ constant
* from directiv.h; otherwise it will be D_unknown.
*/
struct pragma {
const struct pragma_facility *facility;
const char *facility_name; /* Facility name exactly as entered by user */
const char *opname; /* First word after the facility name */
const char *tail; /* Anything after the operation */
enum directive opcode; /* Operation as a D_ directives constant */
};
/*
* These are semi-arbitrary limits to keep the assembler from going
* into a black hole on certain kinds of bugs. They can be overridden
* by command-line options or %pragma.
*/
enum nasm_limit {
LIMIT_PASSES,
LIMIT_STALLED,
LIMIT_MACRO_LEVELS,
LIMIT_MACRO_TOKENS,
LIMIT_MMACROS,
LIMIT_REP,
LIMIT_EVAL,
LIMIT_LINES
};
#define LIMIT_MAX LIMIT_LINES
extern int64_t nasm_limit[LIMIT_MAX+1];
extern enum directive_result nasm_set_limit(const char *, const char *);
/*
* The data structure defining an output format driver, and the
* interfaces to the functions therein.
*/
struct ofmt {
/*
* This is a short (one-liner) description of the type of
* output generated by the driver.
*/
const char *fullname;
/*
* This is a single keyword used to select the driver.
*/
const char *shortname;
/*
* Default output filename extension, or a null string
*/
const char *extension;
/*
* Output format flags.
*/
#define OFMT_TEXT 1 /* Text file format */
#define OFMT_KEEP_ADDR 2 /* Keep addr; no conversion to data */
unsigned int flags;
int maxbits; /* Maximum segment bits supported */
/*
* this is a pointer to the first element of the debug information
*/
const struct dfmt * const *debug_formats;
/*
* the default debugging format if -F is not specified
*/
const struct dfmt *default_dfmt;
/*
* This, if non-NULL, is a NULL-terminated list of `char *'s
* pointing to extra standard macros supplied by the object
* format (e.g. a sensible initial default value of __?SECT?__,
* and user-level equivalents for any format-specific
* directives).
*/
macros_t *stdmac;
/*
* This procedure is called at the start of an output session to set
* up internal parameters.
*/
void (*init)(void);
/*
* This procedure is called at the start of each pass.
*/
void (*reset)(void);
/*
* This is the modern output function, which gets passed
* a struct out_data with much more information. See the
* definition of struct out_data.
*/
void (*output)(const struct out_data *data);
/*
* This procedure is called by assemble() to write actual
* generated code or data to the object file. Typically it
* doesn't have to actually _write_ it, just store it for
* later.
*
* The `type' argument specifies the type of output data, and
* usually the size as well: its contents are described below.
*
* This is used for backends which have not yet been ported to
* the new interface, and should be NULL on ported backends.
* To use this entry point, set the output pointer to
* nasm_do_legacy_output.
*/
void (*legacy_output)(int32_t segto, const void *data,
enum out_type type, uint64_t size,
int32_t segment, int32_t wrt);
/*
* This procedure is called once for every symbol defined in
* the module being assembled. It gives the name and value of
* the symbol, in NASM's terms, and indicates whether it has
* been declared to be global. Note that the parameter "name",
* when passed, will point to a piece of static storage
* allocated inside the label manager - it's safe to keep using
* that pointer, because the label manager doesn't clean up
* until after the output driver has.
*
* Values of `is_global' are: 0 means the symbol is local; 1
* means the symbol is global; 2 means the symbol is common (in
* which case `offset' holds the _size_ of the variable).
* Anything else is available for the output driver to use
* internally.
*
* This routine explicitly _is_ allowed to call the label
* manager to define further symbols, if it wants to, even
* though it's been called _from_ the label manager. That much
* re-entrancy is guaranteed in the label manager. However, the
* label manager will in turn call this routine, so it should
* be prepared to be re-entrant itself.
*
* The `special' parameter contains special information passed
* through from the command that defined the label: it may have
* been an EXTERN, a COMMON or a GLOBAL. The distinction should
* be obvious to the output format from the other parameters.
*/
void (*symdef)(char *name, int32_t segment, int64_t offset,
int is_global, char *special);
/*
* This procedure is called when the source code requests a
* segment change. It should return the corresponding segment
* _number_ for the name, or NO_SEG if the name is not a valid
* segment name.
*
* It may also be called with NULL, in which case it is to
* return the _default_ section number for starting assembly in.
*
* It is allowed to modify the string it is given a pointer to.
*
* It is also allowed to specify a default instruction size for
* the segment, by setting `*bits' to 16, 32 or 64. Or, if it
* doesn't wish to define a default, it can leave `bits' alone.
*/
int32_t (*section)(char *name, int *bits);
/*
* This function is called when a label is defined
* in the source code. It is allowed to change the section
* number as a result, but not the bits value.
* This is *only* called if the symbol defined is at the
* current offset, i.e. "foo:" or "foo equ $".
* The offset isn't passed; and may not be stable at this point.
* The subsection number is a field available for use by the
* backend. It is initialized to NO_SEG.
*
* If "copyoffset" is set by the backend then the offset is
* copied from the previous segment, otherwise the new segment
* is treated as a new segment the normal way.
*/
int32_t (*herelabel)(const char *name, enum label_type type,
int32_t seg, int32_t *subsection,
bool *copyoffset);
/*
* This procedure is called to modify section alignment,
* note there is a trick, the alignment can only increase
*/
void (*sectalign)(int32_t seg, unsigned int value);
/*
* This procedure is called to modify the segment base values
* returned from the SEG operator. It is given a segment base
* value (i.e. a segment value with the low bit set), and is
* required to produce in return a segment value which may be
* different. It can map segment bases to absolute numbers by
* means of returning SEG_ABS types.
*
* It should return NO_SEG if the segment base cannot be
* determined; the evaluator (which calls this routine) is
* responsible for throwing an error condition if that occurs
* in pass two or in a critical expression.
*/
int32_t (*segbase)(int32_t segment);
/*
* This procedure is called to allow the output driver to
* process its own specific directives. When called, it has the
* directive word in `directive' and the parameter string in
* `value'.
*
* The following values are (currently) possible for
* directive_result:
*
* 0 - DIRR_UNKNOWN - directive not recognized by backend
* 1 - DIRR_OK - directive processed ok
* 2 - DIRR_ERROR - backend printed its own error message
* 3 - DIRR_BADPARAM - print the generic message
* "invalid parameter to [*] directive"
*/
enum directive_result
(*directive)(enum directive directive, char *value);
/*
* This procedure is called after assembly finishes, to allow
* the output driver to clean itself up and free its memory.
* Typically, it will also be the point at which the object
* file actually gets _written_.
*
* One thing the cleanup routine should always do is to close
* the output file pointer.
*/
void (*cleanup)(void);
/*
* List of pragma facility names that apply to this backend.
*/
const struct pragma_facility *pragmas;
};
/*
* Output format driver alias
*/
struct ofmt_alias {
const char *shortname;
const struct ofmt *ofmt;
};
extern const struct ofmt *ofmt;
extern FILE *ofile;
/*
* ------------------------------------------------------------
* The data structure defining a debug format driver, and the
* interfaces to the functions therein.
* ------------------------------------------------------------
*/
struct debug_macro_info;
struct dfmt {
/*
* This is a short (one-liner) description of the type of
* output generated by the driver.
*/
const char *fullname;
/*
* This is a single keyword used to select the driver.
*/
const char *shortname;
/*
* init - called initially to set up local pointer to object format.
*/
void (*init)(void);
/*
* linenum - called any time there is output with a change of
* line number or file.
*/
void (*linenum)(const char *filename, int32_t linenumber, int32_t segto);
/*
* debug_deflabel - called whenever a label is defined. Parameters
* are the same as to 'symdef()' in the output format. This function
* is called after the output format version.
*/
void (*debug_deflabel)(char *name, int32_t segment, int64_t offset,
int is_global, char *special);
/*
* debug_smacros - called when an smacro is defined or undefined
* during the code-generation pass. The definition string contains
* the macro name, any arguments, a single space, and the macro
* definition; this is what is expected by e.g. DWARF.
*
* The definition is provided even for an undef.
*/
void (*debug_smacros)(bool define, const char *def);
/*
* debug_include - called when a file is included or the include
* is finished during the code-generation pass. The filename is
* kept by the srcfile system and so can be compared for pointer
* equality.
*
* A filename of NULL means builtin (initial or %use) or command
* line statements.
*/
void (*debug_include)(bool start, struct src_location outer,
struct src_location inner);
/*
* debug_mmacros - called once at the end with a definition for each
* non-.nolist macro that has been invoked at least once in the program,
* and the corresponding address ranges. See dbginfo.h.
*/
void (*debug_mmacros)(const struct debug_macro_info *);
/*
* debug_directive - called whenever a DEBUG directive other than 'LINE'
* is encountered. 'directive' contains the first parameter to the
* DEBUG directive, and params contains the rest. For example,
* 'DEBUG VAR _somevar:int' would translate to a call to this
* function with 'directive' equal to "VAR" and 'params' equal to
* "_somevar:int".
*/
void (*debug_directive)(const char *directive, const char *params);
/*
* typevalue - called whenever the assembler wishes to register a type
* for the last defined label. This routine MUST detect if a type was
* already registered and not re-register it.
*/
void (*debug_typevalue)(int32_t type);
/*
* debug_output - called whenever output is required
* 'type' is the type of info required, and this is format-specific
*/
void (*debug_output)(int type, void *param);
/*
* cleanup - called after processing of file is complete
*/
void (*cleanup)(void);
/*
* List of pragma facility names that apply to this backend.
*/
const struct pragma_facility *pragmas;
};
extern const struct dfmt *dfmt;
/*
* The type definition macros
* for debugging
*
* low 3 bits: reserved
* next 5 bits: type
* next 24 bits: number of elements for arrays (0 for labels)
*/
#define TY_UNKNOWN 0x00
#define TY_LABEL 0x08
#define TY_BYTE 0x10
#define TY_WORD 0x18
#define TY_DWORD 0x20
#define TY_FLOAT 0x28
#define TY_QWORD 0x30
#define TY_TBYTE 0x38
#define TY_OWORD 0x40
#define TY_YWORD 0x48
#define TY_ZWORD 0x50
#define TY_COMMON 0xE0
#define TY_SEG 0xE8
#define TY_EXTERN 0xF0
#define TY_EQU 0xF8
#define TYM_TYPE(x) ((x) & 0xF8)
#define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
#define TYS_ELEMENTS(x) ((x) << 8)
/* Sizes corresponding to various tokens */
enum byte_sizes {
SIZE_BYTE = 1,
SIZE_WORD = 2,
SIZE_DWORD = 4,
SIZE_QWORD = 8,
SIZE_TWORD = 10,
SIZE_OWORD = 16,
SIZE_YWORD = 32,
SIZE_ZWORD = 64
};
enum special_tokens {
SIZE_ENUM_START = PREFIX_ENUM_LIMIT,
S_BYTE = SIZE_ENUM_START,
S_WORD,
S_DWORD,
S_QWORD,
S_TWORD,
S_OWORD,
S_YWORD,
S_ZWORD,
SIZE_ENUM_LIMIT,
SPECIAL_ENUM_START = SIZE_ENUM_LIMIT,
S_ABS = SPECIAL_ENUM_START,
S_FAR,
S_LONG,
S_NEAR,
S_NOSPLIT,
S_REL,
S_SHORT,
S_STRICT,
S_TO,
SPECIAL_ENUM_LIMIT
};
enum decorator_tokens {
DECORATOR_ENUM_START = SPECIAL_ENUM_LIMIT,
BRC_1TO2 = DECORATOR_ENUM_START,
BRC_1TO4,
BRC_1TO8,
BRC_1TO16,
BRC_1TO32,
BRC_RN,
BRC_RD,
BRC_RU,
BRC_RZ,
BRC_SAE,
BRC_Z,
DECORATOR_ENUM_LIMIT
};
/*
* AVX512 Decorator (decoflags_t) bits distribution (counted from 0)
* 3 2 1
* 10987654321098765432109876543210
* |
* | word boundary
* ............................1111 opmask
* ...........................1.... zeroing / merging
* ..........................1..... broadcast
* .........................1...... static rounding
* ........................1....... SAE
* ....................1111........ broadcast element size
* .................111............ number of broadcast elements
*/
#define OP_GENVAL(val, bits, shift) (((val) & ((UINT64_C(1) << (bits)) - 1)) << (shift))
/*
* Opmask register number
* identical to EVEX.aaa
*
* Bits: 0 - 3
*/
#define OPMASK_SHIFT (0)
#define OPMASK_BITS (4)
#define OPMASK_MASK OP_GENMASK(OPMASK_BITS, OPMASK_SHIFT)
#define GEN_OPMASK(bit) OP_GENBIT(bit, OPMASK_SHIFT)
#define VAL_OPMASK(val) OP_GENVAL(val, OPMASK_BITS, OPMASK_SHIFT)
/*
* zeroing / merging control available
* matching to EVEX.z
*
* Bits: 4
*/
#define Z_SHIFT (4)
#define Z_BITS (1)
#define Z_MASK OP_GENMASK(Z_BITS, Z_SHIFT)
#define GEN_Z(bit) OP_GENBIT(bit, Z_SHIFT)
/*
* broadcast - Whether this operand can be broadcasted
*
* Bits: 5
*/
#define BRDCAST_SHIFT (5)
#define BRDCAST_BITS (1)
#define BRDCAST_MASK OP_GENMASK(BRDCAST_BITS, BRDCAST_SHIFT)
#define GEN_BRDCAST(bit) OP_GENBIT(bit, BRDCAST_SHIFT)
/*
* Whether this instruction can have a static rounding mode.
* It goes with the last simd operand because the static rounding mode
* decorator is located between the last simd operand and imm8 (if any).
*
* Bits: 6
*/
#define STATICRND_SHIFT (6)
#define STATICRND_BITS (1)
#define STATICRND_MASK OP_GENMASK(STATICRND_BITS, STATICRND_SHIFT)
#define GEN_STATICRND(bit) OP_GENBIT(bit, STATICRND_SHIFT)
/*
* SAE(Suppress all exception) available
*
* Bits: 7
*/
#define SAE_SHIFT (7)
#define SAE_BITS (1)
#define SAE_MASK OP_GENMASK(SAE_BITS, SAE_SHIFT)
#define GEN_SAE(bit) OP_GENBIT(bit, SAE_SHIFT)
/*
* Broadcasting element size.
*
* Bits: 8 - 11
*/
#define BRSIZE_SHIFT (8)
#define BRSIZE_BITS (4)
#define BRSIZE_MASK OP_GENMASK(BRSIZE_BITS, BRSIZE_SHIFT)
#define GEN_BRSIZE(bit) OP_GENBIT(bit, BRSIZE_SHIFT)
#define BR_BITS8 GEN_BRSIZE(0) /* For potential future use */
#define BR_BITS16 GEN_BRSIZE(1)
#define BR_BITS32 GEN_BRSIZE(2)
#define BR_BITS64 GEN_BRSIZE(3)
/*
* Number of broadcasting elements
*
* Bits: 12 - 14
*/
#define BRNUM_SHIFT (12)
#define BRNUM_BITS (3)
#define BRNUM_MASK OP_GENMASK(BRNUM_BITS, BRNUM_SHIFT)
#define VAL_BRNUM(val) OP_GENVAL(val, BRNUM_BITS, BRNUM_SHIFT)
#define BR_1TO2 VAL_BRNUM(0)
#define BR_1TO4 VAL_BRNUM(1)
#define BR_1TO8 VAL_BRNUM(2)
#define BR_1TO16 VAL_BRNUM(3)
#define BR_1TO32 VAL_BRNUM(4)
#define BR_1TO64 VAL_BRNUM(5) /* For potential future use */
#define MASK OPMASK_MASK /* Opmask (k1 ~ 7) can be used */
#define Z Z_MASK
#define B16 (BRDCAST_MASK|BR_BITS16) /* {1to32} : broadcast 16b * 32 to zmm(512b) */
#define B32 (BRDCAST_MASK|BR_BITS32) /* {1to16} : broadcast 32b * 16 to zmm(512b) */
#define B64 (BRDCAST_MASK|BR_BITS64) /* {1to8} : broadcast 64b * 8 to zmm(512b) */
#define ER STATICRND_MASK /* ER(Embedded Rounding) == Static rounding mode */
#define SAE SAE_MASK /* SAE(Suppress All Exception) */
/*
* Broadcast flags (BR_BITS*) to sizes (BITS*)
*/
static inline opflags_t brsize_to_size(opflags_t brbits)
{
return (brbits & BRSIZE_MASK) << (SIZE_SHIFT - BRSIZE_SHIFT);
}
/*
* Global modes
*/
/*
* flag to disable optimizations selectively
* this is useful to turn-off certain optimizations
*/
enum optimization_disable_flag {
OPTIM_ALL_ENABLED = 0,
OPTIM_DISABLE_JMP_MATCH = 1
};
struct optimization {
int level;
int flag;
};
/*
* Various types of compiler passes we may execute.
* If these are changed, you need to also change _pass_types[]
* in asm/nasm.c.
*/
enum pass_type {
PASS_INIT, /* Initialization, not doing anything yet */
PASS_PREPROC, /* Preprocess-only mode (similar to PASS_FIRST) */
PASS_FIRST, /* The very first pass over the code */
PASS_OPT, /* Optimization pass */
PASS_STAB, /* Stabilization pass (original pass 1) */
PASS_FINAL /* Code generation pass (original pass 2) */
};
extern const char * const _pass_types[];
extern enum pass_type _pass_type;
static inline enum pass_type pass_type(void)
{
return _pass_type;
}
static inline const char *pass_type_name(void)
{
return _pass_types[_pass_type];
}
/* True during initialization, no code read yet */
static inline bool not_started(void)
{
return pass_type() == PASS_INIT;
}
/* True for the initial pass and setup (old "pass2 < 2") */
static inline bool pass_first(void)
{
return pass_type() <= PASS_FIRST;
}
/* At this point we better have stable definitions */
static inline bool pass_stable(void)
{
return pass_type() >= PASS_STAB;
}
/* True for the code generation pass only, (old "pass1 >= 2") */
static inline bool pass_final(void)
{
return pass_type() >= PASS_FINAL;
}
/* True for code generation *or* preprocess-only mode */
static inline bool pass_final_or_preproc(void)
{
return pass_type() >= PASS_FINAL || pass_type() == PASS_PREPROC;
}
/*
* The actual pass number. 0 is used during initialization, the very
* first pass is 1, and then it is simply increasing numbers until we are
* done.
*/
extern int64_t _passn; /* Actual pass number */
static inline int64_t pass_count(void)
{
return _passn;
}
extern struct optimization optimizing;
extern int globalbits; /* 16, 32 or 64-bit mode */
extern int globalrel; /* default to relative addressing? */
extern int globalbnd; /* default to using bnd prefix? */
extern const char *inname; /* primary input filename */
extern const char *outname; /* output filename */
/*
* Switch to a different segment and return the current offset
*/
int64_t switch_segment(int32_t segment);
#endif /* NASM_NASM_H */