mirror of
https://github.com/netwide-assembler/nasm.git
synced 2025-07-24 10:25:42 -04:00
These functions are only used in assemble.c, so make them static. Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
4157 lines
124 KiB
C
4157 lines
124 KiB
C
/* ----------------------------------------------------------------------- *
|
|
*
|
|
* Copyright 1996-2024 The NASM Authors - All Rights Reserved
|
|
* See the file AUTHORS included with the NASM distribution for
|
|
* the specific copyright holders.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
|
|
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
|
|
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
|
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* ----------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* assemble.c code generation for the Netwide Assembler
|
|
*
|
|
* The entry points to this module are insn_size() for the non-final
|
|
* passes, and assemble() for the final pass.
|
|
*/
|
|
|
|
#include "compiler.h"
|
|
|
|
|
|
#include "nasm.h"
|
|
#include "nasmlib.h"
|
|
#include "error.h"
|
|
#include "assemble.h"
|
|
#include "insns.h"
|
|
#include "tables.h"
|
|
#include "disp8.h"
|
|
#include "listing.h"
|
|
#include "dbginfo.h"
|
|
|
|
enum match_result {
|
|
/*
|
|
* Matching errors. These should be sorted so that more specific
|
|
* errors (higher priority) come later in the sequence.
|
|
*/
|
|
MERR_INVALOP,
|
|
MERR_OPSIZEINVAL,
|
|
MERR_OPSIZEMISSING,
|
|
MERR_OPSIZEMISMATCH,
|
|
MERR_BRNOTHERE,
|
|
MERR_BRNUMMISMATCH,
|
|
MERR_MASKNOTHERE,
|
|
MERR_DECONOTHERE,
|
|
MERR_BADZU,
|
|
MERR_MEMZU,
|
|
MERR_BADNF,
|
|
MERR_REQNF,
|
|
MERR_BADCPU,
|
|
MERR_BADMODE,
|
|
MERR_BADHLE,
|
|
MERR_ENCMISMATCH,
|
|
MERR_BADBND,
|
|
MERR_BADREPNE,
|
|
MERR_REGSETSIZE,
|
|
MERR_REGSET,
|
|
MERR_WRONGIMM,
|
|
|
|
/*
|
|
* Matching successes in decreasing order of fuzziness;
|
|
* the fuzziness factor amounts to the factors (normally
|
|
* operands) fuzzed.
|
|
*/
|
|
MOK_FIRST, /* First successful anything */
|
|
|
|
MOK_FUZZY8,
|
|
MOK_FUZZY7, /* Matching unconditionally OK */
|
|
MOK_FUZZY6,
|
|
MOK_FUZZY5,
|
|
MOK_FUZZY4,
|
|
MOK_FUZZY3,
|
|
MOK_FUZZY2,
|
|
MOK_FUZZY1,
|
|
MOK_GOOD
|
|
};
|
|
|
|
#define GEN_SIB(scale, index, base) \
|
|
(((scale) << 6) | ((index) << 3) | ((base)))
|
|
|
|
#define GEN_MODRM(mod, reg, rm) \
|
|
(((mod) << 6) | (((reg) & 7) << 3) | ((rm) & 7))
|
|
|
|
static int64_t assemble(insn *instruction);
|
|
static int64_t insn_size(insn *instruction);
|
|
|
|
static int64_t calcsize(insn *, const struct itemplate *);
|
|
static int emit_prefixes(struct out_data *data, const insn *ins);
|
|
static void gencode(struct out_data *data, insn *ins);
|
|
static enum match_result find_match(const struct itemplate **tempp,
|
|
insn *instruction);
|
|
static enum match_result matches(const struct itemplate *, const insn *);
|
|
static opflags_t regflag(const operand *);
|
|
static int32_t regval(const operand *);
|
|
static uint32_t rexflags(int, opflags_t, uint32_t);
|
|
static uint32_t op_rexflags(const operand *, uint32_t);
|
|
static uint32_t op_evexflags(const operand *, uint32_t);
|
|
static void insn_early_setup(insn *);
|
|
|
|
static int process_ea(operand *input, int rfield, opflags_t rflags,
|
|
insn *ins, enum ea_type expected,
|
|
const char **errmsgp);
|
|
|
|
/* Convert a prefix to a byte value */
|
|
static int prefix_byte(enum prefixes pfx, const int bits);
|
|
|
|
/*
|
|
* Convert operand/address/mode size to a BITS opflag constant.
|
|
* This is not valid for 80+ bits!
|
|
*/
|
|
static inline opflags_t mode_to_op(unsigned int bits)
|
|
{
|
|
nasm_static_assert((BITS8 >> SIZE_SHIFT) == 1);
|
|
nasm_static_assert(BITS16 == (BITS8 << 1));
|
|
nasm_static_assert(BITS32 == (BITS8 << 2));
|
|
nasm_static_assert(BITS64 == (BITS8 << 3));
|
|
|
|
return (opflags_t)bits << (SIZE_SHIFT - 3);
|
|
}
|
|
|
|
/*
|
|
* Return any of REX_[BXR]1 corresponding to non-GPR registers by
|
|
* masking them with the REX_[BXR]V flags.
|
|
*/
|
|
static inline const_func uint32_t rex_highvec(uint32_t rexflags)
|
|
{
|
|
return rexflags & (rexflags >> 4) & REX_BXR1;
|
|
}
|
|
|
|
/* Get the pointer to an operand if it exits */
|
|
static inline struct operand *get_operand(insn *ins, unsigned int n)
|
|
{
|
|
if (n >= (unsigned int)ins->operands)
|
|
return NULL;
|
|
else
|
|
return &ins->oprs[n];
|
|
}
|
|
|
|
static inline const struct operand *
|
|
get_operand_const(const insn *ins, unsigned int n)
|
|
{
|
|
if (n >= (unsigned int)ins->operands)
|
|
return NULL;
|
|
else
|
|
return &ins->oprs[n];
|
|
}
|
|
|
|
static inline bool absolute_op(const struct operand *o)
|
|
{
|
|
return o && o->segment == NO_SEG && o->wrt == NO_SEG &&
|
|
!(o->opflags & OPFLAG_RELATIVE);
|
|
}
|
|
|
|
static int has_prefix(const insn * ins, enum prefix_pos pos, int prefix)
|
|
{
|
|
return ins->prefixes[pos] == prefix;
|
|
}
|
|
|
|
static int assert_no_prefix(insn * ins, enum prefix_pos pos)
|
|
{
|
|
if (ins->prefixes[pos]) {
|
|
nasm_nonfatal("invalid %s prefix", prefix_name(ins->prefixes[pos]));
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static const char *size_name(int size)
|
|
{
|
|
switch (size) {
|
|
case 1:
|
|
return "byte";
|
|
case 2:
|
|
return "word";
|
|
case 4:
|
|
return "dword";
|
|
case 8:
|
|
return "qword";
|
|
case 10:
|
|
return "tword";
|
|
case 16:
|
|
return "oword";
|
|
case 32:
|
|
return "yword";
|
|
case 64:
|
|
return "zword";
|
|
default:
|
|
return "???";
|
|
}
|
|
}
|
|
|
|
static void warn_overflow(int size, const char *prefix, const char *suffix)
|
|
{
|
|
const char *pfxsp, *sufsp;
|
|
|
|
pfxsp = sufsp = " ";
|
|
if (!prefix)
|
|
prefix = ++pfxsp;
|
|
if (!suffix)
|
|
suffix = ++sufsp;
|
|
|
|
nasm_warn(ERR_PASS2 | WARN_NUMBER_OVERFLOW,
|
|
"%s%s%s%s%s exceeds bounds",
|
|
prefix, pfxsp, size_name(size), sufsp, suffix);
|
|
}
|
|
|
|
static void warn_overflow_const(int64_t data, int size)
|
|
{
|
|
if (overflow_general(data, size))
|
|
warn_overflow(size, NULL, NULL);
|
|
}
|
|
|
|
static void warn_overflow_out(int64_t data, int size,
|
|
enum out_flags flags, const char *what)
|
|
{
|
|
bool err;
|
|
const char *prefix;
|
|
|
|
if (flags & OUT_NOWARN)
|
|
return;
|
|
|
|
if (flags & OUT_SIGNED) {
|
|
prefix = "signed";
|
|
err = overflow_signed(data, size);
|
|
} else if (flags & OUT_UNSIGNED) {
|
|
prefix = "unsigned";
|
|
err = overflow_unsigned(data, size);
|
|
} else {
|
|
prefix = NULL;
|
|
err = overflow_general(data, size);
|
|
}
|
|
|
|
if (err)
|
|
warn_overflow(size, prefix, what);
|
|
}
|
|
|
|
/*
|
|
* Collect macro-related debug information, if applicable.
|
|
*/
|
|
static void debug_macro_out(const struct out_data *data)
|
|
{
|
|
struct debug_macro_addr *addr;
|
|
uint64_t start = data->loc.offset;
|
|
uint64_t end = start + data->size;
|
|
|
|
addr = debug_macro_get_addr(data->loc.segment);
|
|
while (addr) {
|
|
if (!addr->len)
|
|
addr->start = start;
|
|
addr->len = end - addr->start;
|
|
addr = addr->up;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This routine wrappers the real output format's output routine,
|
|
* in order to pass a copy of the data off to the listing file
|
|
* generator at the same time, flatten unnecessary relocations,
|
|
* and verify backend compatibility.
|
|
*/
|
|
/*
|
|
* This warning is currently issued by backends, but in the future
|
|
* this code should be centralized.
|
|
*
|
|
*!zeroing [on] \c{RES}\e{x} in initialized section becomes zero
|
|
*! a \c{RES}\e{x} directive was used in a section which contains
|
|
*! initialized data, and the output format does not support
|
|
*! this. Instead, this will be replaced with explicit zero
|
|
*! content, which may produce a large output file.
|
|
*/
|
|
static void out(struct out_data *data)
|
|
{
|
|
static struct last_debug_info {
|
|
struct src_location where;
|
|
int32_t segment;
|
|
} dbg;
|
|
union {
|
|
uint8_t b[8];
|
|
uint64_t q;
|
|
} xdata;
|
|
size_t asize, amax;
|
|
uint64_t zeropad = 0;
|
|
int64_t addrval;
|
|
int32_t fixseg; /* Segment for which to produce fixed data */
|
|
|
|
if (!data->size)
|
|
return; /* Nothing to do */
|
|
|
|
/*
|
|
* Convert addresses to RAWDATA if possible
|
|
* XXX: not all backends want this for global symbols!!!!
|
|
*/
|
|
switch (data->type) {
|
|
case OUT_ADDRESS:
|
|
addrval = data->toffset;
|
|
fixseg = NO_SEG; /* Absolute address is fixed data */
|
|
goto address;
|
|
|
|
case OUT_RELADDR:
|
|
addrval = data->toffset - data->relbase;
|
|
fixseg = data->loc.segment; /* Our own segment is fixed data */
|
|
goto address;
|
|
|
|
address:
|
|
nasm_assert(data->size <= 8);
|
|
asize = data->size;
|
|
amax = ofmt->maxbits >> 3; /* Maximum address size in bytes */
|
|
if (data->tsegment == fixseg && data->twrt == NO_SEG) {
|
|
if (!(ofmt->flags & OFMT_KEEP_ADDR)) {
|
|
if (asize >= (size_t)(data->bits >> 3)) {
|
|
/* Support address space wrapping for low-bit modes */
|
|
data->flags &= ~OUT_SIGNMASK;
|
|
}
|
|
warn_overflow_out(addrval, asize, data->flags, data->what);
|
|
xdata.q = cpu_to_le64(addrval);
|
|
data->data = xdata.b;
|
|
data->type = OUT_RAWDATA;
|
|
asize = amax = 0; /* No longer an address */
|
|
}
|
|
} else {
|
|
/*!
|
|
*!reloc-abs-byte [off] 8-bit absolute section-crossing relocation
|
|
*! warns that an 8-bit absolute relocation that could
|
|
*! not be resolved at assembly time was generated in
|
|
*! the output format.
|
|
*!
|
|
*! This is usually normal, but may not be handled by all
|
|
*! possible target environments
|
|
*/
|
|
/*!
|
|
*!reloc-abs-word [off] 16-bit absolute section-crossing relocation
|
|
*! warns that a 16-bit absolute relocation that could
|
|
*! not be resolved at assembly time was generated in
|
|
*! the output format.
|
|
*!
|
|
*! This is usually normal, but may not be handled by all
|
|
*! possible target environments
|
|
*/
|
|
/*!
|
|
*!reloc-abs-dword [off] 32-bit absolute section-crossing relocation
|
|
*! warns that a 32-bit absolute relocation that could
|
|
*! not be resolved at assembly time was generated in
|
|
*! the output format.
|
|
*!
|
|
*! This is usually normal, but may not be handled by all
|
|
*! possible target environments
|
|
*/
|
|
/*!
|
|
*!reloc-abs-qword [off] 64-bit absolute section-crossing relocation
|
|
*! warns that a 64-bit absolute relocation that could
|
|
*! not be resolved at assembly time was generated in
|
|
*! the output format.
|
|
*!
|
|
*! This is usually normal, but may not be handled by all
|
|
*! possible target environments
|
|
*/
|
|
/*!
|
|
*!reloc-rel-byte [off] 8-bit relative section-crossing relocation
|
|
*! warns that an 8-bit relative relocation that could
|
|
*! not be resolved at assembly time was generated in
|
|
*! the output format.
|
|
*!
|
|
*! This is usually normal, but may not be handled by all
|
|
*! possible target environments
|
|
*/
|
|
/*!
|
|
*!reloc-rel-word [off] 16-bit relative section-crossing relocation
|
|
*! warns that a 16-bit relative relocation that could
|
|
*! not be resolved at assembly time was generated in
|
|
*! the output format.
|
|
*!
|
|
*! This is usually normal, but may not be handled by all
|
|
*! possible target environments
|
|
*/
|
|
/*!
|
|
*!reloc-rel-dword [off] 32-bit relative section-crossing relocation
|
|
*! warns that a 32-bit relative relocation that could
|
|
*! not be resolved at assembly time was generated in
|
|
*! the output format.
|
|
*!
|
|
*! This is usually normal, but may not be handled by all
|
|
*! possible target environments
|
|
*/
|
|
/*!
|
|
*!reloc-rel-qword [off] 64-bit relative section-crossing relocation
|
|
*! warns that an 64-bit relative relocation that could
|
|
*! not be resolved at assembly time was generated in
|
|
*! the output format.
|
|
*!
|
|
*! This is usually normal, but may not be handled by all
|
|
*! possible target environments
|
|
*/
|
|
int warn;
|
|
const char *type;
|
|
|
|
switch (data->type) {
|
|
case OUT_ADDRESS:
|
|
type = "absolute";
|
|
switch (asize) {
|
|
case 1: warn = WARN_RELOC_ABS_BYTE; break;
|
|
case 2: warn = WARN_RELOC_ABS_WORD; break;
|
|
case 4: warn = WARN_RELOC_ABS_DWORD; break;
|
|
case 8: warn = WARN_RELOC_ABS_QWORD; break;
|
|
default: panic();
|
|
}
|
|
break;
|
|
case OUT_RELADDR:
|
|
type = "relative";
|
|
switch (asize) {
|
|
case 1: warn = WARN_RELOC_REL_BYTE; break;
|
|
case 2: warn = WARN_RELOC_REL_WORD; break;
|
|
case 4: warn = WARN_RELOC_REL_DWORD; break;
|
|
case 8: warn = WARN_RELOC_REL_QWORD; break;
|
|
default: panic();
|
|
}
|
|
break;
|
|
default:
|
|
warn = 0;
|
|
}
|
|
|
|
if (warn) {
|
|
nasm_warn(warn, "%u-bit %s section-crossing relocation",
|
|
(unsigned int)(asize << 3), type);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case OUT_SEGMENT:
|
|
nasm_assert(data->size <= 8);
|
|
asize = data->size;
|
|
amax = 2;
|
|
break;
|
|
|
|
default:
|
|
asize = amax = 0; /* Not an address */
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If the source location or output segment has changed,
|
|
* let the debug backend know. Some backends really don't
|
|
* like being given a NULL filename as can happen if we
|
|
* use -Lb and expand a macro, so filter out that case.
|
|
*/
|
|
data->where = src_where();
|
|
if (data->where.filename &&
|
|
(!src_location_same(data->where, dbg.where) |
|
|
(data->loc.segment != dbg.segment))) {
|
|
dbg.where = data->where;
|
|
dbg.segment = data->loc.segment;
|
|
dfmt->linenum(dbg.where.filename, dbg.where.lineno, data->loc.segment);
|
|
}
|
|
|
|
if (asize > amax) {
|
|
if (data->type == OUT_RELADDR || (data->flags & OUT_SIGNED)) {
|
|
nasm_nonfatal("%u-bit signed relocation unsupported by output format %s",
|
|
(unsigned int)(asize << 3), ofmt->shortname);
|
|
} else {
|
|
/*!
|
|
*!zext-reloc [on] relocation zero-extended to match output format
|
|
*! warns that a relocation has been zero-extended due
|
|
*! to limitations in the output format.
|
|
*/
|
|
nasm_warn(WARN_ZEXT_RELOC,
|
|
"%u-bit %s relocation zero-extended from %u bits",
|
|
(unsigned int)(asize << 3),
|
|
data->type == OUT_SEGMENT ? "segment" : "unsigned",
|
|
(unsigned int)(amax << 3));
|
|
}
|
|
zeropad = data->size - amax;
|
|
data->size = amax;
|
|
}
|
|
lfmt->output(data);
|
|
|
|
if (likely(data->loc.segment != NO_SEG)) {
|
|
/*
|
|
* Collect macro-related information for the debugger, if applicable
|
|
*/
|
|
if (debug_current_macro)
|
|
debug_macro_out(data);
|
|
|
|
ofmt->output(data);
|
|
} else {
|
|
/* Outputting to ABSOLUTE section - only reserve is permitted */
|
|
if (data->type != OUT_RESERVE)
|
|
nasm_nonfatal("attempt to assemble code in [ABSOLUTE] space");
|
|
/* No need to push to the backend */
|
|
}
|
|
|
|
/* Prepare for the next instruction */
|
|
data->loc.offset += data->size;
|
|
data->insoffs += data->size;
|
|
|
|
if (zeropad) {
|
|
data->type = OUT_ZERODATA;
|
|
data->size = zeropad;
|
|
lfmt->output(data);
|
|
ofmt->output(data);
|
|
data->loc.offset += zeropad;
|
|
data->insoffs += zeropad;
|
|
data->size += zeropad; /* Restore original size value */
|
|
}
|
|
|
|
/* FOr the next time... */
|
|
data->what = NULL;
|
|
}
|
|
|
|
static inline void out_rawdata(struct out_data *data, const void *rawdata,
|
|
size_t size)
|
|
{
|
|
data->type = OUT_RAWDATA;
|
|
data->data = rawdata;
|
|
data->size = size;
|
|
out(data);
|
|
}
|
|
|
|
static void out_rawbyte(struct out_data *data, uint8_t byte)
|
|
{
|
|
data->type = OUT_RAWDATA;
|
|
data->data = &byte;
|
|
data->size = 1;
|
|
out(data);
|
|
}
|
|
|
|
static void out_rawword(struct out_data *data, uint16_t value)
|
|
{
|
|
uint16_t buf = cpu_to_le16(value);
|
|
data->type = OUT_RAWDATA;
|
|
data->data = &buf;
|
|
data->size = 2;
|
|
out(data);
|
|
}
|
|
|
|
static void out_rawdword(struct out_data *data, uint32_t value)
|
|
{
|
|
uint32_t buf = cpu_to_le32(value);
|
|
data->type = OUT_RAWDATA;
|
|
data->data = &buf;
|
|
data->size = 4;
|
|
out(data);
|
|
}
|
|
|
|
static inline void out_reserve(struct out_data *data, uint64_t size)
|
|
{
|
|
data->type = OUT_RESERVE;
|
|
data->size = size;
|
|
out(data);
|
|
}
|
|
|
|
static void out_segment(struct out_data *data, const struct operand *opx)
|
|
{
|
|
if (opx->opflags & OPFLAG_RELATIVE)
|
|
nasm_nonfatal("segment references cannot be relative");
|
|
|
|
data->type = OUT_SEGMENT;
|
|
data->flags = OUT_UNSIGNED;
|
|
data->size = 2;
|
|
data->toffset = opx->offset;
|
|
data->tsegment = ofmt->segbase(opx->segment | 1);
|
|
data->twrt = opx->wrt;
|
|
out(data);
|
|
}
|
|
|
|
static void out_imm(struct out_data *data, const struct operand *opx,
|
|
int size, enum out_flags sign)
|
|
{
|
|
if (opx->segment != NO_SEG && (opx->segment & 1)) {
|
|
/*
|
|
* This is actually a segment reference, but eval() has
|
|
* already called ofmt->segbase() for us. Sigh.
|
|
*/
|
|
if (size < 2)
|
|
nasm_nonfatal("segment reference must be 16 bits");
|
|
|
|
data->type = OUT_SEGMENT;
|
|
} else {
|
|
data->type = (opx->opflags & OPFLAG_RELATIVE)
|
|
? OUT_RELADDR : OUT_ADDRESS;
|
|
}
|
|
data->flags = sign;
|
|
data->toffset = opx->offset;
|
|
data->tsegment = opx->segment;
|
|
data->twrt = opx->wrt;
|
|
/*
|
|
* XXX: improve this if at some point in the future we can
|
|
* distinguish the subtrahend in expressions like [foo - bar]
|
|
* where bar is a symbol in the current segment. However, at the
|
|
* current point, if OPFLAG_RELATIVE is set that subtraction has
|
|
* already occurred.
|
|
*/
|
|
data->relbase = 0;
|
|
data->size = size;
|
|
out(data);
|
|
}
|
|
|
|
static void out_reladdr(struct out_data *data, const struct operand *opx,
|
|
int size)
|
|
{
|
|
if (opx->opflags & OPFLAG_RELATIVE)
|
|
nasm_nonfatal("invalid use of self-relative expression");
|
|
|
|
data->type = OUT_RELADDR;
|
|
data->flags = OUT_SIGNED;
|
|
data->size = size;
|
|
data->toffset = opx->offset;
|
|
data->tsegment = opx->segment;
|
|
data->twrt = opx->wrt;
|
|
data->relbase = data->loc.offset + (data->inslen - data->insoffs);
|
|
out(data);
|
|
}
|
|
|
|
/* This is a real hack. The jcc8 or jmp8 byte code must come first. */
|
|
static enum match_result jmp_match(const struct itemplate *temp, const insn *ins)
|
|
{
|
|
const struct operand * const op0 = get_operand_const(ins, 0);
|
|
int64_t delta;
|
|
|
|
if (op0->type & STRICT)
|
|
return MERR_INVALOP;
|
|
|
|
if (unlikely(ins->opt & (OPTIM_NO_Jcc_RELAX|OPTIM_NO_JMP_RELAX))) {
|
|
const uint8_t c = temp->code[0];
|
|
switch (c) {
|
|
case 0370:
|
|
if (ins->opt & OPTIM_NO_Jcc_RELAX)
|
|
return MERR_INVALOP;
|
|
break;
|
|
case 0371:
|
|
if (ins->opt & OPTIM_NO_JMP_RELAX)
|
|
return MERR_INVALOP;
|
|
break;
|
|
default:
|
|
return MERR_INVALOP;
|
|
}
|
|
}
|
|
|
|
if (op0->opflags & OPFLAG_UNKNOWN) {
|
|
/* Be optimistic in pass 1 */
|
|
return MOK_GOOD;
|
|
}
|
|
|
|
if (op0->segment != ins->loc.segment) {
|
|
/* Cross-segment jump */
|
|
return MERR_INVALOP;
|
|
}
|
|
|
|
/*
|
|
* An instruction with a rel8 operand can only range between 2 and
|
|
* 15 bytes. If that is guaranteed true or false, there is no
|
|
* reason to go through the process of calculating the exact
|
|
* instruction size.
|
|
*
|
|
* Note that the instruction size is to be *subtracted* from the
|
|
* initial (beginning-of-instruction) delta value.
|
|
*/
|
|
delta = op0->offset - ins->loc.offset;
|
|
if (delta - 2 < -128 || delta - 15 > 127) {
|
|
/* This cannot be a byte-sized jump */
|
|
return MERR_INVALOP;
|
|
} else if (delta - 15 >= -128 && delta - 2 <= 127) {
|
|
/* It is guaranteed to be a valid byte-sized jump, no need to test */
|
|
} else {
|
|
/*
|
|
* Need to do this the hard way.
|
|
*
|
|
* However, calcsize() can modify the instruction structure,
|
|
* but after a mismatch we have to revert to the original
|
|
* state, so make a copy here and hold error messages.
|
|
*/
|
|
int64_t isize;
|
|
insn tmpins;
|
|
errhold hold;
|
|
|
|
tmpins = *ins;
|
|
tmpins.dummy = true;
|
|
hold = nasm_error_hold_push();
|
|
|
|
isize = calcsize(&tmpins, temp);
|
|
|
|
if (nasm_error_hold_pop(hold, false) >= ERR_NONFATAL)
|
|
return MERR_INVALOP;
|
|
if (isize < 0)
|
|
return MERR_INVALOP;
|
|
delta -= isize;
|
|
if ((int8_t)delta != delta)
|
|
return MERR_INVALOP;
|
|
}
|
|
|
|
return MOK_GOOD;
|
|
}
|
|
|
|
static inline int64_t merge_resb(insn *ins, int64_t isize)
|
|
{
|
|
int nbytes = resb_bytes(ins->opcode);
|
|
|
|
if (likely(!nbytes))
|
|
return isize;
|
|
|
|
if (isize != nbytes * ins->oprs[0].offset)
|
|
return isize; /* Has prefixes of some sort */
|
|
|
|
ins->oprs[0].offset *= ins->times;
|
|
isize *= ins->times;
|
|
ins->times = 1;
|
|
return isize;
|
|
}
|
|
|
|
/* This must be handle non-power-of-2 alignment values */
|
|
static inline size_t pad_bytes(size_t len, size_t align)
|
|
{
|
|
size_t partial = len % align;
|
|
return partial ? align - partial : 0;
|
|
}
|
|
|
|
static void out_eops(struct out_data *data, const extop *e)
|
|
{
|
|
while (e) {
|
|
size_t dup = e->dup;
|
|
|
|
switch (e->type) {
|
|
case EOT_NOTHING:
|
|
break;
|
|
|
|
case EOT_EXTOP:
|
|
while (dup--)
|
|
out_eops(data, e->val.subexpr);
|
|
break;
|
|
|
|
case EOT_DB_NUMBER:
|
|
if (e->elem > 8) {
|
|
nasm_nonfatal("integer supplied as %d-bit data",
|
|
e->elem << 3);
|
|
} else {
|
|
while (dup--) {
|
|
data->insoffs = 0;
|
|
data->inslen = data->size = e->elem;
|
|
data->tsegment = e->val.num.segment;
|
|
data->toffset = e->val.num.offset;
|
|
data->twrt = e->val.num.wrt;
|
|
data->relbase = 0;
|
|
if (e->val.num.segment != NO_SEG &&
|
|
(e->val.num.segment & 1)) {
|
|
data->type = OUT_SEGMENT;
|
|
data->flags = OUT_UNSIGNED;
|
|
} else {
|
|
data->type = e->val.num.relative
|
|
? OUT_RELADDR : OUT_ADDRESS;
|
|
data->flags = OUT_WRAP;
|
|
}
|
|
out(data);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case EOT_DB_FLOAT:
|
|
case EOT_DB_STRING:
|
|
case EOT_DB_STRING_FREE:
|
|
{
|
|
size_t pad, len;
|
|
|
|
pad = pad_bytes(e->val.string.len, e->elem);
|
|
len = e->val.string.len + pad;
|
|
|
|
while (dup--) {
|
|
data->insoffs = 0;
|
|
data->inslen = len;
|
|
out_rawdata(data, e->val.string.data, e->val.string.len);
|
|
if (pad)
|
|
out_rawdata(data, zero_buffer, pad);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case EOT_DB_RESERVE:
|
|
data->insoffs = 0;
|
|
data->inslen = dup * e->elem;
|
|
out_reserve(data, data->inslen);
|
|
break;
|
|
}
|
|
|
|
e = e->next;
|
|
}
|
|
}
|
|
|
|
/* This is totally just a wild guess what is reasonable... */
|
|
#define INCBIN_MAX_BUF (ZERO_BUF_SIZE * 16)
|
|
|
|
static int64_t assemble(insn *instruction)
|
|
{
|
|
struct out_data data;
|
|
const struct itemplate *temp;
|
|
enum match_result m;
|
|
const int64_t start = instruction->loc.offset;
|
|
const int bits = instruction->bits;
|
|
|
|
if (instruction->opcode == I_none)
|
|
return 0;
|
|
|
|
nasm_zero(data);
|
|
data.loc = instruction->loc;
|
|
data.bits = instruction->bits;
|
|
|
|
if (opcode_is_db(instruction->opcode)) {
|
|
out_eops(&data, instruction->eops);
|
|
} else if (instruction->opcode == I_INCBIN) {
|
|
const char *fname = instruction->eops->val.string.data;
|
|
FILE *fp;
|
|
size_t t = instruction->times; /* INCBIN handles TIMES by itself */
|
|
off_t base = 0;
|
|
off_t len;
|
|
const void *map = NULL;
|
|
char *buf = NULL;
|
|
size_t blk = 0; /* Buffered I/O block size */
|
|
size_t m = 0; /* Bytes last read */
|
|
|
|
if (!t)
|
|
goto done;
|
|
|
|
fp = nasm_open_read(fname, NF_BINARY|NF_FORMAP);
|
|
if (!fp) {
|
|
nasm_nonfatal("`incbin': unable to open file `%s'",
|
|
fname);
|
|
goto done;
|
|
}
|
|
|
|
len = nasm_file_size(fp);
|
|
|
|
if (len == (off_t)-1) {
|
|
nasm_nonfatal("`incbin': unable to get length of file `%s'",
|
|
fname);
|
|
goto close_done;
|
|
}
|
|
|
|
if (instruction->eops->next) {
|
|
base = instruction->eops->next->val.num.offset;
|
|
if (base >= len) {
|
|
len = 0;
|
|
} else {
|
|
len -= base;
|
|
if (instruction->eops->next->next &&
|
|
len > (off_t)instruction->eops->next->next->val.num.offset)
|
|
len = (off_t)instruction->eops->next->next->val.num.offset;
|
|
}
|
|
}
|
|
|
|
lfmt->set_offset(data.loc.offset);
|
|
lfmt->uplevel(LIST_INCBIN, len);
|
|
|
|
if (!len)
|
|
goto end_incbin;
|
|
|
|
/* Try to map file data */
|
|
map = nasm_map_file(fp, base, len);
|
|
if (!map) {
|
|
blk = len < (off_t)INCBIN_MAX_BUF ? (size_t)len : INCBIN_MAX_BUF;
|
|
buf = nasm_malloc(blk);
|
|
}
|
|
|
|
while (t--) {
|
|
/*
|
|
* Consider these irrelevant for INCBIN, since it is fully
|
|
* possible that these might be (way) bigger than an int
|
|
* can hold; there is, however, no reason to widen these
|
|
* types just for INCBIN. data.inslen == 0 signals to the
|
|
* backend that these fields are meaningless, if at all
|
|
* needed.
|
|
*/
|
|
data.insoffs = 0;
|
|
data.inslen = 0;
|
|
|
|
if (map) {
|
|
out_rawdata(&data, map, len);
|
|
} else if ((off_t)m == len) {
|
|
out_rawdata(&data, buf, len);
|
|
} else {
|
|
off_t l = len;
|
|
|
|
if (fseeko(fp, base, SEEK_SET) < 0 || ferror(fp)) {
|
|
nasm_nonfatal("`incbin': unable to seek on file `%s'",
|
|
fname);
|
|
goto end_incbin;
|
|
}
|
|
while (l > 0) {
|
|
m = fread(buf, 1, l < (off_t)blk ? (size_t)l : blk, fp);
|
|
if (!m || feof(fp)) {
|
|
/*
|
|
* This shouldn't happen unless the file
|
|
* actually changes while we are reading
|
|
* it.
|
|
*/
|
|
nasm_nonfatal("`incbin': unexpected EOF while"
|
|
" reading file `%s'", fname);
|
|
goto end_incbin;
|
|
}
|
|
out_rawdata(&data, buf, m);
|
|
l -= m;
|
|
}
|
|
}
|
|
}
|
|
end_incbin:
|
|
lfmt->downlevel(LIST_INCBIN);
|
|
if (instruction->times > 1) {
|
|
lfmt->uplevel(LIST_TIMES, instruction->times);
|
|
lfmt->downlevel(LIST_TIMES);
|
|
}
|
|
if (ferror(fp)) {
|
|
nasm_nonfatal("`incbin': error while"
|
|
" reading file `%s'", fname);
|
|
}
|
|
close_done:
|
|
if (buf)
|
|
nasm_free(buf);
|
|
if (map)
|
|
nasm_unmap_file(map, len);
|
|
fclose(fp);
|
|
done:
|
|
instruction->times = 1; /* Tell the upper layer not to iterate */
|
|
;
|
|
} else {
|
|
/* "Real" instruction */
|
|
|
|
/* Pre-match instruction structure update */
|
|
insn_early_setup(instruction);
|
|
|
|
m = find_match(&temp, instruction);
|
|
|
|
if (m >= MOK_GOOD) {
|
|
/* Matches! */
|
|
if (unlikely(itemp_has(temp, IF_OBSOLETE))) {
|
|
errflags warning;
|
|
const char *whathappened;
|
|
const char *validity;
|
|
bool never = itemp_has(temp, IF_NEVER);
|
|
|
|
/*
|
|
* If IF_OBSOLETE is set, warn the user. Different
|
|
* warning classes for "obsolete but valid for this
|
|
* specific CPU" and "obsolete and gone."
|
|
*
|
|
*!obsolete-removed [on] instruction obsolete and removed on the target CPU
|
|
*! warns for an instruction which has been removed
|
|
*! from the architecture, and is no longer included
|
|
*! in the CPU definition given in the \c{[CPU]}
|
|
*! directive, for example \c{POP CS}, the opcode for
|
|
*! which, \c{0Fh}, instead is an opcode prefix on
|
|
*! CPUs newer than the first generation 8086.
|
|
*
|
|
*!obsolete-nop [on] instruction obsolete and is a noop on the target CPU
|
|
*! warns for an instruction which has been removed
|
|
*! from the architecture, but has been architecturally
|
|
*! defined to be a noop for future CPUs.
|
|
*
|
|
*!obsolete-valid [on] instruction obsolete but valid on the target CPU
|
|
*! warns for an instruction which has been removed
|
|
*! from the architecture, but is still valid on the
|
|
*! specific CPU given in the \c{CPU} directive. Code
|
|
*! using these instructions is most likely not
|
|
*! forward compatible.
|
|
*/
|
|
|
|
whathappened = never ? "never implemented" : "obsolete";
|
|
|
|
if (!never && !iflag_cmp_cpu_level(&insns_flags[temp->iflag_idx], &cpu)) {
|
|
warning = WARN_OBSOLETE_VALID;
|
|
validity = "but valid on";
|
|
} else if (itemp_has(temp, IF_NOP)) {
|
|
warning = WARN_OBSOLETE_NOP;
|
|
validity = "and is a noop on";
|
|
} else {
|
|
warning = WARN_OBSOLETE_REMOVED;
|
|
validity = never ? "and invalid on" : "and removed from";
|
|
}
|
|
|
|
nasm_warn(warning, "instruction %s %s the target CPU",
|
|
whathappened, validity);
|
|
}
|
|
|
|
data.inslen = calcsize(instruction, temp);
|
|
nasm_assert(data.inslen >= 0);
|
|
data.inslen = merge_resb(instruction, data.inslen);
|
|
|
|
data.insoffs = 0;
|
|
gencode(&data, instruction);
|
|
if (unlikely(data.insoffs != data.inslen)) {
|
|
nasm_nonfatal("instruction length changed during code generation (%u -> %u)",
|
|
(unsigned int)data.insoffs, (unsigned int)data.inslen);
|
|
}
|
|
|
|
nasm_assert(data.loc.offset - start == data.inslen);
|
|
} else {
|
|
/* No match */
|
|
switch (m) {
|
|
case MERR_INVALOP:
|
|
default:
|
|
nasm_nonfatal("invalid combination of opcode and operands");
|
|
break;
|
|
case MERR_OPSIZEINVAL:
|
|
nasm_nonfatal("invalid operand sizes for instruction");
|
|
break;
|
|
case MERR_OPSIZEMISSING:
|
|
nasm_nonfatal("operation size not specified");
|
|
break;
|
|
case MERR_OPSIZEMISMATCH:
|
|
nasm_nonfatal("mismatch in operand sizes");
|
|
break;
|
|
case MERR_BRNOTHERE:
|
|
nasm_nonfatal("broadcast not permitted on this operand");
|
|
break;
|
|
case MERR_BRNUMMISMATCH:
|
|
nasm_nonfatal("mismatch in the number of broadcasting elements");
|
|
break;
|
|
case MERR_MASKNOTHERE:
|
|
nasm_nonfatal("mask not permitted on this operand");
|
|
break;
|
|
case MERR_DECONOTHERE:
|
|
nasm_nonfatal("unsupported mode decorator for instruction");
|
|
break;
|
|
case MERR_BADCPU:
|
|
nasm_nonfatal("no instruction for this cpu level");
|
|
break;
|
|
case MERR_BADMODE:
|
|
nasm_nonfatal("instruction not supported in %d-bit mode", bits);
|
|
break;
|
|
case MERR_ENCMISMATCH:
|
|
if (!instruction->prefixes[PPS_REX]) {
|
|
nasm_nonfatal("instruction not encodable without explicit prefix");
|
|
} else {
|
|
nasm_nonfatal("instruction not encodable with %s prefix",
|
|
prefix_name(instruction->prefixes[PPS_REX]));
|
|
}
|
|
break;
|
|
case MERR_BADBND:
|
|
case MERR_BADREPNE:
|
|
nasm_nonfatal("%s prefix is not allowed",
|
|
prefix_name(instruction->prefixes[PPS_REP]));
|
|
break;
|
|
case MERR_REGSETSIZE:
|
|
nasm_nonfatal("invalid register set size");
|
|
break;
|
|
case MERR_REGSET:
|
|
nasm_nonfatal("register set not valid for operand");
|
|
break;
|
|
case MERR_WRONGIMM:
|
|
nasm_nonfatal("operand/operator invalid for this instruction");
|
|
break;
|
|
case MERR_BADZU:
|
|
nasm_nonfatal("{zu} not applicable to this instruction");
|
|
break;
|
|
case MERR_MEMZU:
|
|
nasm_nonfatal("{zu} invalid for non-register destination");
|
|
break;
|
|
case MERR_BADNF:
|
|
nasm_nonfatal("{nf} not available for this instruction");
|
|
break;
|
|
case MERR_REQNF:
|
|
nasm_nonfatal("{nf} required for this instruction");
|
|
break;
|
|
}
|
|
|
|
instruction->times = 1; /* Avoid repeated error messages */
|
|
}
|
|
}
|
|
return data.loc.offset - start;
|
|
}
|
|
|
|
static int32_t eops_typeinfo(const extop *e)
|
|
{
|
|
int32_t typeinfo = 0;
|
|
|
|
while (e) {
|
|
switch (e->type) {
|
|
case EOT_NOTHING:
|
|
break;
|
|
|
|
case EOT_EXTOP:
|
|
typeinfo |= eops_typeinfo(e->val.subexpr);
|
|
break;
|
|
|
|
case EOT_DB_FLOAT:
|
|
switch (e->elem) {
|
|
case 1: typeinfo |= TY_BYTE; break;
|
|
case 2: typeinfo |= TY_WORD; break;
|
|
case 4: typeinfo |= TY_FLOAT; break;
|
|
case 8: typeinfo |= TY_QWORD; break; /* double? */
|
|
case 10: typeinfo |= TY_TBYTE; break; /* long double? */
|
|
case 16: typeinfo |= TY_YWORD; break;
|
|
case 32: typeinfo |= TY_ZWORD; break;
|
|
default: break;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
switch (e->elem) {
|
|
case 1: typeinfo |= TY_BYTE; break;
|
|
case 2: typeinfo |= TY_WORD; break;
|
|
case 4: typeinfo |= TY_DWORD; break;
|
|
case 8: typeinfo |= TY_QWORD; break;
|
|
case 10: typeinfo |= TY_TBYTE; break;
|
|
case 16: typeinfo |= TY_YWORD; break;
|
|
case 32: typeinfo |= TY_ZWORD; break;
|
|
default: break;
|
|
}
|
|
break;
|
|
}
|
|
e = e->next;
|
|
}
|
|
|
|
return typeinfo;
|
|
}
|
|
|
|
static inline void debug_set_db_type(insn *instruction)
|
|
{
|
|
|
|
int32_t typeinfo = TYS_ELEMENTS(instruction->operands);
|
|
|
|
typeinfo |= eops_typeinfo(instruction->eops);
|
|
dfmt->debug_typevalue(typeinfo);
|
|
}
|
|
|
|
static void debug_set_type(insn *instruction)
|
|
{
|
|
int32_t typeinfo;
|
|
|
|
if (opcode_is_resb(instruction->opcode)) {
|
|
typeinfo = TYS_ELEMENTS(instruction->oprs[0].offset);
|
|
|
|
switch (instruction->opcode) {
|
|
case I_RESB:
|
|
typeinfo |= TY_BYTE;
|
|
break;
|
|
case I_RESW:
|
|
typeinfo |= TY_WORD;
|
|
break;
|
|
case I_RESD:
|
|
typeinfo |= TY_DWORD;
|
|
break;
|
|
case I_RESQ:
|
|
typeinfo |= TY_QWORD;
|
|
break;
|
|
case I_REST:
|
|
typeinfo |= TY_TBYTE;
|
|
break;
|
|
case I_RESO:
|
|
typeinfo |= TY_OWORD;
|
|
break;
|
|
case I_RESY:
|
|
typeinfo |= TY_YWORD;
|
|
break;
|
|
case I_RESZ:
|
|
typeinfo |= TY_ZWORD;
|
|
break;
|
|
default:
|
|
panic();
|
|
}
|
|
} else {
|
|
typeinfo = TY_LABEL;
|
|
}
|
|
|
|
dfmt->debug_typevalue(typeinfo);
|
|
}
|
|
|
|
/* Proecess an EQU directive */
|
|
static void define_equ(insn * instruction)
|
|
{
|
|
if (!instruction->label) {
|
|
nasm_nonfatal("EQU not preceded by label");
|
|
} else if (instruction->operands == 1 &&
|
|
(instruction->oprs[0].type & IMMEDIATE) &&
|
|
instruction->oprs[0].wrt == NO_SEG) {
|
|
define_label(instruction->label,
|
|
instruction->oprs[0].segment,
|
|
instruction->oprs[0].offset, false);
|
|
} else if (instruction->operands == 2
|
|
&& (instruction->oprs[0].type & IMMEDIATE)
|
|
&& (instruction->oprs[0].type & COLON)
|
|
&& instruction->oprs[0].segment == NO_SEG
|
|
&& instruction->oprs[0].wrt == NO_SEG
|
|
&& (instruction->oprs[1].type & IMMEDIATE)
|
|
&& instruction->oprs[1].segment == NO_SEG
|
|
&& instruction->oprs[1].wrt == NO_SEG) {
|
|
define_label(instruction->label,
|
|
instruction->oprs[0].offset | SEG_ABS,
|
|
instruction->oprs[1].offset, false);
|
|
} else {
|
|
nasm_nonfatal("bad syntax for EQU");
|
|
}
|
|
}
|
|
|
|
static int64_t len_extops(const extop *e)
|
|
{
|
|
int64_t isize = 0;
|
|
size_t pad;
|
|
|
|
while (e) {
|
|
switch (e->type) {
|
|
case EOT_NOTHING:
|
|
break;
|
|
|
|
case EOT_EXTOP:
|
|
isize += e->dup * len_extops(e->val.subexpr);
|
|
break;
|
|
|
|
case EOT_DB_STRING:
|
|
case EOT_DB_STRING_FREE:
|
|
case EOT_DB_FLOAT:
|
|
pad = pad_bytes(e->val.string.len, e->elem);
|
|
isize += e->dup * (e->val.string.len + pad);
|
|
break;
|
|
|
|
case EOT_DB_NUMBER:
|
|
warn_overflow_const(e->val.num.offset, e->elem);
|
|
isize += e->dup * e->elem;
|
|
break;
|
|
|
|
case EOT_DB_RESERVE:
|
|
isize += e->dup * e->elem;
|
|
break;
|
|
}
|
|
|
|
e = e->next;
|
|
}
|
|
|
|
return isize;
|
|
}
|
|
|
|
static int64_t insn_size(insn *instruction)
|
|
{
|
|
const struct itemplate *temp;
|
|
enum match_result m;
|
|
int64_t isize = 0;
|
|
|
|
if (instruction->opcode == I_none) {
|
|
return 0;
|
|
} else if (instruction->opcode == I_EQU) {
|
|
define_equ(instruction);
|
|
return 0;
|
|
} else if (opcode_is_db(instruction->opcode)) {
|
|
isize = len_extops(instruction->eops);
|
|
debug_set_db_type(instruction);
|
|
return isize;
|
|
} else if (instruction->opcode == I_INCBIN) {
|
|
const extop *e = instruction->eops;
|
|
const char *fname = e->val.string.data;
|
|
off_t len;
|
|
|
|
len = nasm_file_size_by_path(fname);
|
|
if (len == (off_t)-1) {
|
|
nasm_nonfatal("`incbin': unable to get length of file `%s'",
|
|
fname);
|
|
return 0;
|
|
}
|
|
|
|
e = e->next;
|
|
if (e) {
|
|
if (len <= (off_t)e->val.num.offset) {
|
|
len = 0;
|
|
} else {
|
|
len -= e->val.num.offset;
|
|
e = e->next;
|
|
if (e && len > (off_t)e->val.num.offset) {
|
|
len = (off_t)e->val.num.offset;
|
|
}
|
|
}
|
|
}
|
|
|
|
len *= instruction->times;
|
|
instruction->times = 1; /* Tell the upper layer to not iterate */
|
|
|
|
return len;
|
|
} else {
|
|
/* Normal instruction, or RESx */
|
|
|
|
/* Pre-matching setup */
|
|
insn_early_setup(instruction);
|
|
|
|
m = find_match(&temp, instruction);
|
|
if (m < MOK_GOOD)
|
|
return -1; /* No match */
|
|
|
|
isize = calcsize(instruction, temp);
|
|
debug_set_type(instruction);
|
|
isize = merge_resb(instruction, isize);
|
|
|
|
return isize;
|
|
}
|
|
}
|
|
|
|
static void bad_hle_warn(const insn * ins, uint8_t hleok)
|
|
{
|
|
enum prefixes rep_pfx = ins->prefixes[PPS_REP];
|
|
enum whatwarn { w_none, w_lock, w_inval } ww;
|
|
static const enum whatwarn warn[2][4] =
|
|
{
|
|
{ w_inval, w_inval, w_none, w_lock }, /* XACQUIRE */
|
|
{ w_inval, w_none, w_none, w_lock }, /* XRELEASE */
|
|
};
|
|
unsigned int n;
|
|
|
|
n = (unsigned int)rep_pfx - P_XACQUIRE;
|
|
if (n > 1)
|
|
return; /* Not XACQUIRE/XRELEASE */
|
|
|
|
ww = warn[n][hleok];
|
|
if (!is_class(MEMORY, ins->oprs[0].type))
|
|
ww = w_inval; /* HLE requires operand 0 to be memory */
|
|
|
|
/*!
|
|
*!prefix-hle [on] invalid HLE prefix
|
|
*!=hle
|
|
*! warns about invalid use of the HLE \c{XACQUIRE} or \c{XRELEASE}
|
|
*! prefixes.
|
|
*/
|
|
switch (ww) {
|
|
case w_none:
|
|
break;
|
|
|
|
case w_lock:
|
|
if (ins->prefixes[PPS_LOCK] != P_LOCK) {
|
|
nasm_warn(WARN_PREFIX_HLE|ERR_PASS2,
|
|
"%s with this instruction requires lock",
|
|
prefix_name(rep_pfx));
|
|
}
|
|
break;
|
|
|
|
case w_inval:
|
|
nasm_warn(WARN_PREFIX_HLE|ERR_PASS2,
|
|
"%s invalid with this instruction",
|
|
prefix_name(rep_pfx));
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int ea_evex_err(decoflags_t deco, unsigned int vlen, const char *why)
|
|
{
|
|
const char *what = deco & ER
|
|
? "embedded rounding" : "suppress all exceptions";
|
|
nasm_nonfatal("%s not possible for %d-bit vectors%s",
|
|
what, 128 << vlen, why);
|
|
return -1;
|
|
}
|
|
|
|
/* Handle EVEX flags at the time of EA processing */
|
|
static int ea_evex_flags(insn *ins, const struct operand *opy)
|
|
{
|
|
/* EVEX.b1 : evex_brerop contains the operand position */
|
|
const struct operand *op_er_sae = ins->evex_brerop;
|
|
const decoflags_t deco = op_er_sae ? op_er_sae->decoflags : 0;
|
|
|
|
if (deco & (ER | SAE)) {
|
|
if (!itemp_has(ins->itemp, IF_LIG)) {
|
|
const unsigned int vlen = (ins->evex & EVEX_P2RC) >> 29;
|
|
const char *why = "";
|
|
|
|
switch (vlen) {
|
|
case 2:
|
|
/* 512 bits, no special encoding */
|
|
break;
|
|
case 1:
|
|
/* 256 bits, encodable in AVX 10.2 if mod=3 */
|
|
if (!iflag_test(&cpu, IF_AVX10_2)) {
|
|
why = " without AVX 10.2";
|
|
} else {
|
|
ins->evex ^= EVEX_P1U;
|
|
break;
|
|
}
|
|
/* else fall through */
|
|
default:
|
|
/* Not encodable */
|
|
return ea_evex_err(deco, vlen, why);
|
|
}
|
|
}
|
|
|
|
ins->evex &= ~EVEX_P2RC;
|
|
ins->evex ^= EVEX_P2B;
|
|
if (op_er_sae->decoflags & ER) {
|
|
/* set EVEX.RC (rounding control) */
|
|
ins->evex ^= ((ins->evex_rm - BRC_RN) << 29) & EVEX_P2RC;
|
|
}
|
|
} else if (opy->decoflags & BRDCAST_MASK) {
|
|
/* set EVEX.b but don't EVEX.L/RC */
|
|
ins->evex ^= EVEX_P2B;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ea_evex_post_check(const insn *ins)
|
|
{
|
|
const struct operand *op_er_sae = ins->evex_brerop;
|
|
const decoflags_t deco = op_er_sae ? op_er_sae->decoflags : 0;
|
|
|
|
if ((deco & (ER | SAE)) && !itemp_has(ins->itemp, IF_LIG)) {
|
|
const unsigned int vlen = (ins->evex & EVEX_P2RC) >> 29;
|
|
|
|
if (vlen == 1 && (ins->ea.modrm >> 6) != 3) {
|
|
return ea_evex_err(deco, vlen, " when accessing memory");
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Common construct */
|
|
#define case3(x) case (x): case (x)+1: case (x)+2
|
|
#define case4(x) case3(x): case (x)+3
|
|
|
|
static int64_t calcsize(insn *ins, const struct itemplate * const temp)
|
|
{
|
|
const int bits = ins->bits;
|
|
const uint8_t *codes = temp->code;
|
|
int64_t length = 0;
|
|
uint8_t c;
|
|
int op1, op2;
|
|
struct operand *opx, *opy;
|
|
uint8_t opex = 0;
|
|
enum ea_type eat;
|
|
uint8_t hleok = 0;
|
|
bool lockcheck = true;
|
|
enum reg_enum mib_index = R_none; /* For a separate index reg form */
|
|
const char *errmsg;
|
|
int need_pfx[MAXPREFIX];
|
|
int opt_opsize = 0;
|
|
|
|
ins->rex = 0; /* Ensure REX is reset */
|
|
ins->evex = 0; /* Ensure EVEX is reset */
|
|
ins->vexreg = 0; /* No V register */
|
|
ins->vex_cm = 0; /* No implicit map */
|
|
ins->bits = bits; /* Execution mode (default asize) */
|
|
ins->itemp = temp; /* Instruction template */
|
|
eat = EA_SCALAR; /* Expect a scalar EA */
|
|
|
|
/* Default operand size */
|
|
ins->op_size = bits != 16 ? 32 : 16;
|
|
|
|
nasm_zero(need_pfx);
|
|
|
|
while (*codes) {
|
|
c = *codes++;
|
|
op1 = (c & 3) + ((opex & 1) << 2);
|
|
opx = get_operand(ins, op1);
|
|
op2 = ((c >> 3) & 3) + ((opex & 2) << 1);
|
|
opy = NULL;
|
|
opex = 0; /* For the next iteration */
|
|
|
|
switch (c) {
|
|
case4(01):
|
|
codes += c, length += c;
|
|
break;
|
|
|
|
case3(05):
|
|
opex = c;
|
|
break;
|
|
|
|
case4(010):
|
|
ins->rex |= op_rexflags(opx, REX_rB);
|
|
codes++, length++;
|
|
break;
|
|
|
|
case4(014):
|
|
/* this is an index reg of a split SIB operand */
|
|
mib_index = opx->basereg;
|
|
break;
|
|
|
|
case4(020):
|
|
case4(024):
|
|
length++;
|
|
break;
|
|
|
|
case4(030):
|
|
length += 2;
|
|
break;
|
|
|
|
case4(034):
|
|
if (opx->type & (BITS16 | BITS32 | BITS64))
|
|
length += (opx->type & BITS16) ? 2 : 4;
|
|
else
|
|
length += (bits == 16) ? 2 : 4;
|
|
break;
|
|
|
|
case4(040):
|
|
length += 4;
|
|
break;
|
|
|
|
case4(044):
|
|
length += ins->addr_size >> 3;
|
|
break;
|
|
|
|
case4(050):
|
|
length++;
|
|
break;
|
|
|
|
case4(054):
|
|
length += 8; /* MOV reg64/imm */
|
|
break;
|
|
|
|
case4(060):
|
|
length += 2;
|
|
break;
|
|
|
|
case4(064):
|
|
if (opx->type & (BITS16 | BITS32 | BITS64))
|
|
length += (opx->type & BITS16) ? 2 : 4;
|
|
else
|
|
length += (bits == 16) ? 2 : 4;
|
|
break;
|
|
|
|
case4(070):
|
|
length += 4;
|
|
break;
|
|
|
|
case4(074):
|
|
length += 2;
|
|
break;
|
|
|
|
case 0171:
|
|
c = *codes++;
|
|
op2 = (op2 & ~3) | ((c >> 3) & 3);
|
|
opy = get_operand(ins, op2);
|
|
ins->rex |= op_rexflags(opy, REX_rR);
|
|
length++;
|
|
break;
|
|
|
|
case 0172:
|
|
case 0173:
|
|
codes++;
|
|
length++;
|
|
break;
|
|
|
|
case4(0174):
|
|
length++;
|
|
break;
|
|
|
|
case4(0240):
|
|
ins->vexreg = regval(opx);
|
|
goto evex_common;
|
|
|
|
case 0250:
|
|
ins->vexreg = 0;
|
|
goto evex_common;
|
|
|
|
evex_common:
|
|
ins->rex |= REX_EV;
|
|
ins->evex = 0x62;
|
|
ins->evex += *codes++ << 8;
|
|
ins->evex += *codes++ << 16;
|
|
ins->evex += *codes++ << 24;
|
|
ins->evex_tuple = (*codes++ - 0300);
|
|
ins->vex_cm = ((ins->evex >> 8) & 7) | (RV_EVEX << 6);
|
|
break;
|
|
|
|
case4(0254):
|
|
case4(0264):
|
|
length += 4;
|
|
break;
|
|
|
|
case4(0260):
|
|
ins->vexreg = regval(opx);
|
|
goto vex_common;
|
|
|
|
case 0270:
|
|
ins->vexreg = 0;
|
|
goto vex_common;
|
|
|
|
vex_common:
|
|
ins->rex |= REX_V;
|
|
ins->vex_cm = *codes++;
|
|
ins->vex_wlp = *codes++;
|
|
break;
|
|
|
|
case3(0271):
|
|
hleok = c & 3;
|
|
break;
|
|
|
|
case4(0274):
|
|
length++;
|
|
break;
|
|
|
|
case4(0300):
|
|
length++;
|
|
break;
|
|
|
|
case 0310:
|
|
{
|
|
enum prefixes pfx = ins->prefixes[PPS_ASIZE];
|
|
|
|
ins->addr_size = 16;
|
|
|
|
if (bits == 64)
|
|
return -1;
|
|
if (pfx) {
|
|
if (!(pfx == P_A16 || (bits == 32 && pfx == P_ASP)))
|
|
return -1;
|
|
} else {
|
|
ins->prefixes[PPS_ASIZE] = P_A16;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case 0311:
|
|
{
|
|
enum prefixes pfx = ins->prefixes[PPS_ASIZE];
|
|
|
|
ins->addr_size = 32;
|
|
|
|
if (pfx) {
|
|
if (!(pfx == P_A32 || (bits != 32 && pfx == P_ASP)))
|
|
return -1;
|
|
} else {
|
|
ins->prefixes[PPS_ASIZE] = P_A32;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case 0312:
|
|
break;
|
|
|
|
case 0313:
|
|
{
|
|
enum prefixes pfx = ins->prefixes[PPS_ASIZE];
|
|
|
|
ins->addr_size = 64;
|
|
|
|
if (bits != 64 || (pfx && pfx != P_A64))
|
|
return -1;
|
|
else
|
|
ins->prefixes[PPS_ASIZE] = P_A64;
|
|
break;
|
|
}
|
|
|
|
case4(0314):
|
|
break;
|
|
|
|
case 0320:
|
|
is_o16:
|
|
{
|
|
/*! prefix-opsize [on] invalid operand size prefix
|
|
*! warns that an operand prefix (\c{o16}, \c{o32}, \c{o64},
|
|
*! \c{osp}) invalid for the specified instruction has been specified.
|
|
*! The operand prefix will be ignored by the assembler.
|
|
*/
|
|
enum prefixes pfx = ins->prefixes[PPS_OSIZE];
|
|
ins->op_size = 16;
|
|
if (bits != 16 && pfx == P_OSP) {
|
|
/* Allow osp prefix as is */
|
|
} else if (pfx != P_none && pfx != P_O16) {
|
|
nasm_warn(WARN_PREFIX_OPSIZE|ERR_PASS2,
|
|
"invalid operand size prefix %s, must be o16",
|
|
prefix_name(pfx));
|
|
} else if (!(opt_opsize & 16)) {
|
|
ins->prefixes[PPS_OSIZE] = P_O16;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case 0321:
|
|
is_o32:
|
|
{
|
|
enum prefixes pfx = ins->prefixes[PPS_OSIZE];
|
|
ins->op_size = 32;
|
|
if (ins->rex & REX_NW) {
|
|
nasm_nonfatalf(ERR_PASS2,
|
|
"instruction not valid with 32-bit operand size");
|
|
return -1;
|
|
} else if (bits == 16 && pfx == P_OSP) {
|
|
/* Allow osp prefix as is */
|
|
} else if (pfx != P_none && pfx != P_O32) {
|
|
nasm_warn(WARN_PREFIX_OPSIZE|ERR_PASS2,
|
|
"invalid operand size prefix %s, must be o32",
|
|
prefix_name(pfx));
|
|
} else if (!(opt_opsize & 32)) {
|
|
ins->prefixes[PPS_OSIZE] = P_O32;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case 0322:
|
|
break;
|
|
|
|
case 0327:
|
|
if (bits == 64) {
|
|
ins->rex |= REX_NW;
|
|
if (ins->op_size == 32)
|
|
ins->op_size = 64;
|
|
}
|
|
break;
|
|
|
|
case 0323:
|
|
ins->rex |= REX_NW;
|
|
/* fall through */
|
|
|
|
case 0324:
|
|
is_o64:
|
|
{
|
|
enum prefixes pfx = ins->prefixes[PPS_OSIZE];
|
|
ins->op_size = 64;
|
|
if (pfx == P_OSP) {
|
|
/* If osp is specified, leave it, but force REX.W */
|
|
if (!(ins->rex & REX_NW))
|
|
ins->rex |= REX_W;
|
|
} else if (pfx != P_none && pfx != P_O64) {
|
|
nasm_warn(WARN_PREFIX_OPSIZE|ERR_PASS2,
|
|
"invalid operand size prefix %s, must be o64",
|
|
prefix_name(pfx));
|
|
} else if (!(opt_opsize & 64)) {
|
|
ins->prefixes[PPS_OSIZE] = P_O64;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case 0325:
|
|
ins->rex |= REX_NH;
|
|
break;
|
|
|
|
case 0326:
|
|
break;
|
|
|
|
case 0330:
|
|
switch (ins->prefixes[PPS_OSIZE]) {
|
|
case P_none:
|
|
switch (ins->op_size) {
|
|
case 16: goto is_o16;
|
|
case 32: goto is_o32;
|
|
case 64: goto is_o64;
|
|
default: panic(); break;
|
|
}
|
|
break;
|
|
case P_OSP:
|
|
if (bits == 16)
|
|
goto is_o32;
|
|
else
|
|
goto is_o16;
|
|
case P_O16:
|
|
goto is_o16;
|
|
case P_O32:
|
|
goto is_o32;
|
|
case P_O64:
|
|
goto is_o64;
|
|
default:
|
|
panic();
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case 0331:
|
|
ins->need_pfx[PPS_REP] = PFE_NULL;
|
|
break;
|
|
|
|
case 0332:
|
|
ins->need_pfx[PPS_REP] = 0xf2;
|
|
break;
|
|
|
|
case 0333:
|
|
ins->need_pfx[PPS_REP] = 0xf3;
|
|
break;
|
|
|
|
case 0334:
|
|
ins->rex |= REX_L; /* Ignored in 64-bit mode */
|
|
break;
|
|
|
|
case 0335:
|
|
break;
|
|
|
|
case 0336:
|
|
if (!(optimizing & OPTIM_STRICT_OSIZE))
|
|
opt_opsize = 16|32|64;
|
|
break;
|
|
|
|
case 0337:
|
|
if (!(optimizing & OPTIM_STRICT_OSIZE))
|
|
opt_opsize = 64;
|
|
break;
|
|
|
|
case 0340:
|
|
/*!
|
|
*!forward [on] forward reference may have unpredictable results
|
|
*! warns that a forward reference is used which may have
|
|
*! unpredictable results, notably in a \c{RESB}-type
|
|
*! pseudo-instruction. These would be \i\e{critical
|
|
*! expressions} (see \k{crit}) but are permitted in a
|
|
*! handful of cases for compatibility with older
|
|
*! versions of NASM. This warning should be treated as a
|
|
*! severe programming error as the code could break at
|
|
*! any time for any number of reasons.
|
|
*/
|
|
/* The bytecode ends in 0, so opx points to operand 0 */
|
|
if (!absolute_op(opx)) {
|
|
nasm_nonfatal("attempt to reserve non-constant"
|
|
" quantity of memory");
|
|
return -1;
|
|
} else if (opx->opflags & OPFLAG_FORWARD) {
|
|
nasm_warn(WARN_FORWARD, "forward reference in %s "
|
|
"can have unpredictable results",
|
|
nasm_insn_names[ins->opcode]);
|
|
}
|
|
|
|
length += opx->offset * resb_bytes(ins->opcode);
|
|
break;
|
|
|
|
case 0341:
|
|
if (!ins->prefixes[PPS_WAIT])
|
|
ins->prefixes[PPS_WAIT] = P_WAIT;
|
|
break;
|
|
|
|
case 0344:
|
|
ins->rex |= REX_P | REX_B;
|
|
break;
|
|
|
|
case 0345:
|
|
ins->rex |= REX_P | REX_X;
|
|
break;
|
|
|
|
case 0346:
|
|
ins->rex |= REX_P | REX_R;
|
|
break;
|
|
|
|
case 0347:
|
|
ins->rex |= REX_P | REX_W;
|
|
break;
|
|
|
|
case 0350:
|
|
ins->rex |= REX_P | REX_2;
|
|
break;
|
|
|
|
case 0351:
|
|
ins->rex |= REX_P | REX_2 | REX_X1;
|
|
break;
|
|
|
|
case3(0355):
|
|
/* Set opmap for legacy and REX2 encodings */
|
|
ins->vex_cm = c & 3;
|
|
break;
|
|
|
|
case 0360:
|
|
ins->need_pfx[PPS_REP] = PFE_NULL;
|
|
ins->need_pfx[PPS_OSIZE] = PFE_NULL;
|
|
break;
|
|
|
|
case 0361:
|
|
ins->need_pfx[PPS_REP] = PFE_NULL;
|
|
/* fall through */
|
|
case 0366:
|
|
ins->need_pfx[PPS_OSIZE] = 0x66;
|
|
break;
|
|
|
|
case 0364:
|
|
ins->need_pfx[PPS_OSIZE] = PFE_NULL;
|
|
break;
|
|
|
|
case 0365:
|
|
ins->need_pfx[PPS_ASIZE] = PFE_NULL;
|
|
break;
|
|
|
|
case 0367:
|
|
ins->need_pfx[PPS_ASIZE] = 0x67;
|
|
break;
|
|
|
|
case 0370:
|
|
break;
|
|
|
|
case 0371:
|
|
if (ins->prefixes[PPS_REP] == P_BND) {
|
|
/* jmp short (opcode eb) cannot be used with bnd prefix. */
|
|
ins->prefixes[PPS_REP] = P_none;
|
|
/*!
|
|
*!prefix-bnd [on] invalid \c{BND} prefix
|
|
*!=bnd
|
|
*! warns about ineffective use of the \c{BND} prefix when the
|
|
*! \c{JMP} instruction is converted to the \c{SHORT} form.
|
|
*! This should be extremely rare since the short \c{JMP} only
|
|
*! is applicable to jumps inside the same module, but if
|
|
*! it is legitimate, it may be necessary to use
|
|
*! \c{bnd jmp dword}.
|
|
*/
|
|
if (!ins->dummy)
|
|
nasm_warn(WARN_PREFIX_BND|ERR_PASS2 ,
|
|
"jmp short does not init bnd regs - bnd prefix dropped");
|
|
}
|
|
break;
|
|
|
|
case 0373:
|
|
length++;
|
|
break;
|
|
|
|
case 0374:
|
|
eat = EA_XMMVSIB;
|
|
break;
|
|
|
|
case 0375:
|
|
eat = EA_YMMVSIB;
|
|
break;
|
|
|
|
case 0376:
|
|
eat = EA_ZMMVSIB;
|
|
break;
|
|
|
|
case4(0100):
|
|
case4(0110):
|
|
case4(0120):
|
|
case4(0130):
|
|
case4(0200):
|
|
case4(0204):
|
|
case4(0210):
|
|
case4(0214):
|
|
case4(0220):
|
|
case4(0224):
|
|
case4(0230):
|
|
case4(0234):
|
|
{
|
|
int rfield;
|
|
opflags_t rflags;
|
|
|
|
opy = get_operand(ins, op2);
|
|
|
|
ins->ea.rex = 0; /* Ensure ea.REX is initially 0 */
|
|
|
|
if (c <= 0177) {
|
|
/* pick rfield from operand b (opx) */
|
|
rflags = regflag(opx);
|
|
rfield = nasm_regvals[opx->basereg];
|
|
} else {
|
|
rflags = 0;
|
|
rfield = c & 7;
|
|
opx = NULL;
|
|
}
|
|
|
|
if (itemp_has(temp, IF_MIB)) {
|
|
opy->eaflags |= EAF_MIB;
|
|
/*
|
|
* if a separate form of MIB (ICC style) is used,
|
|
* the index reg info is merged into mem operand
|
|
*/
|
|
if (mib_index != R_none) {
|
|
opy->indexreg = mib_index;
|
|
opy->scale = 1;
|
|
opy->hintbase = mib_index;
|
|
opy->hinttype = EAH_NOTBASE;
|
|
}
|
|
}
|
|
|
|
/* SIB encoding required */
|
|
if (itemp_has(temp, IF_SIB))
|
|
opy->eaflags |= EAF_SIB;
|
|
|
|
/* ea_evex_flags() must come before process_ea() */
|
|
if (ea_evex_flags(ins, opy))
|
|
return -1;
|
|
|
|
if (process_ea(opy, rfield, rflags, ins, eat, &errmsg)) {
|
|
nasm_nonfatal("%s", errmsg);
|
|
return -1;
|
|
}
|
|
|
|
ins->rex |= ins->ea.rex;
|
|
length += ins->ea.size;
|
|
|
|
if (ea_evex_post_check(ins))
|
|
return -1;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
nasm_panic("internal instruction table corrupt"
|
|
": instruction code \\%o (0x%02X) given", c, c);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ins->rex & REX_NH) {
|
|
if (ins->rex & REX_H) {
|
|
nasm_nonfatal("instruction cannot use high registers");
|
|
return -1;
|
|
}
|
|
ins->rex &= ~REX_P; /* Don't force REX prefix due to high reg */
|
|
}
|
|
|
|
if (ins->prefixes[PPS_OSIZE] == P_O64) {
|
|
ins->rex |= !(ins->rex & REX_NW) ? REX_W : 0;
|
|
}
|
|
|
|
switch (ins->prefixes[PPS_REX]) {
|
|
case P_EVEX:
|
|
if (!(ins->rex & REX_EV))
|
|
return -1;
|
|
break;
|
|
case P_VEX:
|
|
case P_VEX3:
|
|
case P_VEX2:
|
|
if (!(ins->rex & REX_V))
|
|
return -1;
|
|
break;
|
|
case P_REX:
|
|
if (bits != 64) {
|
|
nasm_nonfatal("REX encoding not supported in %d-bit mode", bits);
|
|
return -1;
|
|
}
|
|
if (ins->rex & (REX_V|REX_EV|REX_2))
|
|
return -1;
|
|
ins->rex |= REX_P; /* Force REX prefix */
|
|
break;
|
|
case P_REX2:
|
|
if (bits != 64) {
|
|
nasm_nonfatal("REX2 encoding not supported in %d-bit mode", bits);
|
|
return -1;
|
|
}
|
|
if ((ins->rex & (REX_V|REX_EV)) || rex_highvec(ins->rex))
|
|
return -1;
|
|
ins->rex |= REX_P | REX_2; /* Force REX2 prefix */
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (ins->rex & (REX_V | REX_EV)) {
|
|
uint32_t bad32 = REX_BXR;
|
|
|
|
if (ins->rex & REX_H) {
|
|
nasm_nonfatal("cannot use high byte register in this instruction");
|
|
return -1;
|
|
}
|
|
if (itemp_has(temp, IF_WW)) {
|
|
bad32 |= REX_W;
|
|
} else {
|
|
ins->rex = (ins->rex & ~REX_W) | ((ins->vex_wlp >> (7-3)) & REX_W);
|
|
}
|
|
|
|
if (bits != 64 && ((ins->rex & bad32) || ins->vexreg > 7)) {
|
|
nasm_nonfatal("invalid operands in non-64-bit mode");
|
|
return -1;
|
|
}
|
|
|
|
if (ins->rex & REX_EV) {
|
|
/* EVEX */
|
|
length += 4;
|
|
} else {
|
|
/* VEX */
|
|
if (ins->vexreg > 15 || (ins->rex & REX_BXR1)) {
|
|
nasm_nonfatal("invalid high-16 register in VEX encoded instruction");
|
|
return -1;
|
|
}
|
|
|
|
if (ins->vex_cm != 1 ||
|
|
(ins->rex & (REX_B|REX_X|REX_W)) ||
|
|
ins->prefixes[PPS_REX] == P_VEX3) {
|
|
/* VEX3 required */
|
|
if (ins->prefixes[PPS_REX] == P_VEX2)
|
|
nasm_nonfatal("instruction not encodable with {vex2} prefix");
|
|
length += 3;
|
|
} else {
|
|
/* VEX2 available */
|
|
length += 2;
|
|
}
|
|
}
|
|
} else if (ins->rex & (REX_BXR1 | REX_2)) {
|
|
/* REX2 prefix needed */
|
|
if (bits != 64) {
|
|
nasm_nonfatal("invalid operands in %d-bit mode", bits);
|
|
return -1;
|
|
}
|
|
if (!iflag_test(&cpu, IF_APX)) {
|
|
nasm_nonfatal("invalid operands in non-APX mode");
|
|
return -1;
|
|
}
|
|
if (itemp_has(temp, IF_NOAPX) || rex_highvec(ins->rex)) {
|
|
nasm_nonfatal("this use of registers 16-31 not supported for this instruction");
|
|
return -1;
|
|
}
|
|
if (ins->rex & REX_H) {
|
|
nasm_nonfatal("cannot use high byte register in this instruction");
|
|
return -1;
|
|
}
|
|
|
|
ins->rex |= REX_2 | REX_P;
|
|
length += 2;
|
|
} else if (ins->rex & REX_MASK) {
|
|
if (ins->rex & REX_H) {
|
|
nasm_nonfatal("cannot use high byte register in this instruction");
|
|
return -1;
|
|
} else if (bits == 64) {
|
|
ins->rex &= ~REX_L;
|
|
ins->rex |= REX_P;
|
|
} else if ((ins->rex & (REX_L|REX_W|REX_BXR)) == (REX_L|REX_R) &&
|
|
iflag_cpu_level_ok(&cpu, IF_X86_64)) {
|
|
/* LOCK-as-REX.R */
|
|
if (assert_no_prefix(ins, PPS_LOCK))
|
|
return -1;
|
|
lockcheck = false; /* Already errored, no need for warning */
|
|
ins->rex &= ~REX_P;
|
|
} else {
|
|
nasm_nonfatal("invalid operands in %d-bit mode", bits);
|
|
return -1;
|
|
}
|
|
length++;
|
|
}
|
|
|
|
if (!(ins->rex & (REX_2|REX_V|REX_EV))) {
|
|
/* Opmap legacy encoding: none, 0f, 0f 38, 0f 3a */
|
|
length += (ins->vex_cm > 0) + (ins->vex_cm > 1);
|
|
}
|
|
|
|
if (lockcheck && has_prefix(ins, PPS_LOCK, P_LOCK)) {
|
|
if ((!itemp_has(temp,IF_LOCK) || !is_class(MEMORY, ins->oprs[0].type)) &&
|
|
(!itemp_has(temp,IF_LOCK1) || !is_class(MEMORY, ins->oprs[1].type))) {
|
|
/*!
|
|
*!prefix-lock-error [on] \c{LOCK} prefix on unlockable instruction
|
|
*!=lock
|
|
*! warns about \c{LOCK} prefixes on unlockable instructions.
|
|
*/
|
|
nasm_warn(WARN_PREFIX_LOCK_ERROR|ERR_PASS2 , "instruction is not lockable");
|
|
} else if (temp->opcode == I_XCHG) {
|
|
/*!
|
|
*!prefix-lock-xchg [on] superfluous \c{LOCK} prefix on \c{XCHG} instruction
|
|
*! warns about a \c{LOCK} prefix added to an \c{XCHG} instruction.
|
|
*! The \c{XCHG} instruction is \e{always} locking, and so this
|
|
*! prefix is not necessary; however, NASM will generate it if
|
|
*! explicitly provided by the user, so this warning indicates that
|
|
*! suboptimal code is being generated.
|
|
*/
|
|
nasm_warn(WARN_PREFIX_LOCK_XCHG|ERR_PASS2,
|
|
"superfluous LOCK prefix on XCHG instruction");
|
|
}
|
|
}
|
|
|
|
bad_hle_warn(ins, hleok);
|
|
|
|
/*
|
|
* when BND prefix is set by DEFAULT directive,
|
|
* BND prefix is added to every appropriate instruction line
|
|
* unless it is overridden by NOBND prefix.
|
|
*/
|
|
if (globalbnd &&
|
|
(itemp_has(temp, IF_BND) && !has_prefix(ins, PPS_REP, P_NOBND)))
|
|
ins->prefixes[PPS_REP] = P_BND;
|
|
|
|
|
|
/*
|
|
* Add length of legacy prefixes
|
|
*/
|
|
length += emit_prefixes(NULL, ins);
|
|
|
|
return length;
|
|
}
|
|
|
|
/* Emit REX and REX2 prefixes, and if necessary legacy opmap bytes */
|
|
static inline void emit_rex(struct out_data *data, insn *ins)
|
|
{
|
|
if (ins->rex_done)
|
|
return;
|
|
|
|
ins->rex_done = true;
|
|
|
|
if (ins->rex & (REX_V | REX_EV))
|
|
return; /* Handled elsewhere */
|
|
|
|
if (ins->rex & REX_2) {
|
|
uint16_t rex2 = 0x00d5;
|
|
nasm_assert(ins->vex_cm < 2);
|
|
rex2 |= (ins->rex & (REX_BXR0|REX_W)) << 8;
|
|
rex2 |= (ins->rex & REX_BXR1);
|
|
rex2 |= ins->vex_cm << 15;
|
|
out_rawword(data, rex2);
|
|
} else {
|
|
uint8_t rex = ins->rex & (REX_MASK|REX_L);
|
|
|
|
if (rex == (REX_L|REX_R)) {
|
|
out_rawbyte(data, 0xf0);
|
|
} else if (rex & REX_P) {
|
|
out_rawbyte(data, rex);
|
|
} else {
|
|
nasm_assert(!rex);
|
|
}
|
|
|
|
if (ins->vex_cm) {
|
|
out_rawbyte(data, 0x0f);
|
|
if (ins->vex_cm > 1) {
|
|
/* Map 2 = 0F 38, map 3 = 0F 3A */
|
|
nasm_assert(ins->vex_cm < 4);
|
|
out_rawbyte(data, 0x34 + (ins->vex_cm << 1));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return the byte value of a legacy prefix (possibly depending on context)
|
|
* Returns one of the enum prefix_err values if the prefix has no byte value.
|
|
*/
|
|
static int prefix_byte(enum prefixes pfx, const int bits)
|
|
{
|
|
switch ((int)pfx) {
|
|
case P_WAIT:
|
|
return 0x9B;
|
|
|
|
case P_LOCK:
|
|
return 0xF0;
|
|
|
|
case P_REPNE:
|
|
case P_REPNZ:
|
|
case P_XACQUIRE:
|
|
case P_BND:
|
|
return 0xF2;
|
|
|
|
case P_REPE:
|
|
case P_REPZ:
|
|
case P_REP:
|
|
case P_XRELEASE:
|
|
return 0xF3;
|
|
|
|
case R_CS:
|
|
return 0x2E;
|
|
|
|
case R_DS:
|
|
return 0x3E;
|
|
|
|
case R_ES:
|
|
return 0x26;
|
|
|
|
case R_FS:
|
|
return 0x64;
|
|
break;
|
|
|
|
case R_GS:
|
|
return 0x65;
|
|
break;
|
|
|
|
case R_SS:
|
|
return 0x36;
|
|
break;
|
|
|
|
case P_A16:
|
|
if (bits == 64)
|
|
return PFE_ERR;
|
|
else if (bits == 32)
|
|
return 0x67;
|
|
else
|
|
return PFE_NULL;
|
|
|
|
case P_A32:
|
|
return (bits != 32) ? 0x67 : PFE_NULL;
|
|
|
|
case P_ASP:
|
|
return 0x67;
|
|
|
|
case P_O16:
|
|
return (bits != 16) ? 0x66 : PFE_NULL;
|
|
|
|
case P_O32:
|
|
return (bits == 16) ? 0x66 : PFE_NULL;
|
|
|
|
case P_O64:
|
|
return (bits == 64) ? PFE_NULL : PFE_ERR;
|
|
|
|
case P_OSP:
|
|
return 0x66;
|
|
|
|
case P_REX:
|
|
case P_VEX:
|
|
case P_EVEX:
|
|
case P_VEX3:
|
|
case P_VEX2:
|
|
case P_REX2:
|
|
return PFE_MULTI;
|
|
|
|
case P_NF:
|
|
case P_NOBND:
|
|
case P_ZU:
|
|
case P_none:
|
|
return PFE_NULL;
|
|
|
|
default:
|
|
return PFE_WHAT;
|
|
}
|
|
}
|
|
|
|
/* Emit legacy prefixes */
|
|
static int emit_prefixes(struct out_data *data, const insn *ins)
|
|
{
|
|
const int bits = ins->bits;
|
|
uint8_t buf[MAXPREFIX];
|
|
int bytes = 0;
|
|
int j;
|
|
|
|
for (j = 0; j < MAXPREFIX; j++) {
|
|
const enum prefixes pfx = ins->prefixes[j];
|
|
const int r = ins->need_pfx[j];
|
|
int c = prefix_byte(pfx, bits);
|
|
|
|
if (r && r != c && !(r <= 0 && c <= 0)) {
|
|
switch (pfx) {
|
|
case P_none:
|
|
case P_O16:
|
|
case P_O32:
|
|
case P_O64:
|
|
case P_A16:
|
|
case P_A32:
|
|
case P_A64:
|
|
/* In these cases, allow the instruction to simply override */
|
|
c = r;
|
|
break;
|
|
default:
|
|
/*!
|
|
*!prefix-invalid [on] invalid prefix for instruction
|
|
*! this instruction is only valid with certain combinations
|
|
*! of prefixes. The prefix will still be generated as
|
|
*! requested, but the result may be a completely different
|
|
*! instruction.
|
|
*/
|
|
nasm_warn(WARN_PREFIX_INVALID|ERR_PASS2,
|
|
"invalid prefix %s for instruction, result may be unexpected",
|
|
prefix_name(pfx));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Various warnings and error conditions */
|
|
switch ((int)pfx) {
|
|
case R_ES:
|
|
case R_SS:
|
|
case R_CS:
|
|
case R_DS:
|
|
/*!
|
|
*!prefix-seg [on] segment prefix ignored in 64-bit mode
|
|
*! warns that an \c{es}, \c{cs}, \c{ss} or \c{ds} segment override
|
|
*! prefix has no effect in 64-bit mode. The prefix will still be
|
|
*! generated as requested.
|
|
*/
|
|
if (bits == 64) {
|
|
nasm_warn(WARN_PREFIX_SEG|ERR_PASS2,
|
|
"%s segment override will be ignored in 64-bit mode",
|
|
prefix_name(pfx));
|
|
}
|
|
break;
|
|
|
|
case P_A16:
|
|
if (bits == 64)
|
|
nasm_nonfatal("16-bit addressing is not supported "
|
|
"in 64-bit mode");
|
|
break;
|
|
|
|
case P_A64:
|
|
if (bits != 64)
|
|
nasm_nonfatal("64-bit addressing is only supported "
|
|
"in 64-bit mode");
|
|
break;
|
|
|
|
case P_O64:
|
|
if (bits != 64)
|
|
nasm_nonfatal("64-bit operand size is only supported "
|
|
"in 64-bit mode");
|
|
break;
|
|
|
|
default:
|
|
switch (c) {
|
|
case 0x66:
|
|
case 0xf2:
|
|
case 0xf3:
|
|
/* These prefixes are embedded in a VEX/EVEX prefix */
|
|
if (ins->rex & (REX_V|REX_EV))
|
|
c = PFE_NULL;
|
|
break;
|
|
case PFE_ERR:
|
|
nasm_nonfatal("invalid use of %s prefix", prefix_name(pfx));
|
|
break;
|
|
case PFE_WHAT:
|
|
nasm_nonfatal("%s cannot be used as a prefix", prefix_name(pfx));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (c >= 0)
|
|
buf[bytes++] = c;
|
|
}
|
|
|
|
if (data && bytes)
|
|
out_rawdata(data, buf, bytes);
|
|
|
|
return bytes;
|
|
}
|
|
|
|
static void gencode(struct out_data *data, insn *ins)
|
|
{
|
|
uint8_t c;
|
|
uint8_t bytes[4];
|
|
int64_t size;
|
|
int op1, op2;
|
|
struct operand *opx, *opy;
|
|
const uint8_t *codes = ins->itemp->code;
|
|
uint8_t opex = 0;
|
|
int r;
|
|
const int bits = ins->bits;
|
|
|
|
data->itemp = ins->itemp;
|
|
data->bits = ins->bits;
|
|
|
|
ins->rex_done = false;
|
|
|
|
emit_prefixes(data, ins);
|
|
|
|
while (*codes) {
|
|
c = *codes++;
|
|
op1 = (c & 3) + ((opex & 1) << 2);
|
|
opx = get_operand(ins, op1);
|
|
op2 = ((c >> 3) & 3) + ((opex & 2) << 1);
|
|
opy = NULL;
|
|
opex = 0; /* For the next iteration */
|
|
|
|
|
|
switch (c) {
|
|
case 01:
|
|
case 02:
|
|
case 03:
|
|
case 04:
|
|
emit_rex(data, ins);
|
|
out_rawdata(data, codes, c);
|
|
codes += c;
|
|
break;
|
|
|
|
case 05:
|
|
case 06:
|
|
case 07:
|
|
opex = c;
|
|
break;
|
|
|
|
case4(010):
|
|
emit_rex(data, ins);
|
|
out_rawbyte(data, *codes++ + (regval(opx) & 7));
|
|
break;
|
|
|
|
case4(014):
|
|
break;
|
|
|
|
case4(020):
|
|
out_imm(data, opx, 1, OUT_WRAP);
|
|
break;
|
|
|
|
case4(024):
|
|
out_imm(data, opx, 1, OUT_UNSIGNED);
|
|
break;
|
|
|
|
case4(030):
|
|
out_imm(data, opx, 2, OUT_WRAP);
|
|
break;
|
|
|
|
case4(034):
|
|
if (opx->type & (BITS16 | BITS32))
|
|
size = (opx->type & BITS16) ? 2 : 4;
|
|
else
|
|
size = (bits == 16) ? 2 : 4;
|
|
out_imm(data, opx, size, OUT_WRAP);
|
|
break;
|
|
|
|
case4(040):
|
|
out_imm(data, opx, 4, OUT_WRAP);
|
|
break;
|
|
|
|
case4(044):
|
|
size = ins->addr_size >> 3;
|
|
out_imm(data, opx, size, OUT_WRAP);
|
|
break;
|
|
|
|
case4(050):
|
|
if (opx->segment == data->loc.segment) {
|
|
int64_t delta = sext(opx->offset - data->loc.offset
|
|
- (data->inslen - data->insoffs),
|
|
ins->op_size);
|
|
if (delta != (int8_t)delta)
|
|
nasm_nonfatal("short jump is out of range");
|
|
}
|
|
out_reladdr(data, opx, 1);
|
|
break;
|
|
|
|
case4(054):
|
|
out_imm(data, opx, 8, OUT_WRAP);
|
|
break;
|
|
|
|
case4(060):
|
|
out_reladdr(data, opx, 2);
|
|
break;
|
|
|
|
case4(064):
|
|
if (opx->type & (BITS16 | BITS32 | BITS64))
|
|
size = (opx->type & BITS16) ? 2 : 4;
|
|
else
|
|
size = (bits == 16) ? 2 : 4;
|
|
|
|
out_reladdr(data, opx, size);
|
|
break;
|
|
|
|
case4(070):
|
|
out_reladdr(data, opx, 4);
|
|
break;
|
|
|
|
case4(074):
|
|
if (opx->segment == NO_SEG)
|
|
nasm_nonfatal("value referenced by FAR is not relocatable");
|
|
out_segment(data, opx);
|
|
break;
|
|
|
|
case 0171:
|
|
c = *codes++;
|
|
op2 = (op2 & ~3) | ((c >> 3) & 3);
|
|
opx = &ins->oprs[op2];
|
|
r = nasm_regvals[opx->basereg];
|
|
c = (c & ~070) | ((r & 7) << 3);
|
|
out_rawbyte(data, c);
|
|
break;
|
|
|
|
case 0172:
|
|
{
|
|
int mask = ins->prefixes[PPS_REX] == P_EVEX ? 7 : 15;
|
|
const struct operand *opy;
|
|
|
|
c = *codes++;
|
|
opx = get_operand(ins, op1 = (c >> 3) & 7);
|
|
opy = get_operand(ins, op2 = c & 7);
|
|
if (!absolute_op(opy))
|
|
nasm_nonfatal("non-absolute expression not permitted "
|
|
"as argument %d", op2);
|
|
else if (opy->offset & ~mask)
|
|
nasm_warn(ERR_PASS2|WARN_NUMBER_OVERFLOW,
|
|
"is4 argument exceeds bounds");
|
|
c = opy->offset & mask;
|
|
goto emit_is4;
|
|
}
|
|
|
|
case 0173:
|
|
c = *codes++;
|
|
opx = get_operand(ins, op1 = c >> 4);
|
|
c &= 15;
|
|
goto emit_is4;
|
|
|
|
case4(0174):
|
|
c = 0;
|
|
emit_is4:
|
|
r = nasm_regvals[opx->basereg];
|
|
out_rawbyte(data, (r << 4) | ((r & 0x10) >> 1) | c);
|
|
break;
|
|
|
|
case4(0240):
|
|
case 0250:
|
|
codes += 4;
|
|
ins->evex ^= op_evexflags(&ins->oprs[0], EVEX_P2Z|EVEX_P2AAA);
|
|
ins->evex ^= (ins->rex & REX_BXR0) << 13; /* R0 X0 B0 */
|
|
if (ins->rex & REX_B1)
|
|
ins->evex ^= (ins->rex & REX_BV) ? EVEX_P0X : EVEX_P0BP;
|
|
if (ins->rex & REX_X1)
|
|
ins->evex ^= (ins->rex & REX_XV) ? EVEX_P2VP : EVEX_P1XP;
|
|
ins->evex ^= (ins->rex & REX_R1) >> (14-12);
|
|
ins->evex ^= (ins->rex & REX_W) << (23-3);
|
|
ins->evex ^= (ins->vexreg & 15) << 19;
|
|
ins->evex ^= (ins->vexreg & 16) << (27 - 4);
|
|
/* Set NF if {nd} and this is applicable */
|
|
if (ins->prefixes[PPS_NF] == P_NF) {
|
|
if (itemp_has(ins->itemp, IF_NF_E))
|
|
ins->evex ^= EVEX_P2NF;
|
|
}
|
|
/* Set ND if {zu} and this is applicable */
|
|
if (ins->prefixes[PPS_ZU] == P_ZU) {
|
|
if (itemp_has(ins->itemp, IF_ZU_E))
|
|
ins->evex ^= EVEX_P2ND;
|
|
}
|
|
out_rawdword(data, ins->evex);
|
|
break;
|
|
|
|
case4(0254):
|
|
out_imm(data, opx, 4, OUT_SIGNED);
|
|
break;
|
|
|
|
case4(0264):
|
|
out_imm(data, opx, 4, OUT_UNSIGNED);
|
|
break;
|
|
|
|
case4(0260):
|
|
case 0270:
|
|
codes += 2;
|
|
if (ins->vex_cm != 1 ||
|
|
(ins->rex & (REX_W|REX_X|REX_B)) ||
|
|
ins->prefixes[PPS_REX] == P_VEX3) {
|
|
bytes[0] = (ins->vex_cm >> 6) ? 0x8f : 0xc4;
|
|
bytes[1] = (ins->vex_cm & 31) |
|
|
((~ins->rex & REX_BXR0) << 5);
|
|
bytes[2] = ((ins->rex & REX_W) << (7-3)) |
|
|
((~ins->vexreg & 15) << 3) |
|
|
(ins->vex_wlp & 07);
|
|
out_rawdata(data, bytes, 3);
|
|
} else {
|
|
bytes[0] = 0xc5;
|
|
bytes[1] = ((~ins->rex & REX_R) << (7-2)) |
|
|
((~ins->vexreg & 15) << 3) |
|
|
(ins->vex_wlp & 07);
|
|
out_rawdata(data, bytes, 2);
|
|
}
|
|
break;
|
|
|
|
case 0271:
|
|
case 0272:
|
|
case 0273:
|
|
break;
|
|
|
|
case4(0274):
|
|
{
|
|
uint64_t uv, um;
|
|
int s;
|
|
|
|
if (absolute_op(opx)) {
|
|
s = ins->op_size;
|
|
|
|
um = (uint64_t)2 << (s-1);
|
|
uv = opx->offset;
|
|
|
|
if (uv > 127 && uv < (uint64_t)-128 &&
|
|
(uv < um-128 || uv > um-1)) {
|
|
/*
|
|
* If this wasn't explicitly byte-sized, warn as though we
|
|
* had fallen through to the imm16/32/64 case.
|
|
*/
|
|
nasm_warn(ERR_PASS2|WARN_NUMBER_OVERFLOW,
|
|
"%s exceeds bounds",
|
|
(opx->type & BITS8) ? "signed byte" :
|
|
s == 16 ? "word" :
|
|
s == 32 ? "dword" :
|
|
"signed dword");
|
|
}
|
|
|
|
/* Output as a raw byte to avoid byte overflow check */
|
|
out_rawbyte(data, (uint8_t)uv);
|
|
} else {
|
|
out_imm(data, opx, 1, OUT_WRAP); /* XXX: OUT_SIGNED? */
|
|
}
|
|
break;
|
|
}
|
|
|
|
case4(0300):
|
|
{
|
|
emit_rex(data, ins);
|
|
if (absolute_op(opx)) {
|
|
if (!is_hint_nop(opx->offset)) {
|
|
nasm_warn(ERR_PASS2, "not a valid hint-NOP opcode (0D, 18-1F)");
|
|
}
|
|
out_rawbyte(data, opx->offset);
|
|
} else {
|
|
out_imm(data, opx, 1, OUT_UNSIGNED);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case 0310:
|
|
case 0311:
|
|
break;
|
|
|
|
case 0312:
|
|
break;
|
|
|
|
case 0313:
|
|
break;
|
|
|
|
case4(0314):
|
|
break;
|
|
|
|
case 0320:
|
|
case 0321:
|
|
break;
|
|
|
|
case 0322:
|
|
case 0323:
|
|
case 0324:
|
|
case 0327:
|
|
break;
|
|
|
|
case 0325:
|
|
break;
|
|
|
|
case 0326:
|
|
break;
|
|
|
|
case 0330:
|
|
case 0331:
|
|
case 0332:
|
|
case 0333:
|
|
break;
|
|
|
|
case 0334:
|
|
break;
|
|
|
|
case 0335:
|
|
break;
|
|
|
|
case 0336:
|
|
case 0337:
|
|
break;
|
|
|
|
case 0340:
|
|
if (opx->segment != NO_SEG)
|
|
nasm_panic("non-constant BSS size in pass two");
|
|
|
|
out_reserve(data, ins->oprs[0].offset * resb_bytes(ins->opcode));
|
|
break;
|
|
|
|
case 0341:
|
|
break;
|
|
|
|
case4(0344):
|
|
break;
|
|
|
|
case 0350:
|
|
case 0351:
|
|
break;
|
|
|
|
case3(0355):
|
|
break;
|
|
|
|
case 0360:
|
|
break;
|
|
|
|
case 0361:
|
|
break;
|
|
|
|
case 0364:
|
|
case 0365:
|
|
break;
|
|
|
|
case 0366:
|
|
case 0367:
|
|
break;
|
|
|
|
case3(0370):
|
|
break;
|
|
|
|
case 0373:
|
|
out_rawbyte(data, bits == 16 ? 3 : 5);
|
|
break;
|
|
|
|
case 0374:
|
|
case 0375:
|
|
case 0376:
|
|
break;
|
|
|
|
case4(0100):
|
|
case4(0110):
|
|
case4(0120):
|
|
case4(0130):
|
|
case4(0200):
|
|
case4(0204):
|
|
case4(0210):
|
|
case4(0214):
|
|
case4(0220):
|
|
case4(0224):
|
|
case4(0230):
|
|
case4(0234):
|
|
{
|
|
uint8_t *p;
|
|
bool overflow;
|
|
|
|
opy = get_operand(ins, op2);
|
|
|
|
p = bytes;
|
|
*p++ = ins->ea.modrm;
|
|
if (ins->ea.sib_present)
|
|
*p++ = ins->ea.sib;
|
|
out_rawdata(data, bytes, p - bytes);
|
|
|
|
/*
|
|
* Make sure the address gets the right offset in case
|
|
* the line breaks in the .lst file (BR 1197827)
|
|
*/
|
|
switch (ins->ea.bytes) {
|
|
case 0:
|
|
/* No displacement */
|
|
overflow = false;
|
|
break;
|
|
case 1:
|
|
/* 8-bit displacement, which may be compressed */
|
|
out_rawbyte(data, ins->ea.disp8);
|
|
overflow = !ins->ea.disp8_ok;
|
|
break;
|
|
default:
|
|
if (ins->ea.rip) {
|
|
out_reladdr(data, opy, ins->ea.bytes);
|
|
overflow = false;
|
|
} else {
|
|
unsigned int asize = ins->addr_size >> 3;
|
|
|
|
out_imm(data, opy, ins->ea.bytes,
|
|
(asize > ins->ea.bytes)
|
|
? OUT_SIGNED|OUT_NOWARN : OUT_WRAP|OUT_NOWARN);
|
|
|
|
overflow = overflow_general(opy->offset, asize) ||
|
|
sext(opy->offset, ins->addr_size) !=
|
|
sext(opy->offset, ins->ea.bytes << 3);
|
|
}
|
|
}
|
|
|
|
if (overflow)
|
|
warn_overflow(ins->ea.bytes, NULL, "displacement");
|
|
}
|
|
break;
|
|
|
|
default:
|
|
nasm_panic("internal instruction table corrupt"
|
|
": instruction code \\%o (0x%02X) given", c, c);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static opflags_t regflag(const operand * o)
|
|
{
|
|
if (!is_register(o->basereg))
|
|
nasm_panic("invalid operand passed to regflag()");
|
|
return nasm_reg_flags[o->basereg];
|
|
}
|
|
|
|
static int32_t regval(const operand * o)
|
|
{
|
|
/*
|
|
* Certain instruction patterns allow an immediate to be put
|
|
* into a register field
|
|
*/
|
|
if (o->type & IMMEDIATE)
|
|
return o->offset;
|
|
if (!is_register(o->basereg))
|
|
nasm_panic("invalid operand passed to regval()");
|
|
return nasm_regvals[o->basereg];
|
|
}
|
|
|
|
static uint32_t op_rexflags(const operand * o, uint32_t mask)
|
|
{
|
|
opflags_t flags;
|
|
int val;
|
|
|
|
if (!is_register(o->basereg))
|
|
nasm_panic("invalid operand passed to op_rexflags()");
|
|
|
|
flags = nasm_reg_flags[o->basereg];
|
|
val = nasm_regvals[o->basereg];
|
|
|
|
return rexflags(val, flags, mask);
|
|
}
|
|
|
|
static uint32_t rexflags(int val, opflags_t flags, uint32_t mask)
|
|
{
|
|
uint32_t rex = 0;
|
|
|
|
if (val < 0 || !is_class(REGISTER, flags)) {
|
|
/* Not a register */
|
|
return 0;
|
|
}
|
|
|
|
if (val & 8)
|
|
rex |= REX_B|REX_X|REX_R;
|
|
if (val & 16)
|
|
rex |= REX_B1|REX_X1|REX_R1;
|
|
|
|
if (flags & REG_CLASS_VECTOR) {
|
|
rex |= REX_BV|REX_XV|REX_RV;
|
|
} else if (is_class(REG8, flags)) {
|
|
if (is_class(REG_HIGH, flags)) {
|
|
/* AH, CH, DH, BH: REX/REX2/VEX/EVEX forbidden */
|
|
rex |= REX_H;
|
|
} else if (val >= 4) {
|
|
/* SPL, BPL, SIL, DIL, or extended: prefix required */
|
|
rex |= REX_P;
|
|
}
|
|
}
|
|
|
|
return rex & mask;
|
|
}
|
|
|
|
static uint32_t evexflags(decoflags_t deco, uint32_t mask)
|
|
{
|
|
uint32_t evex = 0;
|
|
|
|
if (deco & Z)
|
|
evex |= EVEX_P2Z;
|
|
if (deco & OPMASK_MASK)
|
|
evex |= (deco << 24) & EVEX_P2AAA;
|
|
|
|
return evex & mask;
|
|
}
|
|
|
|
static uint32_t op_evexflags(const operand * o, uint32_t mask)
|
|
{
|
|
return evexflags(o->decoflags, mask);
|
|
}
|
|
|
|
static enum match_result find_match(const struct itemplate **tempp,
|
|
insn *instruction)
|
|
{
|
|
const int bits = instruction->bits;
|
|
const struct itemplate_list *templist;
|
|
const struct itemplate *temp;
|
|
const struct itemplate *best = NULL;
|
|
enum match_result m, merr;
|
|
int this_good;
|
|
int rex = instruction->prefixes[PPS_REX];
|
|
unsigned int n;
|
|
|
|
/* Impossible encoding request? */
|
|
if (bits != 64) {
|
|
if (rex == P_REX || rex == P_REX2)
|
|
return MERR_ENCMISMATCH;
|
|
}
|
|
|
|
merr = MERR_INVALOP;
|
|
best = NULL;
|
|
this_good = 0;
|
|
|
|
templist = &nasm_instructions[instruction->opcode];
|
|
n = templist->ntemp;
|
|
temp = templist->temp;
|
|
|
|
while (n--) {
|
|
m = matches(temp, instruction);
|
|
if (m > merr) {
|
|
best = temp;
|
|
merr = m;
|
|
this_good = 1;
|
|
if (merr == MOK_GOOD)
|
|
break;
|
|
} else if (m == merr) {
|
|
this_good++;
|
|
}
|
|
temp++;
|
|
}
|
|
|
|
if (merr >= MOK_FIRST)
|
|
merr = MOK_GOOD; /* Fuzzy match but valid */
|
|
|
|
*tempp = best;
|
|
return merr;
|
|
}
|
|
|
|
static uint8_t get_broadcast_num(opflags_t opflags, opflags_t brsize)
|
|
{
|
|
unsigned int opsize = (opflags & SIZE_MASK) >> SIZE_SHIFT;
|
|
uint8_t brcast_num;
|
|
|
|
if (brsize > BITS64)
|
|
nasm_fatal("size of broadcasting element is greater than 64 bits");
|
|
|
|
/*
|
|
* The shift term is to take care of the extra BITS80 inserted
|
|
* between BITS64 and BITS128.
|
|
*/
|
|
brcast_num = ((opsize / (BITS64 >> SIZE_SHIFT)) * (BITS64 / brsize))
|
|
>> (opsize > (BITS64 >> SIZE_SHIFT));
|
|
|
|
return brcast_num;
|
|
}
|
|
|
|
static enum match_result matches(const struct itemplate * const itemp,
|
|
const insn * const ins)
|
|
{
|
|
const int bits = ins->bits;
|
|
int i;
|
|
const int oprs = ins->operands;
|
|
unsigned int arflag;
|
|
unsigned int armask, smmask;
|
|
bool if_anysize, if_sx;
|
|
int op_size;
|
|
opflags_t opsize, arsize, smsize;
|
|
opflags_t isize[MAX_OPERANDS]; /* Adjusted instruction operand sizes */
|
|
opflags_t tsize[MAX_OPERANDS]; /* Adjusted template operand sizes */
|
|
opflags_t itype[MAX_OPERANDS]; /* Adjusted instruction flags */
|
|
bool sm_missing;
|
|
|
|
/* Jump size/type declarators are more like types than sizes */
|
|
const opflags_t jsize_mask = NEAR|FAR|SHORT|ABS;
|
|
const opflags_t msize_mask = SIZE_MASK & ~jsize_mask;
|
|
|
|
/*
|
|
* Check the opcode
|
|
*/
|
|
if (itemp->opcode != ins->opcode)
|
|
return MERR_INVALOP;
|
|
|
|
/*
|
|
* Count the operands
|
|
*/
|
|
if (itemp->operands != oprs)
|
|
return MERR_INVALOP;
|
|
|
|
/*
|
|
* Is it legal?
|
|
*/
|
|
if (unlikely(ins->opt & OPTIM_STRICT_INSTR)) {
|
|
if (itemp_has(itemp, IF_OPT))
|
|
return MERR_INVALOP;
|
|
}
|
|
|
|
/*
|
|
* {rex/vexn/evex} available?
|
|
*/
|
|
switch (ins->prefixes[PPS_REX]) {
|
|
case P_EVEX:
|
|
if (!itemp_has(itemp, IF_EVEX))
|
|
return MERR_ENCMISMATCH;
|
|
break;
|
|
case P_VEX:
|
|
case P_VEX3:
|
|
case P_VEX2:
|
|
if (!itemp_has(itemp, IF_VEX))
|
|
return MERR_ENCMISMATCH;
|
|
break;
|
|
case P_REX:
|
|
if (bits != 64 ||
|
|
itemp_has(itemp, IF_NOREX) ||
|
|
itemp_has(itemp, IF_VEX) ||
|
|
itemp_has(itemp, IF_EVEX) ||
|
|
itemp_has(itemp, IF_REX2))
|
|
return MERR_ENCMISMATCH;
|
|
break;
|
|
case P_REX2:
|
|
if (bits != 64 ||
|
|
itemp_has(itemp, IF_NOAPX) ||
|
|
itemp_has(itemp, IF_EVEX))
|
|
return MERR_ENCMISMATCH;
|
|
break;
|
|
default:
|
|
if (itemp_has(itemp, IF_EVEX)) {
|
|
if (!iflag_test(&cpu, IF_EVEX))
|
|
return MERR_BADCPU;
|
|
} else if (itemp_has(itemp, IF_VEX)) {
|
|
if (!iflag_test(&cpu, IF_VEX)) {
|
|
return MERR_BADCPU;
|
|
} else if (itemp_has(itemp, IF_LATEVEX)) {
|
|
if (!iflag_test(&cpu, IF_LATEVEX) && iflag_test(&cpu, IF_EVEX))
|
|
return MERR_BADCPU;
|
|
} else if (itemp_has(itemp, IF_REX2)) {
|
|
if (bits != 64 || !iflag_test(&cpu, IF_APX))
|
|
return MERR_BADCPU;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* First, cursory operand filtering and initialize
|
|
* itype[] and isize[]
|
|
*/
|
|
for (i = 0; i < oprs; i++) {
|
|
const struct operand * const op = &ins->oprs[i];
|
|
const opflags_t ttype = itemp->opd[i];
|
|
|
|
isize[i] = op->type & msize_mask;
|
|
itype[i] = op->type - isize[i];
|
|
if (op->type & ~ttype & (COLON | TO))
|
|
return MERR_INVALOP;
|
|
if (op->iflag && !itemp_has(itemp, op->iflag))
|
|
return MERR_WRONGIMM;
|
|
}
|
|
|
|
/* "Default" operand size (from mode and prefixes only) */
|
|
op_size = ins->op_size;
|
|
if (itemp_has(itemp, IF_NWSIZE) && op_size == 32) {
|
|
/* If this is an nw instruction, default to 64 bits in 64-bit mode */
|
|
op_size = bits;
|
|
}
|
|
opsize = mode_to_op(op_size);
|
|
|
|
/* Some key flags */
|
|
if_anysize = itemp_has(itemp, IF_ANYSIZE);
|
|
if_sx = itemp_has(itemp, IF_SX);
|
|
|
|
/*
|
|
* Compare various operand flags that don't depend on sizes,
|
|
* and compute the "true" template operand sizes.
|
|
*/
|
|
for (i = 0; i < oprs; i++) {
|
|
const opflags_t ttype = itemp->opd[i];
|
|
const decoflags_t deco = ins->oprs[i].decoflags;
|
|
const decoflags_t ideco = itemp->deco[i];
|
|
const bool is_broadcast = deco & BRDCAST_MASK;
|
|
|
|
if (likely(!is_broadcast)) {
|
|
tsize[i] = ttype & msize_mask;
|
|
} else {
|
|
const decoflags_t ideco_brsize = ideco & BRSIZE_MASK;
|
|
|
|
if (~ideco & BRDCAST_MASK)
|
|
return MERR_BRNOTHERE;
|
|
|
|
/*
|
|
* when broadcasting, the element size depends on
|
|
* the instruction type. decorator flag should match.
|
|
*/
|
|
if (ideco_brsize)
|
|
tsize[i] = brsize_to_size(ideco_brsize);
|
|
else
|
|
tsize[i] = 0; /* Is this even possible? */
|
|
}
|
|
|
|
/* Handle implied SHORT or NEAR */
|
|
if (unlikely(ttype & (NEAR|SHORT))) {
|
|
if ((ttype & (NEAR|SHORT)) == (NEAR|SHORT)) {
|
|
/* Only a short form exists; allow both NEAR and SHORT */
|
|
if (!(itype[i] & (FAR|ABS)))
|
|
itype[i] |= NEAR|SHORT;
|
|
} else if ((itype[i] & SHORT) || isize[i] == BITS8) {
|
|
/* An explicit SHORT or BITS8 cancel NEAR; are synonyms */
|
|
itype[i] &= ~NEAR;
|
|
if (!isize[i])
|
|
isize[i] = BITS8;
|
|
} else if (!(itype[i] & (FAR|ABS|SHORT))) {
|
|
/* NEAR is implicit unless otherwise specified */
|
|
itype[i] |= ttype & NEAR;
|
|
}
|
|
}
|
|
|
|
/* Check to see if we need to coerce an explicitly sized immediate */
|
|
if (unlikely(itype[i] & ttype & IMMEDIATE)) {
|
|
/*
|
|
* If this is an *explicitly* sized immediate,
|
|
* allow it to match an extending pattern.
|
|
*/
|
|
switch (isize[i]) {
|
|
case BITS8:
|
|
if (ttype & BYTEEXTMASK) {
|
|
isize[i] = tsize[i];
|
|
itype[i] |= BYTEEXTMASK;
|
|
}
|
|
break;
|
|
case BITS32:
|
|
if (ttype & DWORDEXTMASK)
|
|
isize[i] = tsize[i];
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* MOST instructions which take an sdword64 are the only form;
|
|
* set the SDWORD flag to be strict about sdword64 matching
|
|
* (use when a true imm64 pattern exists.)
|
|
*/
|
|
if (!itemp_has(itemp, IF_SDWORD))
|
|
itype[i] |= SDWORD;
|
|
}
|
|
|
|
if (ttype & ~itype[i] & ~(msize_mask|REGSET_MASK))
|
|
return MERR_INVALOP;
|
|
|
|
if (~ideco & deco & OPMASK_MASK)
|
|
return MERR_MASKNOTHERE;
|
|
|
|
if (~ideco & deco & (Z_MASK|STATICRND_MASK|SAE_MASK))
|
|
return MERR_DECONOTHERE;
|
|
|
|
if (~ttype & itype[i] & REGSET_MASK)
|
|
return (ttype & REGSET_MASK) ? MERR_REGSETSIZE : MERR_REGSET;
|
|
}
|
|
|
|
/*
|
|
* Process the operand sizes.
|
|
*/
|
|
arflag = itemp_smask(itemp);
|
|
|
|
nasm_static_assert(SIZE_SHIFT >= IF_SB);
|
|
nasm_static_assert((BITS8 >> SIZE_SHIFT) == 1);
|
|
arsize = (arflag & IF_TSMASK) << (SIZE_SHIFT - IF_SB);
|
|
|
|
if (arflag & IFM_OSIZE)
|
|
arsize = opsize;
|
|
else if (arflag & IFM_ASIZE)
|
|
arsize = mode_to_op(ins->addr_size);
|
|
|
|
/* Flags for which the AR and SM flags apply */
|
|
armask = itemp_arx(itemp);
|
|
smmask = itemp_smx(itemp);
|
|
|
|
/* Apply ARx and register default sizes */
|
|
if (!if_sx) {
|
|
for (i = 0; i < oprs; i++) {
|
|
const unsigned int bit = 1U << i;
|
|
|
|
if (!isize[i]) {
|
|
if (is_class(REGISTER, itype[i]) && tsize[i])
|
|
isize[i] = tsize[i];
|
|
else if (armask & bit)
|
|
isize[i] = arsize;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Look the common subset for the size-matched operands.
|
|
* However, defer the error messages to until after
|
|
* the final operand checking loop, to get a better
|
|
* order of message priorities.
|
|
*/
|
|
smsize = msize_mask;
|
|
sm_missing = false;
|
|
if (smmask) {
|
|
unsigned int nosizemask = 0;
|
|
for (i = 0; i < oprs; i++) {
|
|
const unsigned int bit = 1U << i;
|
|
if (isize[i]) {
|
|
if (smmask & bit)
|
|
smsize &= isize[i];
|
|
} else if (tsize[i] && !is_class(REGISTER, itype[i])) {
|
|
nosizemask |= bit;
|
|
}
|
|
}
|
|
sm_missing = !(smmask & ~nosizemask);
|
|
}
|
|
|
|
/*
|
|
* Check that the operand sizes actually match,
|
|
* and look for other kinds of mismatches, e.g.
|
|
* REG_HIGH when REX is specified.
|
|
*/
|
|
for (i = 0; i < oprs; i++) {
|
|
const opflags_t type = itype[i];
|
|
const decoflags_t deco = ins->oprs[i].decoflags;
|
|
const decoflags_t ideco = itemp->deco[i];
|
|
const bool is_broadcast = deco & BRDCAST_MASK;
|
|
const bool has_ar = (armask >> i) & 1;
|
|
const bool has_sm = (smmask >> i) & 1;
|
|
const bool is_reg = is_class(REGISTER, type);
|
|
|
|
/*
|
|
* Operand sizes are considered matching at this stage
|
|
* if any one of these is true:
|
|
*
|
|
* 1. The template size is undefined.
|
|
* XXX: apply ARx|Sx flags here?
|
|
* 2. The operand size matches the template size.
|
|
* 3. There is an ARx|ANYSIZE flag in the template.
|
|
* 4. The operand size is unspecified and the
|
|
* template does not carry an ARx|SX flag.
|
|
*/
|
|
|
|
if (tsize[i]) {
|
|
if (isize[i] != tsize[i]) {
|
|
if (has_ar) {
|
|
if (if_anysize)
|
|
goto isize_ok;
|
|
if (unlikely(if_sx) && !is_reg)
|
|
return MERR_OPSIZEINVAL;
|
|
}
|
|
|
|
if (isize[i])
|
|
return is_reg ? MERR_INVALOP : MERR_OPSIZEINVAL;
|
|
}
|
|
|
|
isize_ok:
|
|
if (has_sm)
|
|
smsize &= tsize[i];
|
|
} else {
|
|
/*
|
|
* SX with an unsized operand means only an unsized operand
|
|
* is OK.
|
|
*/
|
|
if (unlikely(if_sx) && has_ar)
|
|
if (isize[i])
|
|
return MERR_OPSIZEINVAL;
|
|
}
|
|
|
|
if (is_class(REG_HIGH, type) && ins->prefixes[PPS_REX]) {
|
|
/* High registers cannot be combined with any REX type */
|
|
return MERR_INVALOP;
|
|
}
|
|
|
|
if (is_broadcast) {
|
|
/* calculate the proper number : {1to<brcast_num>} */
|
|
const decoflags_t ideco_brsize = ideco & BRSIZE_MASK;
|
|
unsigned int brcast_num = 0;
|
|
|
|
if (ideco_brsize)
|
|
brcast_num = get_broadcast_num(itemp->opd[i], tsize[i]);
|
|
|
|
if (brcast_num != (2U << ((deco & BRNUM_MASK) >> BRNUM_SHIFT))) {
|
|
/*
|
|
* broadcasting opsize matches but the number of repeated memory
|
|
* element does not match.
|
|
* if 64b double precision float is broadcasted to ymm (256b),
|
|
* broadcasting decorator must be {1to4}.
|
|
*/
|
|
return MERR_BRNUMMISMATCH;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Make sure that our size match set, if any, did not get exhausted,
|
|
* and contains exactly one valid combination still...
|
|
*/
|
|
if (smmask) {
|
|
if (!smsize)
|
|
return MERR_OPSIZEMISMATCH;
|
|
else if (!is_power2(smsize) || (if_sx && sm_missing))
|
|
return MERR_OPSIZEMISSING;
|
|
}
|
|
|
|
/*
|
|
* Check template is okay at the set cpu level
|
|
*/
|
|
if (iflag_cmp_cpu_level(&insns_flags[itemp->iflag_idx], &cpu) > 0)
|
|
return MERR_BADCPU;
|
|
|
|
/*
|
|
* Verify the appropriate long mode flag.
|
|
*/
|
|
if (itemp_has(itemp, (bits == 64 ? IF_NOLONG : IF_LONG)))
|
|
return MERR_BADMODE;
|
|
|
|
/*
|
|
* If we have a HLE prefix, look for the NOHLE flag
|
|
*/
|
|
if (itemp_has(itemp, IF_NOHLE) &&
|
|
(has_prefix(ins, PPS_REP, P_XACQUIRE) ||
|
|
has_prefix(ins, PPS_REP, P_XRELEASE)))
|
|
return MERR_BADHLE;
|
|
|
|
/*
|
|
* {nf} or {zu} prefixes used? Must be permitted.
|
|
*/
|
|
if (has_prefix(ins, PPS_NF, P_NF)) {
|
|
if (!itemp_has(itemp, IF_NF) &&
|
|
(itemp_has(itemp, IF_FL) ||
|
|
(ins->opt & OPTIM_STRICT_INSTR)))
|
|
return MERR_BADNF;
|
|
} else if (itemp_has(itemp, IF_NF_R)) {
|
|
return MERR_REQNF;
|
|
}
|
|
|
|
if (has_prefix(ins, PPS_ZU, P_ZU)) {
|
|
if (!itemp_has(itemp, IF_ZU))
|
|
return MERR_BADZU;
|
|
else if (!(ins->oprs[0].type & REGISTER))
|
|
return MERR_MEMZU;
|
|
}
|
|
|
|
/*
|
|
* Check if BND prefix is allowed.
|
|
* Other 0xF2 (REPNE/REPNZ) prefix is prohibited.
|
|
*/
|
|
if (!itemp_has(itemp, IF_BND) &&
|
|
(has_prefix(ins, PPS_REP, P_BND) ||
|
|
has_prefix(ins, PPS_REP, P_NOBND)))
|
|
return MERR_BADBND;
|
|
else if (itemp_has(itemp, IF_BND) &&
|
|
(has_prefix(ins, PPS_REP, P_REPNE) ||
|
|
has_prefix(ins, PPS_REP, P_REPNZ)))
|
|
return MERR_BADREPNE;
|
|
|
|
/*
|
|
* Check if special handling needed for relaxable jump
|
|
*/
|
|
if (itemp_has(itemp, IF_JMP_RELAX))
|
|
return jmp_match(itemp, ins);
|
|
|
|
return MOK_GOOD;
|
|
}
|
|
|
|
/*
|
|
* Select the mod part of modr/m for an memory operand with displacement.
|
|
* zerook should be clear for the forbidden BP encodings; such instructions
|
|
* must be coded with a +0 displacement.
|
|
*
|
|
* 0 = no displacement
|
|
* 1 = 8-bit displacment
|
|
* 2 = 16/32-bit displacement
|
|
*/
|
|
static unsigned int memory_mod(const int eaflags, insn *ins, int64_t o,
|
|
bool known, bool zerook)
|
|
{
|
|
struct ea_data * const output = &ins->ea;
|
|
|
|
/* Explicitly requested by user */
|
|
if (eaflags & EAF_WORDOFFS) {
|
|
return 2;
|
|
}
|
|
|
|
output->disp8_shift = get_disp8_shift(ins);
|
|
output->disp8 = (int8_t)(o >> output->disp8_shift);
|
|
output->disp8_ok = known &&
|
|
((int64_t)output->disp8 << output->disp8_shift)
|
|
== sext(o, ins->addr_size);
|
|
|
|
/* Explicitly requested by user */
|
|
if (eaflags & EAF_BYTEOFFS) {
|
|
return 1;
|
|
}
|
|
|
|
/* Not knowable at this time */
|
|
if (!known)
|
|
return 2;
|
|
|
|
/* No displacement needed? */
|
|
if (o == 0 && zerook)
|
|
return 0;
|
|
|
|
/* 8-bit displacement possible? */
|
|
return output->disp8_ok ? 1 : 2;
|
|
}
|
|
|
|
static int process_ea(operand *input, int rfield, opflags_t rflags,
|
|
insn *ins, enum ea_type expected,
|
|
const char **errmsgp)
|
|
{
|
|
struct ea_data * const output = &ins->ea;
|
|
const bool long_mode = ins->bits == 64;
|
|
const int addrbits = ins->addr_size;
|
|
const int eaflags = input->eaflags;
|
|
const char *errmsg = NULL;
|
|
|
|
errmsg = NULL;
|
|
|
|
nasm_zero(*output);
|
|
output->type = EA_SCALAR;
|
|
|
|
/* REX flags for the rfield operand */
|
|
output->rex |= rexflags(rfield, rflags, REX_rR);
|
|
|
|
if (is_class(REGISTER, input->type)) {
|
|
/*
|
|
* It's a direct register.
|
|
*/
|
|
if (!is_register(input->basereg))
|
|
goto err;
|
|
|
|
if (!is_reg_class(REG_EA, input->basereg))
|
|
goto err;
|
|
|
|
/* broadcasting is not available with a direct register operand. */
|
|
if (input->decoflags & BRDCAST_MASK) {
|
|
errmsg = "broadcast not allowed with register operand";
|
|
goto err;
|
|
}
|
|
|
|
output->rex |= op_rexflags(input, REX_rB);
|
|
output->sib_present = false; /* no SIB necessary */
|
|
output->bytes = 0; /* no offset necessary either */
|
|
output->modrm = GEN_MODRM(3, rfield, nasm_regvals[input->basereg]);
|
|
} else {
|
|
/*
|
|
* It's a memory reference.
|
|
*/
|
|
|
|
/* Embedded rounding or SAE is not available with a mem ref operand. */
|
|
if (input->decoflags & (ER | SAE)) {
|
|
errmsg = "embedded rounding is available only with "
|
|
"register-register operations";
|
|
goto err;
|
|
}
|
|
|
|
if (input->basereg == -1 &&
|
|
(input->indexreg == -1 || input->scale == 0)) {
|
|
/*
|
|
* It's a pure offset. If it is an IMMEDIATE, it is a pattern
|
|
* in insns.dat which allows an immediate to be used as a memory
|
|
* address, in which case apply the default REL/ABS.
|
|
*/
|
|
if (long_mode) {
|
|
if (is_class(IMMEDIATE, input->type)) {
|
|
if (!(input->eaflags & EAF_ABS) &&
|
|
((input->eaflags & EAF_REL) || globalrel))
|
|
input->type |= IP_REL;
|
|
}
|
|
if ((input->type & IP_REL) == IP_REL) {
|
|
/*!
|
|
*!ea-absolute [on] absolute address cannot be RIP-relative
|
|
*! warns that an address that is inherently absolute cannot
|
|
*! be generated with RIP-relative encoding using \c{REL},
|
|
*! see \k{REL & ABS}.
|
|
*/
|
|
if (input->segment == NO_SEG ||
|
|
(input->opflags & OPFLAG_RELATIVE)) {
|
|
nasm_warn(WARN_EA_ABSOLUTE|ERR_PASS2,
|
|
"absolute address can not be RIP-relative");
|
|
input->type &= ~IP_REL;
|
|
input->type |= MEMORY;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (long_mode && !(IP_REL & ~input->type) && (eaflags & EAF_SIB)) {
|
|
errmsg = "instruction requires SIB encoding, cannot be RIP-relative";
|
|
goto err;
|
|
}
|
|
|
|
if ((eaflags & EAF_BYTEOFFS) ||
|
|
((eaflags & EAF_WORDOFFS) &&
|
|
input->disp_size != (addrbits != 16 ? 32 : 16))) {
|
|
/*!
|
|
*!ea-dispsize [on] displacement size ignored on absolute address
|
|
*! warns that NASM does not support generating displacements for
|
|
*! inherently absolute addresses that do not match the address size
|
|
*! of the instruction.
|
|
*/
|
|
nasm_warn(WARN_EA_DISPSIZE, "displacement size ignored on absolute address");
|
|
}
|
|
|
|
if ((eaflags & EAF_SIB) ||
|
|
(long_mode && (~input->type & IP_REL))) {
|
|
output->sib_present = true;
|
|
output->sib = GEN_SIB(0, 4, 5);
|
|
output->bytes = 4;
|
|
output->modrm = GEN_MODRM(0, rfield, 4);
|
|
output->rip = false;
|
|
} else {
|
|
output->sib_present = false;
|
|
output->bytes = (addrbits != 16 ? 4 : 2);
|
|
output->modrm = GEN_MODRM(0, rfield,
|
|
(addrbits != 16 ? 5 : 6));
|
|
output->rip = long_mode;
|
|
}
|
|
} else {
|
|
/*
|
|
* It's an indirection.
|
|
*/
|
|
int i = input->indexreg, b = input->basereg, s = input->scale;
|
|
const bool known =
|
|
!(input->opflags & OPFLAG_UNKNOWN) &&
|
|
(input->segment == NO_SEG);
|
|
int hb = input->hintbase, ht = input->hinttype;
|
|
int t, it, bt; /* register numbers */
|
|
opflags_t x, ix, bx; /* register flags */
|
|
|
|
if (s == 0)
|
|
i = -1; /* make this easy, at least */
|
|
|
|
if (is_register(i)) {
|
|
it = nasm_regvals[i];
|
|
ix = nasm_reg_flags[i];
|
|
} else {
|
|
it = -1;
|
|
ix = 0;
|
|
}
|
|
|
|
if (is_register(b)) {
|
|
bt = nasm_regvals[b];
|
|
bx = nasm_reg_flags[b];
|
|
} else {
|
|
bt = -1;
|
|
bx = 0;
|
|
}
|
|
|
|
/* if either one are a vector register... */
|
|
if ((ix|bx) & (XMMREG|YMMREG|ZMMREG) & ~REG_EA) {
|
|
opflags_t sok = BITS32 | BITS64;
|
|
int32_t o = input->offset;
|
|
int mod, scale, index, base;
|
|
|
|
/*
|
|
* For a vector SIB, one has to be a vector and the other,
|
|
* if present, a GPR. The vector must be the index operand.
|
|
*/
|
|
if (it == -1 || (bx & (XMMREG|YMMREG|ZMMREG) & ~REG_EA)) {
|
|
if (s == 0)
|
|
s = 1;
|
|
else if (s != 1)
|
|
goto err;
|
|
|
|
t = bt, bt = it, it = t;
|
|
x = bx, bx = ix, ix = x;
|
|
}
|
|
|
|
if (bt != -1) {
|
|
if (REG_GPR & ~bx)
|
|
goto err;
|
|
if (!(REG64 & ~bx) || !(REG32 & ~bx))
|
|
sok &= bx;
|
|
else
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* While we're here, ensure the user didn't specify
|
|
* WORD or QWORD
|
|
*/
|
|
if (input->disp_size == 16 || input->disp_size == 64)
|
|
goto err;
|
|
|
|
if (addrbits == 16 ||
|
|
(addrbits == 32 && !(sok & BITS32)) ||
|
|
(addrbits == 64 && !(sok & BITS64)))
|
|
goto err;
|
|
|
|
output->type = ((ix & ZMMREG & ~REG_EA) ? EA_ZMMVSIB
|
|
: ((ix & YMMREG & ~REG_EA)
|
|
? EA_YMMVSIB : EA_XMMVSIB));
|
|
|
|
output->rex |= rexflags(it, ix, REX_rX);
|
|
output->rex |= rexflags(bt, bx, REX_rB);
|
|
|
|
index = it & 7; /* it is known to be != -1 */
|
|
|
|
switch (s) {
|
|
case 1:
|
|
scale = 0;
|
|
break;
|
|
case 2:
|
|
scale = 1;
|
|
break;
|
|
case 4:
|
|
scale = 2;
|
|
break;
|
|
case 8:
|
|
scale = 3;
|
|
break;
|
|
default: /* then what the smeg is it? */
|
|
goto err; /* panic */
|
|
}
|
|
|
|
if (bt == -1) {
|
|
base = 5;
|
|
mod = 0;
|
|
} else {
|
|
base = bt & 7;
|
|
mod = memory_mod(eaflags, ins, o, known,
|
|
base != REG_NUM_EBP);
|
|
}
|
|
|
|
output->sib_present = true;
|
|
output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
|
|
output->modrm = GEN_MODRM(mod, rfield, 4);
|
|
output->sib = GEN_SIB(scale, index, base);
|
|
} else if ((ix|bx) & (BITS32|BITS64)) {
|
|
/*
|
|
* it must be a 32/64-bit memory reference. Firstly we have
|
|
* to check that all registers involved are type E/Rxx.
|
|
*/
|
|
opflags_t sok = BITS32 | BITS64;
|
|
int32_t o = input->offset;
|
|
|
|
if (it != -1) {
|
|
if (!(REG64 & ~ix) || !(REG32 & ~ix))
|
|
sok &= ix;
|
|
else
|
|
goto err;
|
|
}
|
|
|
|
if (bt != -1) {
|
|
if (REG_GPR & ~bx)
|
|
goto err; /* Invalid register */
|
|
if (~sok & bx & SIZE_MASK)
|
|
goto err; /* Invalid size */
|
|
sok &= bx;
|
|
}
|
|
|
|
/*
|
|
* While we're here, ensure the user didn't specify
|
|
* WORD or QWORD
|
|
*/
|
|
if (input->disp_size == 16 || input->disp_size == 64)
|
|
goto err;
|
|
|
|
if (addrbits == 16 ||
|
|
(addrbits == 32 && !(sok & BITS32)) ||
|
|
(addrbits == 64 && !(sok & BITS64)))
|
|
goto err;
|
|
|
|
/* now reorganize base/index */
|
|
if (s == 1 && bt != it && bt != -1 && it != -1 &&
|
|
((hb == b && ht == EAH_NOTBASE) ||
|
|
(hb == i && ht == EAH_MAKEBASE))) {
|
|
/* swap if hints say so */
|
|
t = bt, bt = it, it = t;
|
|
x = bx, bx = ix, ix = x;
|
|
}
|
|
|
|
if (bt == -1 && s == 1 && !(hb == i && ht == EAH_NOTBASE)) {
|
|
/* make single reg base, unless hint */
|
|
bt = it, bx = ix, it = -1, ix = 0;
|
|
}
|
|
if (eaflags & EAF_MIB) {
|
|
/* MIB/split-SIB encoding */
|
|
if (it == -1 && (hb == b && ht == EAH_NOTBASE)) {
|
|
/*
|
|
* make a single reg index [reg*1].
|
|
* gas uses this form for an explicit index register.
|
|
*/
|
|
it = bt, ix = bx, bt = -1, bx = 0, s = 1;
|
|
}
|
|
if ((ht == EAH_SUMMED) && bt == -1) {
|
|
/* separate once summed index into [base, index] */
|
|
bt = it, bx = ix, s--;
|
|
}
|
|
} else {
|
|
if (((s == 2 && it != REG_NUM_ESP &&
|
|
(!(eaflags & EAF_TIMESTWO) || (ht == EAH_SUMMED))) ||
|
|
s == 3 || s == 5 || s == 9) && bt == -1) {
|
|
/* convert 3*EAX to EAX+2*EAX */
|
|
bt = it, bx = ix, s--;
|
|
}
|
|
if (it == -1 && (bt & 7) != REG_NUM_ESP &&
|
|
(eaflags & EAF_TIMESTWO) &&
|
|
(hb == b && ht == EAH_NOTBASE)) {
|
|
/*
|
|
* convert [NOSPLIT EAX*1]
|
|
* to sib format with 0x0 displacement - [EAX*1+0].
|
|
*/
|
|
it = bt, ix = bx, bt = -1, bx = 0, s = 1;
|
|
}
|
|
}
|
|
if (s == 1 && it == REG_NUM_ESP) {
|
|
/* swap ESP into base if scale is 1 */
|
|
t = it, it = bt, bt = t;
|
|
x = ix, ix = bx, bx = x;
|
|
}
|
|
if (it == REG_NUM_ESP ||
|
|
(s != 1 && s != 2 && s != 4 && s != 8 && it != -1))
|
|
goto err; /* wrong, for various reasons */
|
|
|
|
output->rex |= rexflags(it, ix, REX_rX);
|
|
output->rex |= rexflags(bt, bx, REX_rB);
|
|
|
|
if (it == -1 && (bt & 7) != REG_NUM_ESP && !(eaflags & EAF_SIB)) {
|
|
/* no SIB needed */
|
|
int mod, rm;
|
|
|
|
if (bt == -1) {
|
|
rm = 5;
|
|
mod = 0;
|
|
} else {
|
|
rm = bt & 7;
|
|
mod = memory_mod(eaflags, ins, o, known,
|
|
rm != REG_NUM_EBP);
|
|
}
|
|
|
|
output->sib_present = false;
|
|
output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
|
|
output->modrm = GEN_MODRM(mod, rfield, rm);
|
|
} else {
|
|
/* we need a SIB */
|
|
int mod, scale, index, base;
|
|
|
|
if (it == -1)
|
|
index = 4, s = 1;
|
|
else
|
|
index = (it & 7);
|
|
|
|
switch (s) {
|
|
case 1:
|
|
scale = 0;
|
|
break;
|
|
case 2:
|
|
scale = 1;
|
|
break;
|
|
case 4:
|
|
scale = 2;
|
|
break;
|
|
case 8:
|
|
scale = 3;
|
|
break;
|
|
default: /* then what the smeg is it? */
|
|
goto err; /* panic */
|
|
}
|
|
|
|
if (bt == -1) {
|
|
base = 5;
|
|
mod = 0;
|
|
} else {
|
|
base = (bt & 7);
|
|
mod = memory_mod(eaflags, ins, o, known,
|
|
base != REG_NUM_EBP);
|
|
}
|
|
|
|
output->sib_present = true;
|
|
output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
|
|
output->modrm = GEN_MODRM(mod, rfield, 4);
|
|
output->sib = GEN_SIB(scale, index, base);
|
|
}
|
|
} else { /* it's 16-bit */
|
|
int mod, rm;
|
|
int16_t o = input->offset;
|
|
|
|
/* check for 64-bit long mode */
|
|
if (addrbits == 64)
|
|
goto err;
|
|
|
|
/* check all registers are BX, BP, SI or DI */
|
|
if ((b != -1 && b != R_BP && b != R_BX && b != R_SI && b != R_DI) ||
|
|
(i != -1 && i != R_BP && i != R_BX && i != R_SI && i != R_DI))
|
|
goto err;
|
|
|
|
/* ensure the user didn't specify DWORD/QWORD */
|
|
if (input->disp_size == 32 || input->disp_size == 64)
|
|
goto err;
|
|
|
|
if (s != 1 && i != -1)
|
|
goto err; /* no can do, in 16-bit EA */
|
|
if (b == -1 && i != -1) {
|
|
int tmp = b;
|
|
b = i;
|
|
i = tmp;
|
|
} /* swap */
|
|
if ((b == R_SI || b == R_DI) && i != -1) {
|
|
int tmp = b;
|
|
b = i;
|
|
i = tmp;
|
|
}
|
|
/* have BX/BP as base, SI/DI index */
|
|
if (b == i)
|
|
goto err; /* shouldn't ever happen, in theory */
|
|
if (i != -1 && b != -1 &&
|
|
(i == R_BP || i == R_BX || b == R_SI || b == R_DI))
|
|
goto err; /* invalid combinations */
|
|
if (b == -1) /* pure offset: handled above */
|
|
goto err; /* so if it gets to here, panic! */
|
|
|
|
rm = -1;
|
|
if (i != -1)
|
|
switch (i * 256 + b) {
|
|
case R_SI * 256 + R_BX:
|
|
rm = 0;
|
|
break;
|
|
case R_DI * 256 + R_BX:
|
|
rm = 1;
|
|
break;
|
|
case R_SI * 256 + R_BP:
|
|
rm = 2;
|
|
break;
|
|
case R_DI * 256 + R_BP:
|
|
rm = 3;
|
|
break;
|
|
} else
|
|
switch (b) {
|
|
case R_SI:
|
|
rm = 4;
|
|
break;
|
|
case R_DI:
|
|
rm = 5;
|
|
break;
|
|
case R_BP:
|
|
rm = 6;
|
|
break;
|
|
case R_BX:
|
|
rm = 7;
|
|
break;
|
|
}
|
|
if (rm == -1) /* can't happen, in theory */
|
|
goto err; /* so panic if it does */
|
|
|
|
mod = memory_mod(eaflags, ins, o, known, rm != 6);
|
|
output->sib_present = false; /* no SIB - it's 16-bit */
|
|
output->bytes = mod; /* bytes of offset needed */
|
|
output->modrm = GEN_MODRM(mod, rfield, rm);
|
|
}
|
|
|
|
if (eaflags & EAF_REL) {
|
|
/* Explicit REL reference with indirect memory */
|
|
nasm_warn(WARN_OTHER,
|
|
"indirect address displacements cannot be RIP-relative");
|
|
}
|
|
}
|
|
}
|
|
|
|
output->size = 1 + output->sib_present + output->bytes;
|
|
/*
|
|
* The type parsed might not match one supplied by
|
|
* a caller. In this case exit with error and let
|
|
* the caller to decide how critical it is.
|
|
*/
|
|
if (output->type != expected)
|
|
goto err_set_msg;
|
|
|
|
return 0;
|
|
|
|
err:
|
|
output->type = EA_INVALID;
|
|
goto err_set_msg;
|
|
|
|
err_set_msg:
|
|
if (!errmsg) {
|
|
/* Default error message */
|
|
static char invalid_address_msg[40];
|
|
snprintf(invalid_address_msg, sizeof invalid_address_msg,
|
|
"invalid %d-bit effective address", addrbits);
|
|
errmsg = invalid_address_msg;
|
|
}
|
|
*errmsgp = errmsg;
|
|
return -1;
|
|
}
|
|
|
|
static void add_asp(insn *ins)
|
|
{
|
|
const int bits = ins->bits;
|
|
int j, valid;
|
|
int defdisp;
|
|
int asp_bits;
|
|
|
|
valid = (bits == 64) ? 64|32 : 32|16;
|
|
|
|
switch (ins->prefixes[PPS_ASIZE]) {
|
|
case P_A16:
|
|
valid &= 16;
|
|
break;
|
|
case P_A32:
|
|
valid &= 32;
|
|
break;
|
|
case P_A64:
|
|
valid &= 64;
|
|
break;
|
|
case P_ASP:
|
|
valid &= (bits == 32) ? 16 : 32;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
for (j = 0; j < ins->operands; j++) {
|
|
if (is_class(MEMORY, ins->oprs[j].type)) {
|
|
opflags_t i, b;
|
|
|
|
/* Verify as Register */
|
|
if (!is_register(ins->oprs[j].indexreg))
|
|
i = 0;
|
|
else
|
|
i = nasm_reg_flags[ins->oprs[j].indexreg];
|
|
|
|
/* Verify as Register */
|
|
if (!is_register(ins->oprs[j].basereg))
|
|
b = 0;
|
|
else
|
|
b = nasm_reg_flags[ins->oprs[j].basereg];
|
|
|
|
if (ins->oprs[j].scale == 0)
|
|
i = 0;
|
|
|
|
if (!i && !b) {
|
|
int ds = ins->oprs[j].disp_size;
|
|
if ((bits != 64 && ds > 8) ||
|
|
(bits == 64 && ds == 16))
|
|
valid &= ds;
|
|
} else {
|
|
if (!(REG16 & ~b))
|
|
valid &= 16;
|
|
if (!(REG32 & ~b))
|
|
valid &= 32;
|
|
if (!(REG64 & ~b))
|
|
valid &= 64;
|
|
|
|
if (!(REG16 & ~i))
|
|
valid &= 16;
|
|
if (!(REG32 & ~i))
|
|
valid &= 32;
|
|
if (!(REG64 & ~i))
|
|
valid &= 64;
|
|
}
|
|
}
|
|
}
|
|
|
|
asp_bits = (bits == 32) ? 16 : 32;
|
|
|
|
if (valid & bits) {
|
|
ins->addr_size = bits;
|
|
} else if (valid & asp_bits) {
|
|
/* Add an address size prefix */
|
|
ins->prefixes[PPS_ASIZE] = (bits == 32) ? P_A16 : P_A32;
|
|
ins->addr_size = asp_bits;
|
|
} else {
|
|
/* Impossible... */
|
|
nasm_nonfatal("impossible combination of address sizes");
|
|
ins->addr_size = bits; /* Error recovery */
|
|
}
|
|
|
|
defdisp = ins->addr_size == 16 ? 16 : 32;
|
|
|
|
for (j = 0; j < ins->operands; j++) {
|
|
int disp_size;
|
|
|
|
if (!is_class(MEM_OFFS, ins->oprs[j].type))
|
|
continue;
|
|
|
|
disp_size = ins->oprs[j].disp_size;
|
|
if (!disp_size)
|
|
disp_size = defdisp;
|
|
|
|
if (disp_size != ins->addr_size) {
|
|
/*
|
|
* mem_offs sizes must match the address size; if not,
|
|
* strip the MEM_OFFS bit and match only EA instructions
|
|
*/
|
|
ins->oprs[j].type &= ~(MEM_OFFS & ~MEMORY);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set the initial operand size, based only on the mode and any prefixes.
|
|
* The actual operand size may change after instruction pattern selection.
|
|
*/
|
|
static void set_initial_opsize(insn *ins)
|
|
{
|
|
const int bits = ins->bits;
|
|
|
|
switch (ins->prefixes[PPS_OSIZE]) {
|
|
case P_OSP:
|
|
ins->op_size = bits == 16 ? 32 : 16;
|
|
break;
|
|
case P_O16:
|
|
ins->op_size = 16;
|
|
break;
|
|
case P_O32:
|
|
ins->op_size = 32;
|
|
break;
|
|
case P_O64:
|
|
ins->op_size = 64;
|
|
break;
|
|
default:
|
|
ins->op_size = bits == 16 ? 16 : 32;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void insn_early_setup(insn *instruction)
|
|
{
|
|
/* Check to see if we need an address-size prefix */
|
|
add_asp(instruction);
|
|
|
|
/* Set default/prefix-controlled operand size */
|
|
set_initial_opsize(instruction);
|
|
}
|
|
|
|
static void do_list_nonfinal_pass(int64_t start)
|
|
{
|
|
struct out_data dummy;
|
|
nasm_zero(dummy);
|
|
/* OUT_RAWDATA with .data is special */
|
|
dummy.type = OUT_RAWDATA;
|
|
dummy.loc = location;
|
|
dummy.size = location.offset - start;
|
|
dummy.loc.offset = start;
|
|
lfmt->output(&dummy);
|
|
}
|
|
|
|
static inline void list_nonfinal_pass(int64_t start)
|
|
{
|
|
if (list_option('p'))
|
|
do_list_nonfinal_pass(start);
|
|
}
|
|
|
|
/*
|
|
* Process a single instruction without TIMES; this is a common case
|
|
* so optimize it.
|
|
*/
|
|
static void process_one_insn(insn *ins)
|
|
{
|
|
int64_t l;
|
|
|
|
ins->loc = location;
|
|
if (!pass_final()) {
|
|
l = insn_size(ins);
|
|
if (l < 0)
|
|
return; /* Invalid instruction */
|
|
list_nonfinal_pass(ins->loc.offset);
|
|
} else {
|
|
l = assemble(ins);
|
|
nasm_assert(l >= 0); /* Invalid instruction here: bad */
|
|
}
|
|
increment_offset(l);
|
|
}
|
|
|
|
/*
|
|
* Process an instruction with TIMES handling. As this instruction
|
|
* may end up getting processed multiple times and it is permitted
|
|
* for the intervening layers to change the contents of the instruction
|
|
* structure, it is necessary to keep the original and re-initializing
|
|
* the structure on each iteration.
|
|
*/
|
|
static void process_times_insn(insn *ins)
|
|
{
|
|
int64_t l;
|
|
insn tmpins;
|
|
|
|
ins->loc = location;
|
|
|
|
/*
|
|
* NOTE: insn_size() and therefore assemble() can change
|
|
* ins->times (usually to 1) when called due to merging certain
|
|
* operations (e.g. TIMES x RESB y).
|
|
*
|
|
* Therefore, it is necessary to check the returned times
|
|
* value for each iteration.
|
|
*/
|
|
if (!pass_final()) {
|
|
int64_t times = ins->times;
|
|
while (times > 0) {
|
|
tmpins = *ins;
|
|
tmpins.loc.offset = location.offset;
|
|
tmpins.times = times;
|
|
l = insn_size(&tmpins);
|
|
if (l < 0)
|
|
break; /* Invalid instruction */
|
|
increment_offset(l);
|
|
times = tmpins.times - 1;
|
|
}
|
|
list_nonfinal_pass(ins->loc.offset); /* The original starting offset */
|
|
} else {
|
|
int64_t times;
|
|
|
|
tmpins = *ins;
|
|
l = assemble(&tmpins);
|
|
nasm_assert(l >= 0); /* Invalid instruction here: bad */
|
|
increment_offset(l);
|
|
|
|
times = tmpins.times;
|
|
if (times <= 1)
|
|
return;
|
|
|
|
lfmt->uplevel(LIST_TIMES, times);
|
|
times--;
|
|
while (times) {
|
|
tmpins = *ins;
|
|
tmpins.loc.offset = location.offset;
|
|
tmpins.times = times;
|
|
l = assemble(&tmpins);
|
|
nasm_assert(l >= 0);
|
|
increment_offset(l);
|
|
times = tmpins.times - 1;
|
|
}
|
|
lfmt->downlevel(LIST_TIMES);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is the main entry point to this module, called from asm/nasm.c.
|
|
*/
|
|
void process_insn(insn *ins)
|
|
{
|
|
if (likely(ins->times == 1)) {
|
|
process_one_insn(ins);
|
|
} else if (!ins->times) {
|
|
/* TIMES 0 = nothing to do */
|
|
} else if (likely(ins->times > 0)) {
|
|
process_times_insn(ins);
|
|
} else {
|
|
nasm_nonfatalf(ERR_PASS2, "TIMES value %"PRId32" is negative",
|
|
ins->times);
|
|
}
|
|
}
|