mirror of
				https://github.com/netwide-assembler/nasm.git
				synced 2025-10-10 00:25:06 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			404 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			404 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* float.c     floating-point constant support for the Netwide Assembler
 | |
|  *
 | |
|  * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
 | |
|  * Julian Hall. All rights reserved. The software is
 | |
|  * redistributable under the licence given in the file "Licence"
 | |
|  * distributed in the NASM archive.
 | |
|  *
 | |
|  * initial version 13/ix/96 by Simon Tatham
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #include "nasm.h"
 | |
| 
 | |
| #define TRUE 1
 | |
| #define FALSE 0
 | |
| 
 | |
| #define MANT_WORDS 6		       /* 64 bits + 32 for accuracy == 96 */
 | |
| #define MANT_DIGITS 28		       /* 29 digits don't fit in 96 bits */
 | |
| 
 | |
| /*
 | |
|  * guaranteed top bit of from is set
 | |
|  * => we only have to worry about _one_ bit shift to the left
 | |
|  */
 | |
| 
 | |
| static int ieee_multiply(unsigned short *to, unsigned short *from) 
 | |
| {
 | |
|     unsigned long temp[MANT_WORDS*2];
 | |
|     int           i, j;
 | |
| 
 | |
|     for (i=0; i<MANT_WORDS*2; i++)
 | |
| 	temp[i] = 0;
 | |
| 
 | |
|     for (i=0; i<MANT_WORDS; i++)
 | |
| 	for (j=0; j<MANT_WORDS; j++) {
 | |
| 	    unsigned long n;
 | |
| 	    n = (unsigned long)to[i] * (unsigned long)from[j];
 | |
| 	    temp[i+j] += n >> 16;
 | |
| 	    temp[i+j+1] += n & 0xFFFF;
 | |
| 	}
 | |
| 
 | |
|     for (i=MANT_WORDS*2; --i ;) {
 | |
| 	temp[i-1] += temp[i] >> 16;
 | |
| 	temp[i] &= 0xFFFF;
 | |
|     }
 | |
|     if (temp[0] & 0x8000) {
 | |
| 	for (i=0; i<MANT_WORDS; i++)
 | |
| 	    to[i] = temp[i] & 0xFFFF;
 | |
| 	return 0;
 | |
|     } else {
 | |
| 	for (i=0; i<MANT_WORDS; i++)
 | |
| 	    to[i] = (temp[i] << 1) + !!(temp[i+1] & 0x8000);
 | |
| 	return -1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ieee_flconvert(char *string, unsigned short *mant, long *exponent,
 | |
| 		      efunc error) 
 | |
| {
 | |
|     char           digits[MANT_DIGITS];
 | |
|     char           *p, *q, *r;
 | |
|     unsigned short mult[MANT_WORDS], bit;
 | |
|     unsigned short * m;
 | |
|     long           tenpwr, twopwr;
 | |
|     int            extratwos, started, seendot;
 | |
| 
 | |
|     p = digits;
 | |
|     tenpwr = 0;
 | |
|     started = seendot = FALSE;
 | |
|     while (*string && *string != 'E' && *string != 'e') {
 | |
| 	if (*string == '.') {
 | |
| 	    if (!seendot)
 | |
| 		seendot = TRUE;
 | |
| 	    else {
 | |
| 		error (ERR_NONFATAL,
 | |
| 		       "too many periods in floating-point constant");
 | |
| 		return;
 | |
| 	    }
 | |
| 	} else if (*string >= '0' && *string <= '9') {
 | |
| 	    if (*string == '0' && !started) {
 | |
| 		if (seendot)
 | |
| 		    tenpwr--;
 | |
| 	    } else {
 | |
| 		started = TRUE;
 | |
| 		if (p < digits+sizeof(digits))
 | |
| 		    *p++ = *string - '0';
 | |
| 		if (!seendot)
 | |
| 		    tenpwr++;
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    error (ERR_NONFATAL,
 | |
| 		   "floating-point constant: `%c' is invalid character",
 | |
| 		   *string);
 | |
| 	    return;
 | |
| 	}
 | |
| 	string++;
 | |
|     }
 | |
|     if (*string) {
 | |
| 	string++;		       /* eat the E */
 | |
| 	tenpwr += atoi(string);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * At this point, the memory interval [digits,p) contains a
 | |
|      * series of decimal digits zzzzzzz such that our number X
 | |
|      * satisfies
 | |
|      *
 | |
|      * X = 0.zzzzzzz * 10^tenpwr
 | |
|      */
 | |
| 
 | |
|     bit = 0x8000;
 | |
|     for (m=mant; m<mant+MANT_WORDS; m++)
 | |
| 	*m = 0;
 | |
|     m = mant;
 | |
|     q = digits;
 | |
|     started = FALSE;
 | |
|     twopwr = 0;
 | |
|     while (m < mant+MANT_WORDS) {
 | |
| 	unsigned short carry = 0;
 | |
| 	while (p > q && !p[-1])
 | |
| 	    p--;
 | |
| 	if (p <= q)
 | |
| 	    break;
 | |
| 	for (r = p; r-- > q ;) {
 | |
| 	    int i;
 | |
| 
 | |
| 	    i = 2 * *r + carry;
 | |
| 	    if (i >= 10)
 | |
| 		carry = 1, i -= 10;
 | |
| 	    else
 | |
| 		carry = 0;
 | |
| 	    *r = i;
 | |
| 	}
 | |
| 	if (carry)
 | |
| 	    *m |= bit, started = TRUE;
 | |
| 	if (started) {
 | |
| 	    if (bit == 1)
 | |
| 		bit = 0x8000, m++;
 | |
| 	    else
 | |
| 		bit >>= 1;
 | |
| 	} else
 | |
| 	    twopwr--;
 | |
|     }
 | |
|     twopwr += tenpwr;
 | |
| 
 | |
|     /*
 | |
|      * At this point the `mant' array contains the first six
 | |
|      * fractional places of a base-2^16 real number, which when
 | |
|      * multiplied by 2^twopwr and 5^tenpwr gives X. So now we
 | |
|      * really do multiply by 5^tenpwr.
 | |
|      */
 | |
| 
 | |
|     if (tenpwr < 0) {
 | |
| 	for (m=mult; m<mult+MANT_WORDS; m++)
 | |
| 	    *m = 0xCCCC;
 | |
| 	extratwos = -2;
 | |
| 	tenpwr = -tenpwr;
 | |
|     } else if (tenpwr > 0) {
 | |
| 	mult[0] = 0xA000;
 | |
| 	for (m=mult+1; m<mult+MANT_WORDS; m++)
 | |
| 	    *m = 0;
 | |
| 	extratwos = 3;
 | |
|     } else
 | |
| 	extratwos = 0;
 | |
|     while (tenpwr) {
 | |
| 	if (tenpwr & 1)
 | |
| 	    twopwr += extratwos + ieee_multiply (mant, mult);
 | |
| 	extratwos = extratwos * 2 + ieee_multiply (mult, mult);
 | |
| 	tenpwr >>= 1;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Conversion is done. The elements of `mant' contain the first
 | |
|      * fractional places of a base-2^16 real number in [0.5,1)
 | |
|      * which we can multiply by 2^twopwr to get X. Or, of course,
 | |
|      * it contains zero.
 | |
|      */
 | |
|     *exponent = twopwr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Shift a mantissa to the right by i (i < 16) bits.
 | |
|  */
 | |
| static void ieee_shr(unsigned short *mant, int i) 
 | |
| {
 | |
|     unsigned short n = 0, m;
 | |
|     int            j;
 | |
| 
 | |
|     for (j=0; j<MANT_WORDS; j++) {
 | |
| 	m = (mant[j] << (16-i)) & 0xFFFF;
 | |
| 	mant[j] = (mant[j] >> i) | n;
 | |
| 	n = m;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Round a mantissa off after i words.
 | |
|  */
 | |
| static int ieee_round(unsigned short *mant, int i) 
 | |
| {
 | |
|     if (mant[i] & 0x8000) {
 | |
| 	do {
 | |
| 	    ++mant[--i];
 | |
| 	    mant[i] &= 0xFFFF;
 | |
| 	} while (i > 0 && !mant[i]);
 | |
| 	return !i && !mant[i];
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #define put(a,b) ( (*(a)=(b)), ((a)[1]=(b)>>8) )
 | |
| 
 | |
| static int to_double(char *str, long sign, unsigned char *result,
 | |
| 		     efunc error) 
 | |
| {
 | |
|     unsigned short mant[MANT_WORDS];
 | |
|     long exponent;
 | |
| 
 | |
|     sign = (sign < 0 ? 0x8000L : 0L);
 | |
| 
 | |
|     ieee_flconvert (str, mant, &exponent, error);
 | |
|     if (mant[0] & 0x8000) {
 | |
| 	/*
 | |
| 	 * Non-zero.
 | |
| 	 */
 | |
| 	exponent--;
 | |
| 	if (exponent >= -1022 && exponent <= 1024) {
 | |
| 	    /*
 | |
| 	     * Normalised.
 | |
| 	     */
 | |
| 	    exponent += 1023;
 | |
| 	    ieee_shr(mant, 11);
 | |
| 	    ieee_round(mant, 4);
 | |
| 	    if (mant[0] & 0x20)	       /* did we scale up by one? */
 | |
| 		ieee_shr(mant, 1), exponent++;
 | |
| 	    mant[0] &= 0xF;	       /* remove leading one */
 | |
| 	    put(result+6,(exponent << 4) | mant[0] | sign);
 | |
| 	    put(result+4,mant[1]);
 | |
| 	    put(result+2,mant[2]);
 | |
| 	    put(result+0,mant[3]);
 | |
| 	} else if (exponent < -1022 && exponent >= -1074) {
 | |
| 	    /*
 | |
| 	     * Denormal.
 | |
| 	     */
 | |
| 	    int shift = -(exponent+1011);
 | |
| 	    int sh = shift % 16, wds = shift / 16;
 | |
| 	    ieee_shr(mant, sh);
 | |
| 	    if (ieee_round(mant, 4-wds) || (sh>0 && (mant[0]&(0x8000>>(sh-1))))) {
 | |
| 		ieee_shr(mant, 1);
 | |
| 		if (sh==0)
 | |
| 		    mant[0] |= 0x8000;
 | |
| 		exponent++;
 | |
| 	    }
 | |
| 	    put(result+6,(wds == 0 ? mant[0] : 0) | sign);
 | |
| 	    put(result+4,(wds <= 1 ? mant[1-wds] : 0));
 | |
| 	    put(result+2,(wds <= 2 ? mant[2-wds] : 0));
 | |
| 	    put(result+0,(wds <= 3 ? mant[3-wds] : 0));
 | |
| 	} else {
 | |
| 	    if (exponent > 0) {
 | |
| 		error(ERR_NONFATAL, "overflow in floating-point constant");
 | |
| 		return 0;
 | |
| 	    } else
 | |
| 		memset (result, 0, 8);
 | |
| 	}
 | |
|     } else {
 | |
| 	/*
 | |
| 	 * Zero.
 | |
| 	 */
 | |
| 	memset (result, 0, 8);
 | |
|     }
 | |
|     return 1;			       /* success */
 | |
| }
 | |
| 
 | |
| static int to_float(char *str, long sign, unsigned char *result,
 | |
| 		    efunc error) 
 | |
| {
 | |
|     unsigned short mant[MANT_WORDS];
 | |
|     long exponent;
 | |
| 
 | |
|     sign = (sign < 0 ? 0x8000L : 0L);
 | |
| 
 | |
|     ieee_flconvert (str, mant, &exponent, error);
 | |
|     if (mant[0] & 0x8000) {
 | |
| 	/*
 | |
| 	 * Non-zero.
 | |
| 	 */
 | |
| 	exponent--;
 | |
| 	if (exponent >= -126 && exponent <= 128) {
 | |
| 	    /*
 | |
| 	     * Normalised.
 | |
| 	     */
 | |
| 	    exponent += 127;
 | |
| 	    ieee_shr(mant, 8);
 | |
| 	    ieee_round(mant, 2);
 | |
| 	    if (mant[0] & 0x100)       /* did we scale up by one? */
 | |
| 		ieee_shr(mant, 1), exponent++;
 | |
| 	    mant[0] &= 0x7F;	       /* remove leading one */
 | |
| 	    put(result+2,(exponent << 7) | mant[0] | sign);
 | |
| 	    put(result+0,mant[1]);
 | |
| 	} else if (exponent < -126 && exponent >= -149) {
 | |
| 	    /*
 | |
| 	     * Denormal.
 | |
| 	     */
 | |
| 	    int shift = -(exponent+118);
 | |
| 	    int sh = shift % 16, wds = shift / 16;
 | |
| 	    ieee_shr(mant, sh);
 | |
| 	    if (ieee_round(mant, 2-wds) || (sh>0 && (mant[0]&(0x8000>>(sh-1))))) {
 | |
| 		ieee_shr(mant, 1);
 | |
| 		if (sh==0)
 | |
| 		    mant[0] |= 0x8000;
 | |
| 		exponent++;
 | |
| 	    }
 | |
| 	    put(result+2,(wds == 0 ? mant[0] : 0) | sign);
 | |
| 	    put(result+0,(wds <= 1 ? mant[1-wds] : 0));
 | |
| 	} else {
 | |
| 	    if (exponent > 0) {
 | |
| 		error(ERR_NONFATAL, "overflow in floating-point constant");
 | |
| 		return 0;
 | |
| 	    } else
 | |
| 		memset (result, 0, 4);
 | |
| 	}
 | |
|     } else {
 | |
| 	memset (result, 0, 4);
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int to_ldoub(char *str, long sign, unsigned char *result,
 | |
| 		    efunc error) 
 | |
| {
 | |
|     unsigned short mant[MANT_WORDS];
 | |
|     long exponent;
 | |
| 
 | |
|     sign = (sign < 0 ? 0x8000L : 0L);
 | |
| 
 | |
|     ieee_flconvert (str, mant, &exponent, error);
 | |
|     if (mant[0] & 0x8000) {
 | |
| 	/*
 | |
| 	 * Non-zero.
 | |
| 	 */
 | |
| 	exponent--;
 | |
| 	if (exponent >= -16383 && exponent <= 16384) {
 | |
| 	    /*
 | |
| 	     * Normalised.
 | |
| 	     */
 | |
| 	    exponent += 16383;
 | |
| 	    if (ieee_round(mant, 4))	       /* did we scale up by one? */
 | |
| 		ieee_shr(mant, 1), mant[0] |= 0x8000, exponent++;
 | |
| 	    put(result+8,exponent | sign);
 | |
| 	    put(result+6,mant[0]);
 | |
| 	    put(result+4,mant[1]);
 | |
| 	    put(result+2,mant[2]);
 | |
| 	    put(result+0,mant[3]);
 | |
| 	} else if (exponent < -16383 && exponent >= -16446) {
 | |
| 	    /*
 | |
| 	     * Denormal.
 | |
| 	     */
 | |
| 	    int shift = -(exponent+16383);
 | |
| 	    int sh = shift % 16, wds = shift / 16;
 | |
| 	    ieee_shr(mant, sh);
 | |
| 	    if (ieee_round(mant, 4-wds) || (sh>0 && (mant[0]&(0x8000>>(sh-1))))) {
 | |
| 		ieee_shr(mant, 1);
 | |
| 		if (sh==0)
 | |
| 		    mant[0] |= 0x8000;
 | |
| 		exponent++;
 | |
| 	    }
 | |
| 	    put(result+8,sign);
 | |
| 	    put(result+6,(wds == 0 ? mant[0] : 0));
 | |
| 	    put(result+4,(wds <= 1 ? mant[1-wds] : 0));
 | |
| 	    put(result+2,(wds <= 2 ? mant[2-wds] : 0));
 | |
| 	    put(result+0,(wds <= 3 ? mant[3-wds] : 0));
 | |
| 	} else {
 | |
| 	    if (exponent > 0) {
 | |
| 		error(ERR_NONFATAL, "overflow in floating-point constant");
 | |
| 		return 0;
 | |
| 	    } else
 | |
| 		memset (result, 0, 10);
 | |
| 	}
 | |
|     } else {
 | |
| 	/*
 | |
| 	 * Zero.
 | |
| 	 */
 | |
| 	memset (result, 0, 10);
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int float_const (char *number, long sign, unsigned char *result, int bytes,
 | |
| 		 efunc error) 
 | |
| {
 | |
|     if (bytes == 4)
 | |
| 	return to_float (number, sign, result, error);
 | |
|     else if (bytes == 8)
 | |
| 	return to_double (number, sign, result, error);
 | |
|     else if (bytes == 10)
 | |
| 	return to_ldoub (number, sign, result, error);
 | |
|     else {
 | |
| 	error(ERR_PANIC, "strange value %d passed to float_const", bytes);
 | |
| 	return 0;
 | |
|     }
 | |
| }
 |