0
0
mirror of https://github.com/netwide-assembler/nasm.git synced 2025-07-24 10:25:42 -04:00
nasm/asm/assemble.c
H. Peter Anvin 3d686291c0 assemble: make assemble() and insn_size() static
These functions are only used in assemble.c, so make them static.

Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
2025-03-04 08:38:45 -08:00

4157 lines
124 KiB
C

/* ----------------------------------------------------------------------- *
*
* Copyright 1996-2024 The NASM Authors - All Rights Reserved
* See the file AUTHORS included with the NASM distribution for
* the specific copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following
* conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ----------------------------------------------------------------------- */
/*
* assemble.c code generation for the Netwide Assembler
*
* The entry points to this module are insn_size() for the non-final
* passes, and assemble() for the final pass.
*/
#include "compiler.h"
#include "nasm.h"
#include "nasmlib.h"
#include "error.h"
#include "assemble.h"
#include "insns.h"
#include "tables.h"
#include "disp8.h"
#include "listing.h"
#include "dbginfo.h"
enum match_result {
/*
* Matching errors. These should be sorted so that more specific
* errors (higher priority) come later in the sequence.
*/
MERR_INVALOP,
MERR_OPSIZEINVAL,
MERR_OPSIZEMISSING,
MERR_OPSIZEMISMATCH,
MERR_BRNOTHERE,
MERR_BRNUMMISMATCH,
MERR_MASKNOTHERE,
MERR_DECONOTHERE,
MERR_BADZU,
MERR_MEMZU,
MERR_BADNF,
MERR_REQNF,
MERR_BADCPU,
MERR_BADMODE,
MERR_BADHLE,
MERR_ENCMISMATCH,
MERR_BADBND,
MERR_BADREPNE,
MERR_REGSETSIZE,
MERR_REGSET,
MERR_WRONGIMM,
/*
* Matching successes in decreasing order of fuzziness;
* the fuzziness factor amounts to the factors (normally
* operands) fuzzed.
*/
MOK_FIRST, /* First successful anything */
MOK_FUZZY8,
MOK_FUZZY7, /* Matching unconditionally OK */
MOK_FUZZY6,
MOK_FUZZY5,
MOK_FUZZY4,
MOK_FUZZY3,
MOK_FUZZY2,
MOK_FUZZY1,
MOK_GOOD
};
#define GEN_SIB(scale, index, base) \
(((scale) << 6) | ((index) << 3) | ((base)))
#define GEN_MODRM(mod, reg, rm) \
(((mod) << 6) | (((reg) & 7) << 3) | ((rm) & 7))
static int64_t assemble(insn *instruction);
static int64_t insn_size(insn *instruction);
static int64_t calcsize(insn *, const struct itemplate *);
static int emit_prefixes(struct out_data *data, const insn *ins);
static void gencode(struct out_data *data, insn *ins);
static enum match_result find_match(const struct itemplate **tempp,
insn *instruction);
static enum match_result matches(const struct itemplate *, const insn *);
static opflags_t regflag(const operand *);
static int32_t regval(const operand *);
static uint32_t rexflags(int, opflags_t, uint32_t);
static uint32_t op_rexflags(const operand *, uint32_t);
static uint32_t op_evexflags(const operand *, uint32_t);
static void insn_early_setup(insn *);
static int process_ea(operand *input, int rfield, opflags_t rflags,
insn *ins, enum ea_type expected,
const char **errmsgp);
/* Convert a prefix to a byte value */
static int prefix_byte(enum prefixes pfx, const int bits);
/*
* Convert operand/address/mode size to a BITS opflag constant.
* This is not valid for 80+ bits!
*/
static inline opflags_t mode_to_op(unsigned int bits)
{
nasm_static_assert((BITS8 >> SIZE_SHIFT) == 1);
nasm_static_assert(BITS16 == (BITS8 << 1));
nasm_static_assert(BITS32 == (BITS8 << 2));
nasm_static_assert(BITS64 == (BITS8 << 3));
return (opflags_t)bits << (SIZE_SHIFT - 3);
}
/*
* Return any of REX_[BXR]1 corresponding to non-GPR registers by
* masking them with the REX_[BXR]V flags.
*/
static inline const_func uint32_t rex_highvec(uint32_t rexflags)
{
return rexflags & (rexflags >> 4) & REX_BXR1;
}
/* Get the pointer to an operand if it exits */
static inline struct operand *get_operand(insn *ins, unsigned int n)
{
if (n >= (unsigned int)ins->operands)
return NULL;
else
return &ins->oprs[n];
}
static inline const struct operand *
get_operand_const(const insn *ins, unsigned int n)
{
if (n >= (unsigned int)ins->operands)
return NULL;
else
return &ins->oprs[n];
}
static inline bool absolute_op(const struct operand *o)
{
return o && o->segment == NO_SEG && o->wrt == NO_SEG &&
!(o->opflags & OPFLAG_RELATIVE);
}
static int has_prefix(const insn * ins, enum prefix_pos pos, int prefix)
{
return ins->prefixes[pos] == prefix;
}
static int assert_no_prefix(insn * ins, enum prefix_pos pos)
{
if (ins->prefixes[pos]) {
nasm_nonfatal("invalid %s prefix", prefix_name(ins->prefixes[pos]));
return -1;
}
return 0;
}
static const char *size_name(int size)
{
switch (size) {
case 1:
return "byte";
case 2:
return "word";
case 4:
return "dword";
case 8:
return "qword";
case 10:
return "tword";
case 16:
return "oword";
case 32:
return "yword";
case 64:
return "zword";
default:
return "???";
}
}
static void warn_overflow(int size, const char *prefix, const char *suffix)
{
const char *pfxsp, *sufsp;
pfxsp = sufsp = " ";
if (!prefix)
prefix = ++pfxsp;
if (!suffix)
suffix = ++sufsp;
nasm_warn(ERR_PASS2 | WARN_NUMBER_OVERFLOW,
"%s%s%s%s%s exceeds bounds",
prefix, pfxsp, size_name(size), sufsp, suffix);
}
static void warn_overflow_const(int64_t data, int size)
{
if (overflow_general(data, size))
warn_overflow(size, NULL, NULL);
}
static void warn_overflow_out(int64_t data, int size,
enum out_flags flags, const char *what)
{
bool err;
const char *prefix;
if (flags & OUT_NOWARN)
return;
if (flags & OUT_SIGNED) {
prefix = "signed";
err = overflow_signed(data, size);
} else if (flags & OUT_UNSIGNED) {
prefix = "unsigned";
err = overflow_unsigned(data, size);
} else {
prefix = NULL;
err = overflow_general(data, size);
}
if (err)
warn_overflow(size, prefix, what);
}
/*
* Collect macro-related debug information, if applicable.
*/
static void debug_macro_out(const struct out_data *data)
{
struct debug_macro_addr *addr;
uint64_t start = data->loc.offset;
uint64_t end = start + data->size;
addr = debug_macro_get_addr(data->loc.segment);
while (addr) {
if (!addr->len)
addr->start = start;
addr->len = end - addr->start;
addr = addr->up;
}
}
/*
* This routine wrappers the real output format's output routine,
* in order to pass a copy of the data off to the listing file
* generator at the same time, flatten unnecessary relocations,
* and verify backend compatibility.
*/
/*
* This warning is currently issued by backends, but in the future
* this code should be centralized.
*
*!zeroing [on] \c{RES}\e{x} in initialized section becomes zero
*! a \c{RES}\e{x} directive was used in a section which contains
*! initialized data, and the output format does not support
*! this. Instead, this will be replaced with explicit zero
*! content, which may produce a large output file.
*/
static void out(struct out_data *data)
{
static struct last_debug_info {
struct src_location where;
int32_t segment;
} dbg;
union {
uint8_t b[8];
uint64_t q;
} xdata;
size_t asize, amax;
uint64_t zeropad = 0;
int64_t addrval;
int32_t fixseg; /* Segment for which to produce fixed data */
if (!data->size)
return; /* Nothing to do */
/*
* Convert addresses to RAWDATA if possible
* XXX: not all backends want this for global symbols!!!!
*/
switch (data->type) {
case OUT_ADDRESS:
addrval = data->toffset;
fixseg = NO_SEG; /* Absolute address is fixed data */
goto address;
case OUT_RELADDR:
addrval = data->toffset - data->relbase;
fixseg = data->loc.segment; /* Our own segment is fixed data */
goto address;
address:
nasm_assert(data->size <= 8);
asize = data->size;
amax = ofmt->maxbits >> 3; /* Maximum address size in bytes */
if (data->tsegment == fixseg && data->twrt == NO_SEG) {
if (!(ofmt->flags & OFMT_KEEP_ADDR)) {
if (asize >= (size_t)(data->bits >> 3)) {
/* Support address space wrapping for low-bit modes */
data->flags &= ~OUT_SIGNMASK;
}
warn_overflow_out(addrval, asize, data->flags, data->what);
xdata.q = cpu_to_le64(addrval);
data->data = xdata.b;
data->type = OUT_RAWDATA;
asize = amax = 0; /* No longer an address */
}
} else {
/*!
*!reloc-abs-byte [off] 8-bit absolute section-crossing relocation
*! warns that an 8-bit absolute relocation that could
*! not be resolved at assembly time was generated in
*! the output format.
*!
*! This is usually normal, but may not be handled by all
*! possible target environments
*/
/*!
*!reloc-abs-word [off] 16-bit absolute section-crossing relocation
*! warns that a 16-bit absolute relocation that could
*! not be resolved at assembly time was generated in
*! the output format.
*!
*! This is usually normal, but may not be handled by all
*! possible target environments
*/
/*!
*!reloc-abs-dword [off] 32-bit absolute section-crossing relocation
*! warns that a 32-bit absolute relocation that could
*! not be resolved at assembly time was generated in
*! the output format.
*!
*! This is usually normal, but may not be handled by all
*! possible target environments
*/
/*!
*!reloc-abs-qword [off] 64-bit absolute section-crossing relocation
*! warns that a 64-bit absolute relocation that could
*! not be resolved at assembly time was generated in
*! the output format.
*!
*! This is usually normal, but may not be handled by all
*! possible target environments
*/
/*!
*!reloc-rel-byte [off] 8-bit relative section-crossing relocation
*! warns that an 8-bit relative relocation that could
*! not be resolved at assembly time was generated in
*! the output format.
*!
*! This is usually normal, but may not be handled by all
*! possible target environments
*/
/*!
*!reloc-rel-word [off] 16-bit relative section-crossing relocation
*! warns that a 16-bit relative relocation that could
*! not be resolved at assembly time was generated in
*! the output format.
*!
*! This is usually normal, but may not be handled by all
*! possible target environments
*/
/*!
*!reloc-rel-dword [off] 32-bit relative section-crossing relocation
*! warns that a 32-bit relative relocation that could
*! not be resolved at assembly time was generated in
*! the output format.
*!
*! This is usually normal, but may not be handled by all
*! possible target environments
*/
/*!
*!reloc-rel-qword [off] 64-bit relative section-crossing relocation
*! warns that an 64-bit relative relocation that could
*! not be resolved at assembly time was generated in
*! the output format.
*!
*! This is usually normal, but may not be handled by all
*! possible target environments
*/
int warn;
const char *type;
switch (data->type) {
case OUT_ADDRESS:
type = "absolute";
switch (asize) {
case 1: warn = WARN_RELOC_ABS_BYTE; break;
case 2: warn = WARN_RELOC_ABS_WORD; break;
case 4: warn = WARN_RELOC_ABS_DWORD; break;
case 8: warn = WARN_RELOC_ABS_QWORD; break;
default: panic();
}
break;
case OUT_RELADDR:
type = "relative";
switch (asize) {
case 1: warn = WARN_RELOC_REL_BYTE; break;
case 2: warn = WARN_RELOC_REL_WORD; break;
case 4: warn = WARN_RELOC_REL_DWORD; break;
case 8: warn = WARN_RELOC_REL_QWORD; break;
default: panic();
}
break;
default:
warn = 0;
}
if (warn) {
nasm_warn(warn, "%u-bit %s section-crossing relocation",
(unsigned int)(asize << 3), type);
}
}
break;
case OUT_SEGMENT:
nasm_assert(data->size <= 8);
asize = data->size;
amax = 2;
break;
default:
asize = amax = 0; /* Not an address */
break;
}
/*
* If the source location or output segment has changed,
* let the debug backend know. Some backends really don't
* like being given a NULL filename as can happen if we
* use -Lb and expand a macro, so filter out that case.
*/
data->where = src_where();
if (data->where.filename &&
(!src_location_same(data->where, dbg.where) |
(data->loc.segment != dbg.segment))) {
dbg.where = data->where;
dbg.segment = data->loc.segment;
dfmt->linenum(dbg.where.filename, dbg.where.lineno, data->loc.segment);
}
if (asize > amax) {
if (data->type == OUT_RELADDR || (data->flags & OUT_SIGNED)) {
nasm_nonfatal("%u-bit signed relocation unsupported by output format %s",
(unsigned int)(asize << 3), ofmt->shortname);
} else {
/*!
*!zext-reloc [on] relocation zero-extended to match output format
*! warns that a relocation has been zero-extended due
*! to limitations in the output format.
*/
nasm_warn(WARN_ZEXT_RELOC,
"%u-bit %s relocation zero-extended from %u bits",
(unsigned int)(asize << 3),
data->type == OUT_SEGMENT ? "segment" : "unsigned",
(unsigned int)(amax << 3));
}
zeropad = data->size - amax;
data->size = amax;
}
lfmt->output(data);
if (likely(data->loc.segment != NO_SEG)) {
/*
* Collect macro-related information for the debugger, if applicable
*/
if (debug_current_macro)
debug_macro_out(data);
ofmt->output(data);
} else {
/* Outputting to ABSOLUTE section - only reserve is permitted */
if (data->type != OUT_RESERVE)
nasm_nonfatal("attempt to assemble code in [ABSOLUTE] space");
/* No need to push to the backend */
}
/* Prepare for the next instruction */
data->loc.offset += data->size;
data->insoffs += data->size;
if (zeropad) {
data->type = OUT_ZERODATA;
data->size = zeropad;
lfmt->output(data);
ofmt->output(data);
data->loc.offset += zeropad;
data->insoffs += zeropad;
data->size += zeropad; /* Restore original size value */
}
/* FOr the next time... */
data->what = NULL;
}
static inline void out_rawdata(struct out_data *data, const void *rawdata,
size_t size)
{
data->type = OUT_RAWDATA;
data->data = rawdata;
data->size = size;
out(data);
}
static void out_rawbyte(struct out_data *data, uint8_t byte)
{
data->type = OUT_RAWDATA;
data->data = &byte;
data->size = 1;
out(data);
}
static void out_rawword(struct out_data *data, uint16_t value)
{
uint16_t buf = cpu_to_le16(value);
data->type = OUT_RAWDATA;
data->data = &buf;
data->size = 2;
out(data);
}
static void out_rawdword(struct out_data *data, uint32_t value)
{
uint32_t buf = cpu_to_le32(value);
data->type = OUT_RAWDATA;
data->data = &buf;
data->size = 4;
out(data);
}
static inline void out_reserve(struct out_data *data, uint64_t size)
{
data->type = OUT_RESERVE;
data->size = size;
out(data);
}
static void out_segment(struct out_data *data, const struct operand *opx)
{
if (opx->opflags & OPFLAG_RELATIVE)
nasm_nonfatal("segment references cannot be relative");
data->type = OUT_SEGMENT;
data->flags = OUT_UNSIGNED;
data->size = 2;
data->toffset = opx->offset;
data->tsegment = ofmt->segbase(opx->segment | 1);
data->twrt = opx->wrt;
out(data);
}
static void out_imm(struct out_data *data, const struct operand *opx,
int size, enum out_flags sign)
{
if (opx->segment != NO_SEG && (opx->segment & 1)) {
/*
* This is actually a segment reference, but eval() has
* already called ofmt->segbase() for us. Sigh.
*/
if (size < 2)
nasm_nonfatal("segment reference must be 16 bits");
data->type = OUT_SEGMENT;
} else {
data->type = (opx->opflags & OPFLAG_RELATIVE)
? OUT_RELADDR : OUT_ADDRESS;
}
data->flags = sign;
data->toffset = opx->offset;
data->tsegment = opx->segment;
data->twrt = opx->wrt;
/*
* XXX: improve this if at some point in the future we can
* distinguish the subtrahend in expressions like [foo - bar]
* where bar is a symbol in the current segment. However, at the
* current point, if OPFLAG_RELATIVE is set that subtraction has
* already occurred.
*/
data->relbase = 0;
data->size = size;
out(data);
}
static void out_reladdr(struct out_data *data, const struct operand *opx,
int size)
{
if (opx->opflags & OPFLAG_RELATIVE)
nasm_nonfatal("invalid use of self-relative expression");
data->type = OUT_RELADDR;
data->flags = OUT_SIGNED;
data->size = size;
data->toffset = opx->offset;
data->tsegment = opx->segment;
data->twrt = opx->wrt;
data->relbase = data->loc.offset + (data->inslen - data->insoffs);
out(data);
}
/* This is a real hack. The jcc8 or jmp8 byte code must come first. */
static enum match_result jmp_match(const struct itemplate *temp, const insn *ins)
{
const struct operand * const op0 = get_operand_const(ins, 0);
int64_t delta;
if (op0->type & STRICT)
return MERR_INVALOP;
if (unlikely(ins->opt & (OPTIM_NO_Jcc_RELAX|OPTIM_NO_JMP_RELAX))) {
const uint8_t c = temp->code[0];
switch (c) {
case 0370:
if (ins->opt & OPTIM_NO_Jcc_RELAX)
return MERR_INVALOP;
break;
case 0371:
if (ins->opt & OPTIM_NO_JMP_RELAX)
return MERR_INVALOP;
break;
default:
return MERR_INVALOP;
}
}
if (op0->opflags & OPFLAG_UNKNOWN) {
/* Be optimistic in pass 1 */
return MOK_GOOD;
}
if (op0->segment != ins->loc.segment) {
/* Cross-segment jump */
return MERR_INVALOP;
}
/*
* An instruction with a rel8 operand can only range between 2 and
* 15 bytes. If that is guaranteed true or false, there is no
* reason to go through the process of calculating the exact
* instruction size.
*
* Note that the instruction size is to be *subtracted* from the
* initial (beginning-of-instruction) delta value.
*/
delta = op0->offset - ins->loc.offset;
if (delta - 2 < -128 || delta - 15 > 127) {
/* This cannot be a byte-sized jump */
return MERR_INVALOP;
} else if (delta - 15 >= -128 && delta - 2 <= 127) {
/* It is guaranteed to be a valid byte-sized jump, no need to test */
} else {
/*
* Need to do this the hard way.
*
* However, calcsize() can modify the instruction structure,
* but after a mismatch we have to revert to the original
* state, so make a copy here and hold error messages.
*/
int64_t isize;
insn tmpins;
errhold hold;
tmpins = *ins;
tmpins.dummy = true;
hold = nasm_error_hold_push();
isize = calcsize(&tmpins, temp);
if (nasm_error_hold_pop(hold, false) >= ERR_NONFATAL)
return MERR_INVALOP;
if (isize < 0)
return MERR_INVALOP;
delta -= isize;
if ((int8_t)delta != delta)
return MERR_INVALOP;
}
return MOK_GOOD;
}
static inline int64_t merge_resb(insn *ins, int64_t isize)
{
int nbytes = resb_bytes(ins->opcode);
if (likely(!nbytes))
return isize;
if (isize != nbytes * ins->oprs[0].offset)
return isize; /* Has prefixes of some sort */
ins->oprs[0].offset *= ins->times;
isize *= ins->times;
ins->times = 1;
return isize;
}
/* This must be handle non-power-of-2 alignment values */
static inline size_t pad_bytes(size_t len, size_t align)
{
size_t partial = len % align;
return partial ? align - partial : 0;
}
static void out_eops(struct out_data *data, const extop *e)
{
while (e) {
size_t dup = e->dup;
switch (e->type) {
case EOT_NOTHING:
break;
case EOT_EXTOP:
while (dup--)
out_eops(data, e->val.subexpr);
break;
case EOT_DB_NUMBER:
if (e->elem > 8) {
nasm_nonfatal("integer supplied as %d-bit data",
e->elem << 3);
} else {
while (dup--) {
data->insoffs = 0;
data->inslen = data->size = e->elem;
data->tsegment = e->val.num.segment;
data->toffset = e->val.num.offset;
data->twrt = e->val.num.wrt;
data->relbase = 0;
if (e->val.num.segment != NO_SEG &&
(e->val.num.segment & 1)) {
data->type = OUT_SEGMENT;
data->flags = OUT_UNSIGNED;
} else {
data->type = e->val.num.relative
? OUT_RELADDR : OUT_ADDRESS;
data->flags = OUT_WRAP;
}
out(data);
}
}
break;
case EOT_DB_FLOAT:
case EOT_DB_STRING:
case EOT_DB_STRING_FREE:
{
size_t pad, len;
pad = pad_bytes(e->val.string.len, e->elem);
len = e->val.string.len + pad;
while (dup--) {
data->insoffs = 0;
data->inslen = len;
out_rawdata(data, e->val.string.data, e->val.string.len);
if (pad)
out_rawdata(data, zero_buffer, pad);
}
break;
}
case EOT_DB_RESERVE:
data->insoffs = 0;
data->inslen = dup * e->elem;
out_reserve(data, data->inslen);
break;
}
e = e->next;
}
}
/* This is totally just a wild guess what is reasonable... */
#define INCBIN_MAX_BUF (ZERO_BUF_SIZE * 16)
static int64_t assemble(insn *instruction)
{
struct out_data data;
const struct itemplate *temp;
enum match_result m;
const int64_t start = instruction->loc.offset;
const int bits = instruction->bits;
if (instruction->opcode == I_none)
return 0;
nasm_zero(data);
data.loc = instruction->loc;
data.bits = instruction->bits;
if (opcode_is_db(instruction->opcode)) {
out_eops(&data, instruction->eops);
} else if (instruction->opcode == I_INCBIN) {
const char *fname = instruction->eops->val.string.data;
FILE *fp;
size_t t = instruction->times; /* INCBIN handles TIMES by itself */
off_t base = 0;
off_t len;
const void *map = NULL;
char *buf = NULL;
size_t blk = 0; /* Buffered I/O block size */
size_t m = 0; /* Bytes last read */
if (!t)
goto done;
fp = nasm_open_read(fname, NF_BINARY|NF_FORMAP);
if (!fp) {
nasm_nonfatal("`incbin': unable to open file `%s'",
fname);
goto done;
}
len = nasm_file_size(fp);
if (len == (off_t)-1) {
nasm_nonfatal("`incbin': unable to get length of file `%s'",
fname);
goto close_done;
}
if (instruction->eops->next) {
base = instruction->eops->next->val.num.offset;
if (base >= len) {
len = 0;
} else {
len -= base;
if (instruction->eops->next->next &&
len > (off_t)instruction->eops->next->next->val.num.offset)
len = (off_t)instruction->eops->next->next->val.num.offset;
}
}
lfmt->set_offset(data.loc.offset);
lfmt->uplevel(LIST_INCBIN, len);
if (!len)
goto end_incbin;
/* Try to map file data */
map = nasm_map_file(fp, base, len);
if (!map) {
blk = len < (off_t)INCBIN_MAX_BUF ? (size_t)len : INCBIN_MAX_BUF;
buf = nasm_malloc(blk);
}
while (t--) {
/*
* Consider these irrelevant for INCBIN, since it is fully
* possible that these might be (way) bigger than an int
* can hold; there is, however, no reason to widen these
* types just for INCBIN. data.inslen == 0 signals to the
* backend that these fields are meaningless, if at all
* needed.
*/
data.insoffs = 0;
data.inslen = 0;
if (map) {
out_rawdata(&data, map, len);
} else if ((off_t)m == len) {
out_rawdata(&data, buf, len);
} else {
off_t l = len;
if (fseeko(fp, base, SEEK_SET) < 0 || ferror(fp)) {
nasm_nonfatal("`incbin': unable to seek on file `%s'",
fname);
goto end_incbin;
}
while (l > 0) {
m = fread(buf, 1, l < (off_t)blk ? (size_t)l : blk, fp);
if (!m || feof(fp)) {
/*
* This shouldn't happen unless the file
* actually changes while we are reading
* it.
*/
nasm_nonfatal("`incbin': unexpected EOF while"
" reading file `%s'", fname);
goto end_incbin;
}
out_rawdata(&data, buf, m);
l -= m;
}
}
}
end_incbin:
lfmt->downlevel(LIST_INCBIN);
if (instruction->times > 1) {
lfmt->uplevel(LIST_TIMES, instruction->times);
lfmt->downlevel(LIST_TIMES);
}
if (ferror(fp)) {
nasm_nonfatal("`incbin': error while"
" reading file `%s'", fname);
}
close_done:
if (buf)
nasm_free(buf);
if (map)
nasm_unmap_file(map, len);
fclose(fp);
done:
instruction->times = 1; /* Tell the upper layer not to iterate */
;
} else {
/* "Real" instruction */
/* Pre-match instruction structure update */
insn_early_setup(instruction);
m = find_match(&temp, instruction);
if (m >= MOK_GOOD) {
/* Matches! */
if (unlikely(itemp_has(temp, IF_OBSOLETE))) {
errflags warning;
const char *whathappened;
const char *validity;
bool never = itemp_has(temp, IF_NEVER);
/*
* If IF_OBSOLETE is set, warn the user. Different
* warning classes for "obsolete but valid for this
* specific CPU" and "obsolete and gone."
*
*!obsolete-removed [on] instruction obsolete and removed on the target CPU
*! warns for an instruction which has been removed
*! from the architecture, and is no longer included
*! in the CPU definition given in the \c{[CPU]}
*! directive, for example \c{POP CS}, the opcode for
*! which, \c{0Fh}, instead is an opcode prefix on
*! CPUs newer than the first generation 8086.
*
*!obsolete-nop [on] instruction obsolete and is a noop on the target CPU
*! warns for an instruction which has been removed
*! from the architecture, but has been architecturally
*! defined to be a noop for future CPUs.
*
*!obsolete-valid [on] instruction obsolete but valid on the target CPU
*! warns for an instruction which has been removed
*! from the architecture, but is still valid on the
*! specific CPU given in the \c{CPU} directive. Code
*! using these instructions is most likely not
*! forward compatible.
*/
whathappened = never ? "never implemented" : "obsolete";
if (!never && !iflag_cmp_cpu_level(&insns_flags[temp->iflag_idx], &cpu)) {
warning = WARN_OBSOLETE_VALID;
validity = "but valid on";
} else if (itemp_has(temp, IF_NOP)) {
warning = WARN_OBSOLETE_NOP;
validity = "and is a noop on";
} else {
warning = WARN_OBSOLETE_REMOVED;
validity = never ? "and invalid on" : "and removed from";
}
nasm_warn(warning, "instruction %s %s the target CPU",
whathappened, validity);
}
data.inslen = calcsize(instruction, temp);
nasm_assert(data.inslen >= 0);
data.inslen = merge_resb(instruction, data.inslen);
data.insoffs = 0;
gencode(&data, instruction);
if (unlikely(data.insoffs != data.inslen)) {
nasm_nonfatal("instruction length changed during code generation (%u -> %u)",
(unsigned int)data.insoffs, (unsigned int)data.inslen);
}
nasm_assert(data.loc.offset - start == data.inslen);
} else {
/* No match */
switch (m) {
case MERR_INVALOP:
default:
nasm_nonfatal("invalid combination of opcode and operands");
break;
case MERR_OPSIZEINVAL:
nasm_nonfatal("invalid operand sizes for instruction");
break;
case MERR_OPSIZEMISSING:
nasm_nonfatal("operation size not specified");
break;
case MERR_OPSIZEMISMATCH:
nasm_nonfatal("mismatch in operand sizes");
break;
case MERR_BRNOTHERE:
nasm_nonfatal("broadcast not permitted on this operand");
break;
case MERR_BRNUMMISMATCH:
nasm_nonfatal("mismatch in the number of broadcasting elements");
break;
case MERR_MASKNOTHERE:
nasm_nonfatal("mask not permitted on this operand");
break;
case MERR_DECONOTHERE:
nasm_nonfatal("unsupported mode decorator for instruction");
break;
case MERR_BADCPU:
nasm_nonfatal("no instruction for this cpu level");
break;
case MERR_BADMODE:
nasm_nonfatal("instruction not supported in %d-bit mode", bits);
break;
case MERR_ENCMISMATCH:
if (!instruction->prefixes[PPS_REX]) {
nasm_nonfatal("instruction not encodable without explicit prefix");
} else {
nasm_nonfatal("instruction not encodable with %s prefix",
prefix_name(instruction->prefixes[PPS_REX]));
}
break;
case MERR_BADBND:
case MERR_BADREPNE:
nasm_nonfatal("%s prefix is not allowed",
prefix_name(instruction->prefixes[PPS_REP]));
break;
case MERR_REGSETSIZE:
nasm_nonfatal("invalid register set size");
break;
case MERR_REGSET:
nasm_nonfatal("register set not valid for operand");
break;
case MERR_WRONGIMM:
nasm_nonfatal("operand/operator invalid for this instruction");
break;
case MERR_BADZU:
nasm_nonfatal("{zu} not applicable to this instruction");
break;
case MERR_MEMZU:
nasm_nonfatal("{zu} invalid for non-register destination");
break;
case MERR_BADNF:
nasm_nonfatal("{nf} not available for this instruction");
break;
case MERR_REQNF:
nasm_nonfatal("{nf} required for this instruction");
break;
}
instruction->times = 1; /* Avoid repeated error messages */
}
}
return data.loc.offset - start;
}
static int32_t eops_typeinfo(const extop *e)
{
int32_t typeinfo = 0;
while (e) {
switch (e->type) {
case EOT_NOTHING:
break;
case EOT_EXTOP:
typeinfo |= eops_typeinfo(e->val.subexpr);
break;
case EOT_DB_FLOAT:
switch (e->elem) {
case 1: typeinfo |= TY_BYTE; break;
case 2: typeinfo |= TY_WORD; break;
case 4: typeinfo |= TY_FLOAT; break;
case 8: typeinfo |= TY_QWORD; break; /* double? */
case 10: typeinfo |= TY_TBYTE; break; /* long double? */
case 16: typeinfo |= TY_YWORD; break;
case 32: typeinfo |= TY_ZWORD; break;
default: break;
}
break;
default:
switch (e->elem) {
case 1: typeinfo |= TY_BYTE; break;
case 2: typeinfo |= TY_WORD; break;
case 4: typeinfo |= TY_DWORD; break;
case 8: typeinfo |= TY_QWORD; break;
case 10: typeinfo |= TY_TBYTE; break;
case 16: typeinfo |= TY_YWORD; break;
case 32: typeinfo |= TY_ZWORD; break;
default: break;
}
break;
}
e = e->next;
}
return typeinfo;
}
static inline void debug_set_db_type(insn *instruction)
{
int32_t typeinfo = TYS_ELEMENTS(instruction->operands);
typeinfo |= eops_typeinfo(instruction->eops);
dfmt->debug_typevalue(typeinfo);
}
static void debug_set_type(insn *instruction)
{
int32_t typeinfo;
if (opcode_is_resb(instruction->opcode)) {
typeinfo = TYS_ELEMENTS(instruction->oprs[0].offset);
switch (instruction->opcode) {
case I_RESB:
typeinfo |= TY_BYTE;
break;
case I_RESW:
typeinfo |= TY_WORD;
break;
case I_RESD:
typeinfo |= TY_DWORD;
break;
case I_RESQ:
typeinfo |= TY_QWORD;
break;
case I_REST:
typeinfo |= TY_TBYTE;
break;
case I_RESO:
typeinfo |= TY_OWORD;
break;
case I_RESY:
typeinfo |= TY_YWORD;
break;
case I_RESZ:
typeinfo |= TY_ZWORD;
break;
default:
panic();
}
} else {
typeinfo = TY_LABEL;
}
dfmt->debug_typevalue(typeinfo);
}
/* Proecess an EQU directive */
static void define_equ(insn * instruction)
{
if (!instruction->label) {
nasm_nonfatal("EQU not preceded by label");
} else if (instruction->operands == 1 &&
(instruction->oprs[0].type & IMMEDIATE) &&
instruction->oprs[0].wrt == NO_SEG) {
define_label(instruction->label,
instruction->oprs[0].segment,
instruction->oprs[0].offset, false);
} else if (instruction->operands == 2
&& (instruction->oprs[0].type & IMMEDIATE)
&& (instruction->oprs[0].type & COLON)
&& instruction->oprs[0].segment == NO_SEG
&& instruction->oprs[0].wrt == NO_SEG
&& (instruction->oprs[1].type & IMMEDIATE)
&& instruction->oprs[1].segment == NO_SEG
&& instruction->oprs[1].wrt == NO_SEG) {
define_label(instruction->label,
instruction->oprs[0].offset | SEG_ABS,
instruction->oprs[1].offset, false);
} else {
nasm_nonfatal("bad syntax for EQU");
}
}
static int64_t len_extops(const extop *e)
{
int64_t isize = 0;
size_t pad;
while (e) {
switch (e->type) {
case EOT_NOTHING:
break;
case EOT_EXTOP:
isize += e->dup * len_extops(e->val.subexpr);
break;
case EOT_DB_STRING:
case EOT_DB_STRING_FREE:
case EOT_DB_FLOAT:
pad = pad_bytes(e->val.string.len, e->elem);
isize += e->dup * (e->val.string.len + pad);
break;
case EOT_DB_NUMBER:
warn_overflow_const(e->val.num.offset, e->elem);
isize += e->dup * e->elem;
break;
case EOT_DB_RESERVE:
isize += e->dup * e->elem;
break;
}
e = e->next;
}
return isize;
}
static int64_t insn_size(insn *instruction)
{
const struct itemplate *temp;
enum match_result m;
int64_t isize = 0;
if (instruction->opcode == I_none) {
return 0;
} else if (instruction->opcode == I_EQU) {
define_equ(instruction);
return 0;
} else if (opcode_is_db(instruction->opcode)) {
isize = len_extops(instruction->eops);
debug_set_db_type(instruction);
return isize;
} else if (instruction->opcode == I_INCBIN) {
const extop *e = instruction->eops;
const char *fname = e->val.string.data;
off_t len;
len = nasm_file_size_by_path(fname);
if (len == (off_t)-1) {
nasm_nonfatal("`incbin': unable to get length of file `%s'",
fname);
return 0;
}
e = e->next;
if (e) {
if (len <= (off_t)e->val.num.offset) {
len = 0;
} else {
len -= e->val.num.offset;
e = e->next;
if (e && len > (off_t)e->val.num.offset) {
len = (off_t)e->val.num.offset;
}
}
}
len *= instruction->times;
instruction->times = 1; /* Tell the upper layer to not iterate */
return len;
} else {
/* Normal instruction, or RESx */
/* Pre-matching setup */
insn_early_setup(instruction);
m = find_match(&temp, instruction);
if (m < MOK_GOOD)
return -1; /* No match */
isize = calcsize(instruction, temp);
debug_set_type(instruction);
isize = merge_resb(instruction, isize);
return isize;
}
}
static void bad_hle_warn(const insn * ins, uint8_t hleok)
{
enum prefixes rep_pfx = ins->prefixes[PPS_REP];
enum whatwarn { w_none, w_lock, w_inval } ww;
static const enum whatwarn warn[2][4] =
{
{ w_inval, w_inval, w_none, w_lock }, /* XACQUIRE */
{ w_inval, w_none, w_none, w_lock }, /* XRELEASE */
};
unsigned int n;
n = (unsigned int)rep_pfx - P_XACQUIRE;
if (n > 1)
return; /* Not XACQUIRE/XRELEASE */
ww = warn[n][hleok];
if (!is_class(MEMORY, ins->oprs[0].type))
ww = w_inval; /* HLE requires operand 0 to be memory */
/*!
*!prefix-hle [on] invalid HLE prefix
*!=hle
*! warns about invalid use of the HLE \c{XACQUIRE} or \c{XRELEASE}
*! prefixes.
*/
switch (ww) {
case w_none:
break;
case w_lock:
if (ins->prefixes[PPS_LOCK] != P_LOCK) {
nasm_warn(WARN_PREFIX_HLE|ERR_PASS2,
"%s with this instruction requires lock",
prefix_name(rep_pfx));
}
break;
case w_inval:
nasm_warn(WARN_PREFIX_HLE|ERR_PASS2,
"%s invalid with this instruction",
prefix_name(rep_pfx));
break;
}
}
static int ea_evex_err(decoflags_t deco, unsigned int vlen, const char *why)
{
const char *what = deco & ER
? "embedded rounding" : "suppress all exceptions";
nasm_nonfatal("%s not possible for %d-bit vectors%s",
what, 128 << vlen, why);
return -1;
}
/* Handle EVEX flags at the time of EA processing */
static int ea_evex_flags(insn *ins, const struct operand *opy)
{
/* EVEX.b1 : evex_brerop contains the operand position */
const struct operand *op_er_sae = ins->evex_brerop;
const decoflags_t deco = op_er_sae ? op_er_sae->decoflags : 0;
if (deco & (ER | SAE)) {
if (!itemp_has(ins->itemp, IF_LIG)) {
const unsigned int vlen = (ins->evex & EVEX_P2RC) >> 29;
const char *why = "";
switch (vlen) {
case 2:
/* 512 bits, no special encoding */
break;
case 1:
/* 256 bits, encodable in AVX 10.2 if mod=3 */
if (!iflag_test(&cpu, IF_AVX10_2)) {
why = " without AVX 10.2";
} else {
ins->evex ^= EVEX_P1U;
break;
}
/* else fall through */
default:
/* Not encodable */
return ea_evex_err(deco, vlen, why);
}
}
ins->evex &= ~EVEX_P2RC;
ins->evex ^= EVEX_P2B;
if (op_er_sae->decoflags & ER) {
/* set EVEX.RC (rounding control) */
ins->evex ^= ((ins->evex_rm - BRC_RN) << 29) & EVEX_P2RC;
}
} else if (opy->decoflags & BRDCAST_MASK) {
/* set EVEX.b but don't EVEX.L/RC */
ins->evex ^= EVEX_P2B;
}
return 0;
}
static int ea_evex_post_check(const insn *ins)
{
const struct operand *op_er_sae = ins->evex_brerop;
const decoflags_t deco = op_er_sae ? op_er_sae->decoflags : 0;
if ((deco & (ER | SAE)) && !itemp_has(ins->itemp, IF_LIG)) {
const unsigned int vlen = (ins->evex & EVEX_P2RC) >> 29;
if (vlen == 1 && (ins->ea.modrm >> 6) != 3) {
return ea_evex_err(deco, vlen, " when accessing memory");
}
}
return 0;
}
/* Common construct */
#define case3(x) case (x): case (x)+1: case (x)+2
#define case4(x) case3(x): case (x)+3
static int64_t calcsize(insn *ins, const struct itemplate * const temp)
{
const int bits = ins->bits;
const uint8_t *codes = temp->code;
int64_t length = 0;
uint8_t c;
int op1, op2;
struct operand *opx, *opy;
uint8_t opex = 0;
enum ea_type eat;
uint8_t hleok = 0;
bool lockcheck = true;
enum reg_enum mib_index = R_none; /* For a separate index reg form */
const char *errmsg;
int need_pfx[MAXPREFIX];
int opt_opsize = 0;
ins->rex = 0; /* Ensure REX is reset */
ins->evex = 0; /* Ensure EVEX is reset */
ins->vexreg = 0; /* No V register */
ins->vex_cm = 0; /* No implicit map */
ins->bits = bits; /* Execution mode (default asize) */
ins->itemp = temp; /* Instruction template */
eat = EA_SCALAR; /* Expect a scalar EA */
/* Default operand size */
ins->op_size = bits != 16 ? 32 : 16;
nasm_zero(need_pfx);
while (*codes) {
c = *codes++;
op1 = (c & 3) + ((opex & 1) << 2);
opx = get_operand(ins, op1);
op2 = ((c >> 3) & 3) + ((opex & 2) << 1);
opy = NULL;
opex = 0; /* For the next iteration */
switch (c) {
case4(01):
codes += c, length += c;
break;
case3(05):
opex = c;
break;
case4(010):
ins->rex |= op_rexflags(opx, REX_rB);
codes++, length++;
break;
case4(014):
/* this is an index reg of a split SIB operand */
mib_index = opx->basereg;
break;
case4(020):
case4(024):
length++;
break;
case4(030):
length += 2;
break;
case4(034):
if (opx->type & (BITS16 | BITS32 | BITS64))
length += (opx->type & BITS16) ? 2 : 4;
else
length += (bits == 16) ? 2 : 4;
break;
case4(040):
length += 4;
break;
case4(044):
length += ins->addr_size >> 3;
break;
case4(050):
length++;
break;
case4(054):
length += 8; /* MOV reg64/imm */
break;
case4(060):
length += 2;
break;
case4(064):
if (opx->type & (BITS16 | BITS32 | BITS64))
length += (opx->type & BITS16) ? 2 : 4;
else
length += (bits == 16) ? 2 : 4;
break;
case4(070):
length += 4;
break;
case4(074):
length += 2;
break;
case 0171:
c = *codes++;
op2 = (op2 & ~3) | ((c >> 3) & 3);
opy = get_operand(ins, op2);
ins->rex |= op_rexflags(opy, REX_rR);
length++;
break;
case 0172:
case 0173:
codes++;
length++;
break;
case4(0174):
length++;
break;
case4(0240):
ins->vexreg = regval(opx);
goto evex_common;
case 0250:
ins->vexreg = 0;
goto evex_common;
evex_common:
ins->rex |= REX_EV;
ins->evex = 0x62;
ins->evex += *codes++ << 8;
ins->evex += *codes++ << 16;
ins->evex += *codes++ << 24;
ins->evex_tuple = (*codes++ - 0300);
ins->vex_cm = ((ins->evex >> 8) & 7) | (RV_EVEX << 6);
break;
case4(0254):
case4(0264):
length += 4;
break;
case4(0260):
ins->vexreg = regval(opx);
goto vex_common;
case 0270:
ins->vexreg = 0;
goto vex_common;
vex_common:
ins->rex |= REX_V;
ins->vex_cm = *codes++;
ins->vex_wlp = *codes++;
break;
case3(0271):
hleok = c & 3;
break;
case4(0274):
length++;
break;
case4(0300):
length++;
break;
case 0310:
{
enum prefixes pfx = ins->prefixes[PPS_ASIZE];
ins->addr_size = 16;
if (bits == 64)
return -1;
if (pfx) {
if (!(pfx == P_A16 || (bits == 32 && pfx == P_ASP)))
return -1;
} else {
ins->prefixes[PPS_ASIZE] = P_A16;
}
break;
}
case 0311:
{
enum prefixes pfx = ins->prefixes[PPS_ASIZE];
ins->addr_size = 32;
if (pfx) {
if (!(pfx == P_A32 || (bits != 32 && pfx == P_ASP)))
return -1;
} else {
ins->prefixes[PPS_ASIZE] = P_A32;
}
break;
}
case 0312:
break;
case 0313:
{
enum prefixes pfx = ins->prefixes[PPS_ASIZE];
ins->addr_size = 64;
if (bits != 64 || (pfx && pfx != P_A64))
return -1;
else
ins->prefixes[PPS_ASIZE] = P_A64;
break;
}
case4(0314):
break;
case 0320:
is_o16:
{
/*! prefix-opsize [on] invalid operand size prefix
*! warns that an operand prefix (\c{o16}, \c{o32}, \c{o64},
*! \c{osp}) invalid for the specified instruction has been specified.
*! The operand prefix will be ignored by the assembler.
*/
enum prefixes pfx = ins->prefixes[PPS_OSIZE];
ins->op_size = 16;
if (bits != 16 && pfx == P_OSP) {
/* Allow osp prefix as is */
} else if (pfx != P_none && pfx != P_O16) {
nasm_warn(WARN_PREFIX_OPSIZE|ERR_PASS2,
"invalid operand size prefix %s, must be o16",
prefix_name(pfx));
} else if (!(opt_opsize & 16)) {
ins->prefixes[PPS_OSIZE] = P_O16;
}
break;
}
case 0321:
is_o32:
{
enum prefixes pfx = ins->prefixes[PPS_OSIZE];
ins->op_size = 32;
if (ins->rex & REX_NW) {
nasm_nonfatalf(ERR_PASS2,
"instruction not valid with 32-bit operand size");
return -1;
} else if (bits == 16 && pfx == P_OSP) {
/* Allow osp prefix as is */
} else if (pfx != P_none && pfx != P_O32) {
nasm_warn(WARN_PREFIX_OPSIZE|ERR_PASS2,
"invalid operand size prefix %s, must be o32",
prefix_name(pfx));
} else if (!(opt_opsize & 32)) {
ins->prefixes[PPS_OSIZE] = P_O32;
}
break;
}
case 0322:
break;
case 0327:
if (bits == 64) {
ins->rex |= REX_NW;
if (ins->op_size == 32)
ins->op_size = 64;
}
break;
case 0323:
ins->rex |= REX_NW;
/* fall through */
case 0324:
is_o64:
{
enum prefixes pfx = ins->prefixes[PPS_OSIZE];
ins->op_size = 64;
if (pfx == P_OSP) {
/* If osp is specified, leave it, but force REX.W */
if (!(ins->rex & REX_NW))
ins->rex |= REX_W;
} else if (pfx != P_none && pfx != P_O64) {
nasm_warn(WARN_PREFIX_OPSIZE|ERR_PASS2,
"invalid operand size prefix %s, must be o64",
prefix_name(pfx));
} else if (!(opt_opsize & 64)) {
ins->prefixes[PPS_OSIZE] = P_O64;
}
break;
}
case 0325:
ins->rex |= REX_NH;
break;
case 0326:
break;
case 0330:
switch (ins->prefixes[PPS_OSIZE]) {
case P_none:
switch (ins->op_size) {
case 16: goto is_o16;
case 32: goto is_o32;
case 64: goto is_o64;
default: panic(); break;
}
break;
case P_OSP:
if (bits == 16)
goto is_o32;
else
goto is_o16;
case P_O16:
goto is_o16;
case P_O32:
goto is_o32;
case P_O64:
goto is_o64;
default:
panic();
break;
}
break;
case 0331:
ins->need_pfx[PPS_REP] = PFE_NULL;
break;
case 0332:
ins->need_pfx[PPS_REP] = 0xf2;
break;
case 0333:
ins->need_pfx[PPS_REP] = 0xf3;
break;
case 0334:
ins->rex |= REX_L; /* Ignored in 64-bit mode */
break;
case 0335:
break;
case 0336:
if (!(optimizing & OPTIM_STRICT_OSIZE))
opt_opsize = 16|32|64;
break;
case 0337:
if (!(optimizing & OPTIM_STRICT_OSIZE))
opt_opsize = 64;
break;
case 0340:
/*!
*!forward [on] forward reference may have unpredictable results
*! warns that a forward reference is used which may have
*! unpredictable results, notably in a \c{RESB}-type
*! pseudo-instruction. These would be \i\e{critical
*! expressions} (see \k{crit}) but are permitted in a
*! handful of cases for compatibility with older
*! versions of NASM. This warning should be treated as a
*! severe programming error as the code could break at
*! any time for any number of reasons.
*/
/* The bytecode ends in 0, so opx points to operand 0 */
if (!absolute_op(opx)) {
nasm_nonfatal("attempt to reserve non-constant"
" quantity of memory");
return -1;
} else if (opx->opflags & OPFLAG_FORWARD) {
nasm_warn(WARN_FORWARD, "forward reference in %s "
"can have unpredictable results",
nasm_insn_names[ins->opcode]);
}
length += opx->offset * resb_bytes(ins->opcode);
break;
case 0341:
if (!ins->prefixes[PPS_WAIT])
ins->prefixes[PPS_WAIT] = P_WAIT;
break;
case 0344:
ins->rex |= REX_P | REX_B;
break;
case 0345:
ins->rex |= REX_P | REX_X;
break;
case 0346:
ins->rex |= REX_P | REX_R;
break;
case 0347:
ins->rex |= REX_P | REX_W;
break;
case 0350:
ins->rex |= REX_P | REX_2;
break;
case 0351:
ins->rex |= REX_P | REX_2 | REX_X1;
break;
case3(0355):
/* Set opmap for legacy and REX2 encodings */
ins->vex_cm = c & 3;
break;
case 0360:
ins->need_pfx[PPS_REP] = PFE_NULL;
ins->need_pfx[PPS_OSIZE] = PFE_NULL;
break;
case 0361:
ins->need_pfx[PPS_REP] = PFE_NULL;
/* fall through */
case 0366:
ins->need_pfx[PPS_OSIZE] = 0x66;
break;
case 0364:
ins->need_pfx[PPS_OSIZE] = PFE_NULL;
break;
case 0365:
ins->need_pfx[PPS_ASIZE] = PFE_NULL;
break;
case 0367:
ins->need_pfx[PPS_ASIZE] = 0x67;
break;
case 0370:
break;
case 0371:
if (ins->prefixes[PPS_REP] == P_BND) {
/* jmp short (opcode eb) cannot be used with bnd prefix. */
ins->prefixes[PPS_REP] = P_none;
/*!
*!prefix-bnd [on] invalid \c{BND} prefix
*!=bnd
*! warns about ineffective use of the \c{BND} prefix when the
*! \c{JMP} instruction is converted to the \c{SHORT} form.
*! This should be extremely rare since the short \c{JMP} only
*! is applicable to jumps inside the same module, but if
*! it is legitimate, it may be necessary to use
*! \c{bnd jmp dword}.
*/
if (!ins->dummy)
nasm_warn(WARN_PREFIX_BND|ERR_PASS2 ,
"jmp short does not init bnd regs - bnd prefix dropped");
}
break;
case 0373:
length++;
break;
case 0374:
eat = EA_XMMVSIB;
break;
case 0375:
eat = EA_YMMVSIB;
break;
case 0376:
eat = EA_ZMMVSIB;
break;
case4(0100):
case4(0110):
case4(0120):
case4(0130):
case4(0200):
case4(0204):
case4(0210):
case4(0214):
case4(0220):
case4(0224):
case4(0230):
case4(0234):
{
int rfield;
opflags_t rflags;
opy = get_operand(ins, op2);
ins->ea.rex = 0; /* Ensure ea.REX is initially 0 */
if (c <= 0177) {
/* pick rfield from operand b (opx) */
rflags = regflag(opx);
rfield = nasm_regvals[opx->basereg];
} else {
rflags = 0;
rfield = c & 7;
opx = NULL;
}
if (itemp_has(temp, IF_MIB)) {
opy->eaflags |= EAF_MIB;
/*
* if a separate form of MIB (ICC style) is used,
* the index reg info is merged into mem operand
*/
if (mib_index != R_none) {
opy->indexreg = mib_index;
opy->scale = 1;
opy->hintbase = mib_index;
opy->hinttype = EAH_NOTBASE;
}
}
/* SIB encoding required */
if (itemp_has(temp, IF_SIB))
opy->eaflags |= EAF_SIB;
/* ea_evex_flags() must come before process_ea() */
if (ea_evex_flags(ins, opy))
return -1;
if (process_ea(opy, rfield, rflags, ins, eat, &errmsg)) {
nasm_nonfatal("%s", errmsg);
return -1;
}
ins->rex |= ins->ea.rex;
length += ins->ea.size;
if (ea_evex_post_check(ins))
return -1;
}
break;
default:
nasm_panic("internal instruction table corrupt"
": instruction code \\%o (0x%02X) given", c, c);
break;
}
}
if (ins->rex & REX_NH) {
if (ins->rex & REX_H) {
nasm_nonfatal("instruction cannot use high registers");
return -1;
}
ins->rex &= ~REX_P; /* Don't force REX prefix due to high reg */
}
if (ins->prefixes[PPS_OSIZE] == P_O64) {
ins->rex |= !(ins->rex & REX_NW) ? REX_W : 0;
}
switch (ins->prefixes[PPS_REX]) {
case P_EVEX:
if (!(ins->rex & REX_EV))
return -1;
break;
case P_VEX:
case P_VEX3:
case P_VEX2:
if (!(ins->rex & REX_V))
return -1;
break;
case P_REX:
if (bits != 64) {
nasm_nonfatal("REX encoding not supported in %d-bit mode", bits);
return -1;
}
if (ins->rex & (REX_V|REX_EV|REX_2))
return -1;
ins->rex |= REX_P; /* Force REX prefix */
break;
case P_REX2:
if (bits != 64) {
nasm_nonfatal("REX2 encoding not supported in %d-bit mode", bits);
return -1;
}
if ((ins->rex & (REX_V|REX_EV)) || rex_highvec(ins->rex))
return -1;
ins->rex |= REX_P | REX_2; /* Force REX2 prefix */
break;
default:
break;
}
if (ins->rex & (REX_V | REX_EV)) {
uint32_t bad32 = REX_BXR;
if (ins->rex & REX_H) {
nasm_nonfatal("cannot use high byte register in this instruction");
return -1;
}
if (itemp_has(temp, IF_WW)) {
bad32 |= REX_W;
} else {
ins->rex = (ins->rex & ~REX_W) | ((ins->vex_wlp >> (7-3)) & REX_W);
}
if (bits != 64 && ((ins->rex & bad32) || ins->vexreg > 7)) {
nasm_nonfatal("invalid operands in non-64-bit mode");
return -1;
}
if (ins->rex & REX_EV) {
/* EVEX */
length += 4;
} else {
/* VEX */
if (ins->vexreg > 15 || (ins->rex & REX_BXR1)) {
nasm_nonfatal("invalid high-16 register in VEX encoded instruction");
return -1;
}
if (ins->vex_cm != 1 ||
(ins->rex & (REX_B|REX_X|REX_W)) ||
ins->prefixes[PPS_REX] == P_VEX3) {
/* VEX3 required */
if (ins->prefixes[PPS_REX] == P_VEX2)
nasm_nonfatal("instruction not encodable with {vex2} prefix");
length += 3;
} else {
/* VEX2 available */
length += 2;
}
}
} else if (ins->rex & (REX_BXR1 | REX_2)) {
/* REX2 prefix needed */
if (bits != 64) {
nasm_nonfatal("invalid operands in %d-bit mode", bits);
return -1;
}
if (!iflag_test(&cpu, IF_APX)) {
nasm_nonfatal("invalid operands in non-APX mode");
return -1;
}
if (itemp_has(temp, IF_NOAPX) || rex_highvec(ins->rex)) {
nasm_nonfatal("this use of registers 16-31 not supported for this instruction");
return -1;
}
if (ins->rex & REX_H) {
nasm_nonfatal("cannot use high byte register in this instruction");
return -1;
}
ins->rex |= REX_2 | REX_P;
length += 2;
} else if (ins->rex & REX_MASK) {
if (ins->rex & REX_H) {
nasm_nonfatal("cannot use high byte register in this instruction");
return -1;
} else if (bits == 64) {
ins->rex &= ~REX_L;
ins->rex |= REX_P;
} else if ((ins->rex & (REX_L|REX_W|REX_BXR)) == (REX_L|REX_R) &&
iflag_cpu_level_ok(&cpu, IF_X86_64)) {
/* LOCK-as-REX.R */
if (assert_no_prefix(ins, PPS_LOCK))
return -1;
lockcheck = false; /* Already errored, no need for warning */
ins->rex &= ~REX_P;
} else {
nasm_nonfatal("invalid operands in %d-bit mode", bits);
return -1;
}
length++;
}
if (!(ins->rex & (REX_2|REX_V|REX_EV))) {
/* Opmap legacy encoding: none, 0f, 0f 38, 0f 3a */
length += (ins->vex_cm > 0) + (ins->vex_cm > 1);
}
if (lockcheck && has_prefix(ins, PPS_LOCK, P_LOCK)) {
if ((!itemp_has(temp,IF_LOCK) || !is_class(MEMORY, ins->oprs[0].type)) &&
(!itemp_has(temp,IF_LOCK1) || !is_class(MEMORY, ins->oprs[1].type))) {
/*!
*!prefix-lock-error [on] \c{LOCK} prefix on unlockable instruction
*!=lock
*! warns about \c{LOCK} prefixes on unlockable instructions.
*/
nasm_warn(WARN_PREFIX_LOCK_ERROR|ERR_PASS2 , "instruction is not lockable");
} else if (temp->opcode == I_XCHG) {
/*!
*!prefix-lock-xchg [on] superfluous \c{LOCK} prefix on \c{XCHG} instruction
*! warns about a \c{LOCK} prefix added to an \c{XCHG} instruction.
*! The \c{XCHG} instruction is \e{always} locking, and so this
*! prefix is not necessary; however, NASM will generate it if
*! explicitly provided by the user, so this warning indicates that
*! suboptimal code is being generated.
*/
nasm_warn(WARN_PREFIX_LOCK_XCHG|ERR_PASS2,
"superfluous LOCK prefix on XCHG instruction");
}
}
bad_hle_warn(ins, hleok);
/*
* when BND prefix is set by DEFAULT directive,
* BND prefix is added to every appropriate instruction line
* unless it is overridden by NOBND prefix.
*/
if (globalbnd &&
(itemp_has(temp, IF_BND) && !has_prefix(ins, PPS_REP, P_NOBND)))
ins->prefixes[PPS_REP] = P_BND;
/*
* Add length of legacy prefixes
*/
length += emit_prefixes(NULL, ins);
return length;
}
/* Emit REX and REX2 prefixes, and if necessary legacy opmap bytes */
static inline void emit_rex(struct out_data *data, insn *ins)
{
if (ins->rex_done)
return;
ins->rex_done = true;
if (ins->rex & (REX_V | REX_EV))
return; /* Handled elsewhere */
if (ins->rex & REX_2) {
uint16_t rex2 = 0x00d5;
nasm_assert(ins->vex_cm < 2);
rex2 |= (ins->rex & (REX_BXR0|REX_W)) << 8;
rex2 |= (ins->rex & REX_BXR1);
rex2 |= ins->vex_cm << 15;
out_rawword(data, rex2);
} else {
uint8_t rex = ins->rex & (REX_MASK|REX_L);
if (rex == (REX_L|REX_R)) {
out_rawbyte(data, 0xf0);
} else if (rex & REX_P) {
out_rawbyte(data, rex);
} else {
nasm_assert(!rex);
}
if (ins->vex_cm) {
out_rawbyte(data, 0x0f);
if (ins->vex_cm > 1) {
/* Map 2 = 0F 38, map 3 = 0F 3A */
nasm_assert(ins->vex_cm < 4);
out_rawbyte(data, 0x34 + (ins->vex_cm << 1));
}
}
}
}
/*
* Return the byte value of a legacy prefix (possibly depending on context)
* Returns one of the enum prefix_err values if the prefix has no byte value.
*/
static int prefix_byte(enum prefixes pfx, const int bits)
{
switch ((int)pfx) {
case P_WAIT:
return 0x9B;
case P_LOCK:
return 0xF0;
case P_REPNE:
case P_REPNZ:
case P_XACQUIRE:
case P_BND:
return 0xF2;
case P_REPE:
case P_REPZ:
case P_REP:
case P_XRELEASE:
return 0xF3;
case R_CS:
return 0x2E;
case R_DS:
return 0x3E;
case R_ES:
return 0x26;
case R_FS:
return 0x64;
break;
case R_GS:
return 0x65;
break;
case R_SS:
return 0x36;
break;
case P_A16:
if (bits == 64)
return PFE_ERR;
else if (bits == 32)
return 0x67;
else
return PFE_NULL;
case P_A32:
return (bits != 32) ? 0x67 : PFE_NULL;
case P_ASP:
return 0x67;
case P_O16:
return (bits != 16) ? 0x66 : PFE_NULL;
case P_O32:
return (bits == 16) ? 0x66 : PFE_NULL;
case P_O64:
return (bits == 64) ? PFE_NULL : PFE_ERR;
case P_OSP:
return 0x66;
case P_REX:
case P_VEX:
case P_EVEX:
case P_VEX3:
case P_VEX2:
case P_REX2:
return PFE_MULTI;
case P_NF:
case P_NOBND:
case P_ZU:
case P_none:
return PFE_NULL;
default:
return PFE_WHAT;
}
}
/* Emit legacy prefixes */
static int emit_prefixes(struct out_data *data, const insn *ins)
{
const int bits = ins->bits;
uint8_t buf[MAXPREFIX];
int bytes = 0;
int j;
for (j = 0; j < MAXPREFIX; j++) {
const enum prefixes pfx = ins->prefixes[j];
const int r = ins->need_pfx[j];
int c = prefix_byte(pfx, bits);
if (r && r != c && !(r <= 0 && c <= 0)) {
switch (pfx) {
case P_none:
case P_O16:
case P_O32:
case P_O64:
case P_A16:
case P_A32:
case P_A64:
/* In these cases, allow the instruction to simply override */
c = r;
break;
default:
/*!
*!prefix-invalid [on] invalid prefix for instruction
*! this instruction is only valid with certain combinations
*! of prefixes. The prefix will still be generated as
*! requested, but the result may be a completely different
*! instruction.
*/
nasm_warn(WARN_PREFIX_INVALID|ERR_PASS2,
"invalid prefix %s for instruction, result may be unexpected",
prefix_name(pfx));
break;
}
}
/* Various warnings and error conditions */
switch ((int)pfx) {
case R_ES:
case R_SS:
case R_CS:
case R_DS:
/*!
*!prefix-seg [on] segment prefix ignored in 64-bit mode
*! warns that an \c{es}, \c{cs}, \c{ss} or \c{ds} segment override
*! prefix has no effect in 64-bit mode. The prefix will still be
*! generated as requested.
*/
if (bits == 64) {
nasm_warn(WARN_PREFIX_SEG|ERR_PASS2,
"%s segment override will be ignored in 64-bit mode",
prefix_name(pfx));
}
break;
case P_A16:
if (bits == 64)
nasm_nonfatal("16-bit addressing is not supported "
"in 64-bit mode");
break;
case P_A64:
if (bits != 64)
nasm_nonfatal("64-bit addressing is only supported "
"in 64-bit mode");
break;
case P_O64:
if (bits != 64)
nasm_nonfatal("64-bit operand size is only supported "
"in 64-bit mode");
break;
default:
switch (c) {
case 0x66:
case 0xf2:
case 0xf3:
/* These prefixes are embedded in a VEX/EVEX prefix */
if (ins->rex & (REX_V|REX_EV))
c = PFE_NULL;
break;
case PFE_ERR:
nasm_nonfatal("invalid use of %s prefix", prefix_name(pfx));
break;
case PFE_WHAT:
nasm_nonfatal("%s cannot be used as a prefix", prefix_name(pfx));
break;
default:
break;
}
}
if (c >= 0)
buf[bytes++] = c;
}
if (data && bytes)
out_rawdata(data, buf, bytes);
return bytes;
}
static void gencode(struct out_data *data, insn *ins)
{
uint8_t c;
uint8_t bytes[4];
int64_t size;
int op1, op2;
struct operand *opx, *opy;
const uint8_t *codes = ins->itemp->code;
uint8_t opex = 0;
int r;
const int bits = ins->bits;
data->itemp = ins->itemp;
data->bits = ins->bits;
ins->rex_done = false;
emit_prefixes(data, ins);
while (*codes) {
c = *codes++;
op1 = (c & 3) + ((opex & 1) << 2);
opx = get_operand(ins, op1);
op2 = ((c >> 3) & 3) + ((opex & 2) << 1);
opy = NULL;
opex = 0; /* For the next iteration */
switch (c) {
case 01:
case 02:
case 03:
case 04:
emit_rex(data, ins);
out_rawdata(data, codes, c);
codes += c;
break;
case 05:
case 06:
case 07:
opex = c;
break;
case4(010):
emit_rex(data, ins);
out_rawbyte(data, *codes++ + (regval(opx) & 7));
break;
case4(014):
break;
case4(020):
out_imm(data, opx, 1, OUT_WRAP);
break;
case4(024):
out_imm(data, opx, 1, OUT_UNSIGNED);
break;
case4(030):
out_imm(data, opx, 2, OUT_WRAP);
break;
case4(034):
if (opx->type & (BITS16 | BITS32))
size = (opx->type & BITS16) ? 2 : 4;
else
size = (bits == 16) ? 2 : 4;
out_imm(data, opx, size, OUT_WRAP);
break;
case4(040):
out_imm(data, opx, 4, OUT_WRAP);
break;
case4(044):
size = ins->addr_size >> 3;
out_imm(data, opx, size, OUT_WRAP);
break;
case4(050):
if (opx->segment == data->loc.segment) {
int64_t delta = sext(opx->offset - data->loc.offset
- (data->inslen - data->insoffs),
ins->op_size);
if (delta != (int8_t)delta)
nasm_nonfatal("short jump is out of range");
}
out_reladdr(data, opx, 1);
break;
case4(054):
out_imm(data, opx, 8, OUT_WRAP);
break;
case4(060):
out_reladdr(data, opx, 2);
break;
case4(064):
if (opx->type & (BITS16 | BITS32 | BITS64))
size = (opx->type & BITS16) ? 2 : 4;
else
size = (bits == 16) ? 2 : 4;
out_reladdr(data, opx, size);
break;
case4(070):
out_reladdr(data, opx, 4);
break;
case4(074):
if (opx->segment == NO_SEG)
nasm_nonfatal("value referenced by FAR is not relocatable");
out_segment(data, opx);
break;
case 0171:
c = *codes++;
op2 = (op2 & ~3) | ((c >> 3) & 3);
opx = &ins->oprs[op2];
r = nasm_regvals[opx->basereg];
c = (c & ~070) | ((r & 7) << 3);
out_rawbyte(data, c);
break;
case 0172:
{
int mask = ins->prefixes[PPS_REX] == P_EVEX ? 7 : 15;
const struct operand *opy;
c = *codes++;
opx = get_operand(ins, op1 = (c >> 3) & 7);
opy = get_operand(ins, op2 = c & 7);
if (!absolute_op(opy))
nasm_nonfatal("non-absolute expression not permitted "
"as argument %d", op2);
else if (opy->offset & ~mask)
nasm_warn(ERR_PASS2|WARN_NUMBER_OVERFLOW,
"is4 argument exceeds bounds");
c = opy->offset & mask;
goto emit_is4;
}
case 0173:
c = *codes++;
opx = get_operand(ins, op1 = c >> 4);
c &= 15;
goto emit_is4;
case4(0174):
c = 0;
emit_is4:
r = nasm_regvals[opx->basereg];
out_rawbyte(data, (r << 4) | ((r & 0x10) >> 1) | c);
break;
case4(0240):
case 0250:
codes += 4;
ins->evex ^= op_evexflags(&ins->oprs[0], EVEX_P2Z|EVEX_P2AAA);
ins->evex ^= (ins->rex & REX_BXR0) << 13; /* R0 X0 B0 */
if (ins->rex & REX_B1)
ins->evex ^= (ins->rex & REX_BV) ? EVEX_P0X : EVEX_P0BP;
if (ins->rex & REX_X1)
ins->evex ^= (ins->rex & REX_XV) ? EVEX_P2VP : EVEX_P1XP;
ins->evex ^= (ins->rex & REX_R1) >> (14-12);
ins->evex ^= (ins->rex & REX_W) << (23-3);
ins->evex ^= (ins->vexreg & 15) << 19;
ins->evex ^= (ins->vexreg & 16) << (27 - 4);
/* Set NF if {nd} and this is applicable */
if (ins->prefixes[PPS_NF] == P_NF) {
if (itemp_has(ins->itemp, IF_NF_E))
ins->evex ^= EVEX_P2NF;
}
/* Set ND if {zu} and this is applicable */
if (ins->prefixes[PPS_ZU] == P_ZU) {
if (itemp_has(ins->itemp, IF_ZU_E))
ins->evex ^= EVEX_P2ND;
}
out_rawdword(data, ins->evex);
break;
case4(0254):
out_imm(data, opx, 4, OUT_SIGNED);
break;
case4(0264):
out_imm(data, opx, 4, OUT_UNSIGNED);
break;
case4(0260):
case 0270:
codes += 2;
if (ins->vex_cm != 1 ||
(ins->rex & (REX_W|REX_X|REX_B)) ||
ins->prefixes[PPS_REX] == P_VEX3) {
bytes[0] = (ins->vex_cm >> 6) ? 0x8f : 0xc4;
bytes[1] = (ins->vex_cm & 31) |
((~ins->rex & REX_BXR0) << 5);
bytes[2] = ((ins->rex & REX_W) << (7-3)) |
((~ins->vexreg & 15) << 3) |
(ins->vex_wlp & 07);
out_rawdata(data, bytes, 3);
} else {
bytes[0] = 0xc5;
bytes[1] = ((~ins->rex & REX_R) << (7-2)) |
((~ins->vexreg & 15) << 3) |
(ins->vex_wlp & 07);
out_rawdata(data, bytes, 2);
}
break;
case 0271:
case 0272:
case 0273:
break;
case4(0274):
{
uint64_t uv, um;
int s;
if (absolute_op(opx)) {
s = ins->op_size;
um = (uint64_t)2 << (s-1);
uv = opx->offset;
if (uv > 127 && uv < (uint64_t)-128 &&
(uv < um-128 || uv > um-1)) {
/*
* If this wasn't explicitly byte-sized, warn as though we
* had fallen through to the imm16/32/64 case.
*/
nasm_warn(ERR_PASS2|WARN_NUMBER_OVERFLOW,
"%s exceeds bounds",
(opx->type & BITS8) ? "signed byte" :
s == 16 ? "word" :
s == 32 ? "dword" :
"signed dword");
}
/* Output as a raw byte to avoid byte overflow check */
out_rawbyte(data, (uint8_t)uv);
} else {
out_imm(data, opx, 1, OUT_WRAP); /* XXX: OUT_SIGNED? */
}
break;
}
case4(0300):
{
emit_rex(data, ins);
if (absolute_op(opx)) {
if (!is_hint_nop(opx->offset)) {
nasm_warn(ERR_PASS2, "not a valid hint-NOP opcode (0D, 18-1F)");
}
out_rawbyte(data, opx->offset);
} else {
out_imm(data, opx, 1, OUT_UNSIGNED);
}
break;
}
case 0310:
case 0311:
break;
case 0312:
break;
case 0313:
break;
case4(0314):
break;
case 0320:
case 0321:
break;
case 0322:
case 0323:
case 0324:
case 0327:
break;
case 0325:
break;
case 0326:
break;
case 0330:
case 0331:
case 0332:
case 0333:
break;
case 0334:
break;
case 0335:
break;
case 0336:
case 0337:
break;
case 0340:
if (opx->segment != NO_SEG)
nasm_panic("non-constant BSS size in pass two");
out_reserve(data, ins->oprs[0].offset * resb_bytes(ins->opcode));
break;
case 0341:
break;
case4(0344):
break;
case 0350:
case 0351:
break;
case3(0355):
break;
case 0360:
break;
case 0361:
break;
case 0364:
case 0365:
break;
case 0366:
case 0367:
break;
case3(0370):
break;
case 0373:
out_rawbyte(data, bits == 16 ? 3 : 5);
break;
case 0374:
case 0375:
case 0376:
break;
case4(0100):
case4(0110):
case4(0120):
case4(0130):
case4(0200):
case4(0204):
case4(0210):
case4(0214):
case4(0220):
case4(0224):
case4(0230):
case4(0234):
{
uint8_t *p;
bool overflow;
opy = get_operand(ins, op2);
p = bytes;
*p++ = ins->ea.modrm;
if (ins->ea.sib_present)
*p++ = ins->ea.sib;
out_rawdata(data, bytes, p - bytes);
/*
* Make sure the address gets the right offset in case
* the line breaks in the .lst file (BR 1197827)
*/
switch (ins->ea.bytes) {
case 0:
/* No displacement */
overflow = false;
break;
case 1:
/* 8-bit displacement, which may be compressed */
out_rawbyte(data, ins->ea.disp8);
overflow = !ins->ea.disp8_ok;
break;
default:
if (ins->ea.rip) {
out_reladdr(data, opy, ins->ea.bytes);
overflow = false;
} else {
unsigned int asize = ins->addr_size >> 3;
out_imm(data, opy, ins->ea.bytes,
(asize > ins->ea.bytes)
? OUT_SIGNED|OUT_NOWARN : OUT_WRAP|OUT_NOWARN);
overflow = overflow_general(opy->offset, asize) ||
sext(opy->offset, ins->addr_size) !=
sext(opy->offset, ins->ea.bytes << 3);
}
}
if (overflow)
warn_overflow(ins->ea.bytes, NULL, "displacement");
}
break;
default:
nasm_panic("internal instruction table corrupt"
": instruction code \\%o (0x%02X) given", c, c);
break;
}
}
}
static opflags_t regflag(const operand * o)
{
if (!is_register(o->basereg))
nasm_panic("invalid operand passed to regflag()");
return nasm_reg_flags[o->basereg];
}
static int32_t regval(const operand * o)
{
/*
* Certain instruction patterns allow an immediate to be put
* into a register field
*/
if (o->type & IMMEDIATE)
return o->offset;
if (!is_register(o->basereg))
nasm_panic("invalid operand passed to regval()");
return nasm_regvals[o->basereg];
}
static uint32_t op_rexflags(const operand * o, uint32_t mask)
{
opflags_t flags;
int val;
if (!is_register(o->basereg))
nasm_panic("invalid operand passed to op_rexflags()");
flags = nasm_reg_flags[o->basereg];
val = nasm_regvals[o->basereg];
return rexflags(val, flags, mask);
}
static uint32_t rexflags(int val, opflags_t flags, uint32_t mask)
{
uint32_t rex = 0;
if (val < 0 || !is_class(REGISTER, flags)) {
/* Not a register */
return 0;
}
if (val & 8)
rex |= REX_B|REX_X|REX_R;
if (val & 16)
rex |= REX_B1|REX_X1|REX_R1;
if (flags & REG_CLASS_VECTOR) {
rex |= REX_BV|REX_XV|REX_RV;
} else if (is_class(REG8, flags)) {
if (is_class(REG_HIGH, flags)) {
/* AH, CH, DH, BH: REX/REX2/VEX/EVEX forbidden */
rex |= REX_H;
} else if (val >= 4) {
/* SPL, BPL, SIL, DIL, or extended: prefix required */
rex |= REX_P;
}
}
return rex & mask;
}
static uint32_t evexflags(decoflags_t deco, uint32_t mask)
{
uint32_t evex = 0;
if (deco & Z)
evex |= EVEX_P2Z;
if (deco & OPMASK_MASK)
evex |= (deco << 24) & EVEX_P2AAA;
return evex & mask;
}
static uint32_t op_evexflags(const operand * o, uint32_t mask)
{
return evexflags(o->decoflags, mask);
}
static enum match_result find_match(const struct itemplate **tempp,
insn *instruction)
{
const int bits = instruction->bits;
const struct itemplate_list *templist;
const struct itemplate *temp;
const struct itemplate *best = NULL;
enum match_result m, merr;
int this_good;
int rex = instruction->prefixes[PPS_REX];
unsigned int n;
/* Impossible encoding request? */
if (bits != 64) {
if (rex == P_REX || rex == P_REX2)
return MERR_ENCMISMATCH;
}
merr = MERR_INVALOP;
best = NULL;
this_good = 0;
templist = &nasm_instructions[instruction->opcode];
n = templist->ntemp;
temp = templist->temp;
while (n--) {
m = matches(temp, instruction);
if (m > merr) {
best = temp;
merr = m;
this_good = 1;
if (merr == MOK_GOOD)
break;
} else if (m == merr) {
this_good++;
}
temp++;
}
if (merr >= MOK_FIRST)
merr = MOK_GOOD; /* Fuzzy match but valid */
*tempp = best;
return merr;
}
static uint8_t get_broadcast_num(opflags_t opflags, opflags_t brsize)
{
unsigned int opsize = (opflags & SIZE_MASK) >> SIZE_SHIFT;
uint8_t brcast_num;
if (brsize > BITS64)
nasm_fatal("size of broadcasting element is greater than 64 bits");
/*
* The shift term is to take care of the extra BITS80 inserted
* between BITS64 and BITS128.
*/
brcast_num = ((opsize / (BITS64 >> SIZE_SHIFT)) * (BITS64 / brsize))
>> (opsize > (BITS64 >> SIZE_SHIFT));
return brcast_num;
}
static enum match_result matches(const struct itemplate * const itemp,
const insn * const ins)
{
const int bits = ins->bits;
int i;
const int oprs = ins->operands;
unsigned int arflag;
unsigned int armask, smmask;
bool if_anysize, if_sx;
int op_size;
opflags_t opsize, arsize, smsize;
opflags_t isize[MAX_OPERANDS]; /* Adjusted instruction operand sizes */
opflags_t tsize[MAX_OPERANDS]; /* Adjusted template operand sizes */
opflags_t itype[MAX_OPERANDS]; /* Adjusted instruction flags */
bool sm_missing;
/* Jump size/type declarators are more like types than sizes */
const opflags_t jsize_mask = NEAR|FAR|SHORT|ABS;
const opflags_t msize_mask = SIZE_MASK & ~jsize_mask;
/*
* Check the opcode
*/
if (itemp->opcode != ins->opcode)
return MERR_INVALOP;
/*
* Count the operands
*/
if (itemp->operands != oprs)
return MERR_INVALOP;
/*
* Is it legal?
*/
if (unlikely(ins->opt & OPTIM_STRICT_INSTR)) {
if (itemp_has(itemp, IF_OPT))
return MERR_INVALOP;
}
/*
* {rex/vexn/evex} available?
*/
switch (ins->prefixes[PPS_REX]) {
case P_EVEX:
if (!itemp_has(itemp, IF_EVEX))
return MERR_ENCMISMATCH;
break;
case P_VEX:
case P_VEX3:
case P_VEX2:
if (!itemp_has(itemp, IF_VEX))
return MERR_ENCMISMATCH;
break;
case P_REX:
if (bits != 64 ||
itemp_has(itemp, IF_NOREX) ||
itemp_has(itemp, IF_VEX) ||
itemp_has(itemp, IF_EVEX) ||
itemp_has(itemp, IF_REX2))
return MERR_ENCMISMATCH;
break;
case P_REX2:
if (bits != 64 ||
itemp_has(itemp, IF_NOAPX) ||
itemp_has(itemp, IF_EVEX))
return MERR_ENCMISMATCH;
break;
default:
if (itemp_has(itemp, IF_EVEX)) {
if (!iflag_test(&cpu, IF_EVEX))
return MERR_BADCPU;
} else if (itemp_has(itemp, IF_VEX)) {
if (!iflag_test(&cpu, IF_VEX)) {
return MERR_BADCPU;
} else if (itemp_has(itemp, IF_LATEVEX)) {
if (!iflag_test(&cpu, IF_LATEVEX) && iflag_test(&cpu, IF_EVEX))
return MERR_BADCPU;
} else if (itemp_has(itemp, IF_REX2)) {
if (bits != 64 || !iflag_test(&cpu, IF_APX))
return MERR_BADCPU;
}
}
break;
}
/*
* First, cursory operand filtering and initialize
* itype[] and isize[]
*/
for (i = 0; i < oprs; i++) {
const struct operand * const op = &ins->oprs[i];
const opflags_t ttype = itemp->opd[i];
isize[i] = op->type & msize_mask;
itype[i] = op->type - isize[i];
if (op->type & ~ttype & (COLON | TO))
return MERR_INVALOP;
if (op->iflag && !itemp_has(itemp, op->iflag))
return MERR_WRONGIMM;
}
/* "Default" operand size (from mode and prefixes only) */
op_size = ins->op_size;
if (itemp_has(itemp, IF_NWSIZE) && op_size == 32) {
/* If this is an nw instruction, default to 64 bits in 64-bit mode */
op_size = bits;
}
opsize = mode_to_op(op_size);
/* Some key flags */
if_anysize = itemp_has(itemp, IF_ANYSIZE);
if_sx = itemp_has(itemp, IF_SX);
/*
* Compare various operand flags that don't depend on sizes,
* and compute the "true" template operand sizes.
*/
for (i = 0; i < oprs; i++) {
const opflags_t ttype = itemp->opd[i];
const decoflags_t deco = ins->oprs[i].decoflags;
const decoflags_t ideco = itemp->deco[i];
const bool is_broadcast = deco & BRDCAST_MASK;
if (likely(!is_broadcast)) {
tsize[i] = ttype & msize_mask;
} else {
const decoflags_t ideco_brsize = ideco & BRSIZE_MASK;
if (~ideco & BRDCAST_MASK)
return MERR_BRNOTHERE;
/*
* when broadcasting, the element size depends on
* the instruction type. decorator flag should match.
*/
if (ideco_brsize)
tsize[i] = brsize_to_size(ideco_brsize);
else
tsize[i] = 0; /* Is this even possible? */
}
/* Handle implied SHORT or NEAR */
if (unlikely(ttype & (NEAR|SHORT))) {
if ((ttype & (NEAR|SHORT)) == (NEAR|SHORT)) {
/* Only a short form exists; allow both NEAR and SHORT */
if (!(itype[i] & (FAR|ABS)))
itype[i] |= NEAR|SHORT;
} else if ((itype[i] & SHORT) || isize[i] == BITS8) {
/* An explicit SHORT or BITS8 cancel NEAR; are synonyms */
itype[i] &= ~NEAR;
if (!isize[i])
isize[i] = BITS8;
} else if (!(itype[i] & (FAR|ABS|SHORT))) {
/* NEAR is implicit unless otherwise specified */
itype[i] |= ttype & NEAR;
}
}
/* Check to see if we need to coerce an explicitly sized immediate */
if (unlikely(itype[i] & ttype & IMMEDIATE)) {
/*
* If this is an *explicitly* sized immediate,
* allow it to match an extending pattern.
*/
switch (isize[i]) {
case BITS8:
if (ttype & BYTEEXTMASK) {
isize[i] = tsize[i];
itype[i] |= BYTEEXTMASK;
}
break;
case BITS32:
if (ttype & DWORDEXTMASK)
isize[i] = tsize[i];
break;
default:
break;
}
/*
* MOST instructions which take an sdword64 are the only form;
* set the SDWORD flag to be strict about sdword64 matching
* (use when a true imm64 pattern exists.)
*/
if (!itemp_has(itemp, IF_SDWORD))
itype[i] |= SDWORD;
}
if (ttype & ~itype[i] & ~(msize_mask|REGSET_MASK))
return MERR_INVALOP;
if (~ideco & deco & OPMASK_MASK)
return MERR_MASKNOTHERE;
if (~ideco & deco & (Z_MASK|STATICRND_MASK|SAE_MASK))
return MERR_DECONOTHERE;
if (~ttype & itype[i] & REGSET_MASK)
return (ttype & REGSET_MASK) ? MERR_REGSETSIZE : MERR_REGSET;
}
/*
* Process the operand sizes.
*/
arflag = itemp_smask(itemp);
nasm_static_assert(SIZE_SHIFT >= IF_SB);
nasm_static_assert((BITS8 >> SIZE_SHIFT) == 1);
arsize = (arflag & IF_TSMASK) << (SIZE_SHIFT - IF_SB);
if (arflag & IFM_OSIZE)
arsize = opsize;
else if (arflag & IFM_ASIZE)
arsize = mode_to_op(ins->addr_size);
/* Flags for which the AR and SM flags apply */
armask = itemp_arx(itemp);
smmask = itemp_smx(itemp);
/* Apply ARx and register default sizes */
if (!if_sx) {
for (i = 0; i < oprs; i++) {
const unsigned int bit = 1U << i;
if (!isize[i]) {
if (is_class(REGISTER, itype[i]) && tsize[i])
isize[i] = tsize[i];
else if (armask & bit)
isize[i] = arsize;
}
}
}
/*
* Look the common subset for the size-matched operands.
* However, defer the error messages to until after
* the final operand checking loop, to get a better
* order of message priorities.
*/
smsize = msize_mask;
sm_missing = false;
if (smmask) {
unsigned int nosizemask = 0;
for (i = 0; i < oprs; i++) {
const unsigned int bit = 1U << i;
if (isize[i]) {
if (smmask & bit)
smsize &= isize[i];
} else if (tsize[i] && !is_class(REGISTER, itype[i])) {
nosizemask |= bit;
}
}
sm_missing = !(smmask & ~nosizemask);
}
/*
* Check that the operand sizes actually match,
* and look for other kinds of mismatches, e.g.
* REG_HIGH when REX is specified.
*/
for (i = 0; i < oprs; i++) {
const opflags_t type = itype[i];
const decoflags_t deco = ins->oprs[i].decoflags;
const decoflags_t ideco = itemp->deco[i];
const bool is_broadcast = deco & BRDCAST_MASK;
const bool has_ar = (armask >> i) & 1;
const bool has_sm = (smmask >> i) & 1;
const bool is_reg = is_class(REGISTER, type);
/*
* Operand sizes are considered matching at this stage
* if any one of these is true:
*
* 1. The template size is undefined.
* XXX: apply ARx|Sx flags here?
* 2. The operand size matches the template size.
* 3. There is an ARx|ANYSIZE flag in the template.
* 4. The operand size is unspecified and the
* template does not carry an ARx|SX flag.
*/
if (tsize[i]) {
if (isize[i] != tsize[i]) {
if (has_ar) {
if (if_anysize)
goto isize_ok;
if (unlikely(if_sx) && !is_reg)
return MERR_OPSIZEINVAL;
}
if (isize[i])
return is_reg ? MERR_INVALOP : MERR_OPSIZEINVAL;
}
isize_ok:
if (has_sm)
smsize &= tsize[i];
} else {
/*
* SX with an unsized operand means only an unsized operand
* is OK.
*/
if (unlikely(if_sx) && has_ar)
if (isize[i])
return MERR_OPSIZEINVAL;
}
if (is_class(REG_HIGH, type) && ins->prefixes[PPS_REX]) {
/* High registers cannot be combined with any REX type */
return MERR_INVALOP;
}
if (is_broadcast) {
/* calculate the proper number : {1to<brcast_num>} */
const decoflags_t ideco_brsize = ideco & BRSIZE_MASK;
unsigned int brcast_num = 0;
if (ideco_brsize)
brcast_num = get_broadcast_num(itemp->opd[i], tsize[i]);
if (brcast_num != (2U << ((deco & BRNUM_MASK) >> BRNUM_SHIFT))) {
/*
* broadcasting opsize matches but the number of repeated memory
* element does not match.
* if 64b double precision float is broadcasted to ymm (256b),
* broadcasting decorator must be {1to4}.
*/
return MERR_BRNUMMISMATCH;
}
}
}
/*
* Make sure that our size match set, if any, did not get exhausted,
* and contains exactly one valid combination still...
*/
if (smmask) {
if (!smsize)
return MERR_OPSIZEMISMATCH;
else if (!is_power2(smsize) || (if_sx && sm_missing))
return MERR_OPSIZEMISSING;
}
/*
* Check template is okay at the set cpu level
*/
if (iflag_cmp_cpu_level(&insns_flags[itemp->iflag_idx], &cpu) > 0)
return MERR_BADCPU;
/*
* Verify the appropriate long mode flag.
*/
if (itemp_has(itemp, (bits == 64 ? IF_NOLONG : IF_LONG)))
return MERR_BADMODE;
/*
* If we have a HLE prefix, look for the NOHLE flag
*/
if (itemp_has(itemp, IF_NOHLE) &&
(has_prefix(ins, PPS_REP, P_XACQUIRE) ||
has_prefix(ins, PPS_REP, P_XRELEASE)))
return MERR_BADHLE;
/*
* {nf} or {zu} prefixes used? Must be permitted.
*/
if (has_prefix(ins, PPS_NF, P_NF)) {
if (!itemp_has(itemp, IF_NF) &&
(itemp_has(itemp, IF_FL) ||
(ins->opt & OPTIM_STRICT_INSTR)))
return MERR_BADNF;
} else if (itemp_has(itemp, IF_NF_R)) {
return MERR_REQNF;
}
if (has_prefix(ins, PPS_ZU, P_ZU)) {
if (!itemp_has(itemp, IF_ZU))
return MERR_BADZU;
else if (!(ins->oprs[0].type & REGISTER))
return MERR_MEMZU;
}
/*
* Check if BND prefix is allowed.
* Other 0xF2 (REPNE/REPNZ) prefix is prohibited.
*/
if (!itemp_has(itemp, IF_BND) &&
(has_prefix(ins, PPS_REP, P_BND) ||
has_prefix(ins, PPS_REP, P_NOBND)))
return MERR_BADBND;
else if (itemp_has(itemp, IF_BND) &&
(has_prefix(ins, PPS_REP, P_REPNE) ||
has_prefix(ins, PPS_REP, P_REPNZ)))
return MERR_BADREPNE;
/*
* Check if special handling needed for relaxable jump
*/
if (itemp_has(itemp, IF_JMP_RELAX))
return jmp_match(itemp, ins);
return MOK_GOOD;
}
/*
* Select the mod part of modr/m for an memory operand with displacement.
* zerook should be clear for the forbidden BP encodings; such instructions
* must be coded with a +0 displacement.
*
* 0 = no displacement
* 1 = 8-bit displacment
* 2 = 16/32-bit displacement
*/
static unsigned int memory_mod(const int eaflags, insn *ins, int64_t o,
bool known, bool zerook)
{
struct ea_data * const output = &ins->ea;
/* Explicitly requested by user */
if (eaflags & EAF_WORDOFFS) {
return 2;
}
output->disp8_shift = get_disp8_shift(ins);
output->disp8 = (int8_t)(o >> output->disp8_shift);
output->disp8_ok = known &&
((int64_t)output->disp8 << output->disp8_shift)
== sext(o, ins->addr_size);
/* Explicitly requested by user */
if (eaflags & EAF_BYTEOFFS) {
return 1;
}
/* Not knowable at this time */
if (!known)
return 2;
/* No displacement needed? */
if (o == 0 && zerook)
return 0;
/* 8-bit displacement possible? */
return output->disp8_ok ? 1 : 2;
}
static int process_ea(operand *input, int rfield, opflags_t rflags,
insn *ins, enum ea_type expected,
const char **errmsgp)
{
struct ea_data * const output = &ins->ea;
const bool long_mode = ins->bits == 64;
const int addrbits = ins->addr_size;
const int eaflags = input->eaflags;
const char *errmsg = NULL;
errmsg = NULL;
nasm_zero(*output);
output->type = EA_SCALAR;
/* REX flags for the rfield operand */
output->rex |= rexflags(rfield, rflags, REX_rR);
if (is_class(REGISTER, input->type)) {
/*
* It's a direct register.
*/
if (!is_register(input->basereg))
goto err;
if (!is_reg_class(REG_EA, input->basereg))
goto err;
/* broadcasting is not available with a direct register operand. */
if (input->decoflags & BRDCAST_MASK) {
errmsg = "broadcast not allowed with register operand";
goto err;
}
output->rex |= op_rexflags(input, REX_rB);
output->sib_present = false; /* no SIB necessary */
output->bytes = 0; /* no offset necessary either */
output->modrm = GEN_MODRM(3, rfield, nasm_regvals[input->basereg]);
} else {
/*
* It's a memory reference.
*/
/* Embedded rounding or SAE is not available with a mem ref operand. */
if (input->decoflags & (ER | SAE)) {
errmsg = "embedded rounding is available only with "
"register-register operations";
goto err;
}
if (input->basereg == -1 &&
(input->indexreg == -1 || input->scale == 0)) {
/*
* It's a pure offset. If it is an IMMEDIATE, it is a pattern
* in insns.dat which allows an immediate to be used as a memory
* address, in which case apply the default REL/ABS.
*/
if (long_mode) {
if (is_class(IMMEDIATE, input->type)) {
if (!(input->eaflags & EAF_ABS) &&
((input->eaflags & EAF_REL) || globalrel))
input->type |= IP_REL;
}
if ((input->type & IP_REL) == IP_REL) {
/*!
*!ea-absolute [on] absolute address cannot be RIP-relative
*! warns that an address that is inherently absolute cannot
*! be generated with RIP-relative encoding using \c{REL},
*! see \k{REL & ABS}.
*/
if (input->segment == NO_SEG ||
(input->opflags & OPFLAG_RELATIVE)) {
nasm_warn(WARN_EA_ABSOLUTE|ERR_PASS2,
"absolute address can not be RIP-relative");
input->type &= ~IP_REL;
input->type |= MEMORY;
}
}
}
if (long_mode && !(IP_REL & ~input->type) && (eaflags & EAF_SIB)) {
errmsg = "instruction requires SIB encoding, cannot be RIP-relative";
goto err;
}
if ((eaflags & EAF_BYTEOFFS) ||
((eaflags & EAF_WORDOFFS) &&
input->disp_size != (addrbits != 16 ? 32 : 16))) {
/*!
*!ea-dispsize [on] displacement size ignored on absolute address
*! warns that NASM does not support generating displacements for
*! inherently absolute addresses that do not match the address size
*! of the instruction.
*/
nasm_warn(WARN_EA_DISPSIZE, "displacement size ignored on absolute address");
}
if ((eaflags & EAF_SIB) ||
(long_mode && (~input->type & IP_REL))) {
output->sib_present = true;
output->sib = GEN_SIB(0, 4, 5);
output->bytes = 4;
output->modrm = GEN_MODRM(0, rfield, 4);
output->rip = false;
} else {
output->sib_present = false;
output->bytes = (addrbits != 16 ? 4 : 2);
output->modrm = GEN_MODRM(0, rfield,
(addrbits != 16 ? 5 : 6));
output->rip = long_mode;
}
} else {
/*
* It's an indirection.
*/
int i = input->indexreg, b = input->basereg, s = input->scale;
const bool known =
!(input->opflags & OPFLAG_UNKNOWN) &&
(input->segment == NO_SEG);
int hb = input->hintbase, ht = input->hinttype;
int t, it, bt; /* register numbers */
opflags_t x, ix, bx; /* register flags */
if (s == 0)
i = -1; /* make this easy, at least */
if (is_register(i)) {
it = nasm_regvals[i];
ix = nasm_reg_flags[i];
} else {
it = -1;
ix = 0;
}
if (is_register(b)) {
bt = nasm_regvals[b];
bx = nasm_reg_flags[b];
} else {
bt = -1;
bx = 0;
}
/* if either one are a vector register... */
if ((ix|bx) & (XMMREG|YMMREG|ZMMREG) & ~REG_EA) {
opflags_t sok = BITS32 | BITS64;
int32_t o = input->offset;
int mod, scale, index, base;
/*
* For a vector SIB, one has to be a vector and the other,
* if present, a GPR. The vector must be the index operand.
*/
if (it == -1 || (bx & (XMMREG|YMMREG|ZMMREG) & ~REG_EA)) {
if (s == 0)
s = 1;
else if (s != 1)
goto err;
t = bt, bt = it, it = t;
x = bx, bx = ix, ix = x;
}
if (bt != -1) {
if (REG_GPR & ~bx)
goto err;
if (!(REG64 & ~bx) || !(REG32 & ~bx))
sok &= bx;
else
goto err;
}
/*
* While we're here, ensure the user didn't specify
* WORD or QWORD
*/
if (input->disp_size == 16 || input->disp_size == 64)
goto err;
if (addrbits == 16 ||
(addrbits == 32 && !(sok & BITS32)) ||
(addrbits == 64 && !(sok & BITS64)))
goto err;
output->type = ((ix & ZMMREG & ~REG_EA) ? EA_ZMMVSIB
: ((ix & YMMREG & ~REG_EA)
? EA_YMMVSIB : EA_XMMVSIB));
output->rex |= rexflags(it, ix, REX_rX);
output->rex |= rexflags(bt, bx, REX_rB);
index = it & 7; /* it is known to be != -1 */
switch (s) {
case 1:
scale = 0;
break;
case 2:
scale = 1;
break;
case 4:
scale = 2;
break;
case 8:
scale = 3;
break;
default: /* then what the smeg is it? */
goto err; /* panic */
}
if (bt == -1) {
base = 5;
mod = 0;
} else {
base = bt & 7;
mod = memory_mod(eaflags, ins, o, known,
base != REG_NUM_EBP);
}
output->sib_present = true;
output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
output->modrm = GEN_MODRM(mod, rfield, 4);
output->sib = GEN_SIB(scale, index, base);
} else if ((ix|bx) & (BITS32|BITS64)) {
/*
* it must be a 32/64-bit memory reference. Firstly we have
* to check that all registers involved are type E/Rxx.
*/
opflags_t sok = BITS32 | BITS64;
int32_t o = input->offset;
if (it != -1) {
if (!(REG64 & ~ix) || !(REG32 & ~ix))
sok &= ix;
else
goto err;
}
if (bt != -1) {
if (REG_GPR & ~bx)
goto err; /* Invalid register */
if (~sok & bx & SIZE_MASK)
goto err; /* Invalid size */
sok &= bx;
}
/*
* While we're here, ensure the user didn't specify
* WORD or QWORD
*/
if (input->disp_size == 16 || input->disp_size == 64)
goto err;
if (addrbits == 16 ||
(addrbits == 32 && !(sok & BITS32)) ||
(addrbits == 64 && !(sok & BITS64)))
goto err;
/* now reorganize base/index */
if (s == 1 && bt != it && bt != -1 && it != -1 &&
((hb == b && ht == EAH_NOTBASE) ||
(hb == i && ht == EAH_MAKEBASE))) {
/* swap if hints say so */
t = bt, bt = it, it = t;
x = bx, bx = ix, ix = x;
}
if (bt == -1 && s == 1 && !(hb == i && ht == EAH_NOTBASE)) {
/* make single reg base, unless hint */
bt = it, bx = ix, it = -1, ix = 0;
}
if (eaflags & EAF_MIB) {
/* MIB/split-SIB encoding */
if (it == -1 && (hb == b && ht == EAH_NOTBASE)) {
/*
* make a single reg index [reg*1].
* gas uses this form for an explicit index register.
*/
it = bt, ix = bx, bt = -1, bx = 0, s = 1;
}
if ((ht == EAH_SUMMED) && bt == -1) {
/* separate once summed index into [base, index] */
bt = it, bx = ix, s--;
}
} else {
if (((s == 2 && it != REG_NUM_ESP &&
(!(eaflags & EAF_TIMESTWO) || (ht == EAH_SUMMED))) ||
s == 3 || s == 5 || s == 9) && bt == -1) {
/* convert 3*EAX to EAX+2*EAX */
bt = it, bx = ix, s--;
}
if (it == -1 && (bt & 7) != REG_NUM_ESP &&
(eaflags & EAF_TIMESTWO) &&
(hb == b && ht == EAH_NOTBASE)) {
/*
* convert [NOSPLIT EAX*1]
* to sib format with 0x0 displacement - [EAX*1+0].
*/
it = bt, ix = bx, bt = -1, bx = 0, s = 1;
}
}
if (s == 1 && it == REG_NUM_ESP) {
/* swap ESP into base if scale is 1 */
t = it, it = bt, bt = t;
x = ix, ix = bx, bx = x;
}
if (it == REG_NUM_ESP ||
(s != 1 && s != 2 && s != 4 && s != 8 && it != -1))
goto err; /* wrong, for various reasons */
output->rex |= rexflags(it, ix, REX_rX);
output->rex |= rexflags(bt, bx, REX_rB);
if (it == -1 && (bt & 7) != REG_NUM_ESP && !(eaflags & EAF_SIB)) {
/* no SIB needed */
int mod, rm;
if (bt == -1) {
rm = 5;
mod = 0;
} else {
rm = bt & 7;
mod = memory_mod(eaflags, ins, o, known,
rm != REG_NUM_EBP);
}
output->sib_present = false;
output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
output->modrm = GEN_MODRM(mod, rfield, rm);
} else {
/* we need a SIB */
int mod, scale, index, base;
if (it == -1)
index = 4, s = 1;
else
index = (it & 7);
switch (s) {
case 1:
scale = 0;
break;
case 2:
scale = 1;
break;
case 4:
scale = 2;
break;
case 8:
scale = 3;
break;
default: /* then what the smeg is it? */
goto err; /* panic */
}
if (bt == -1) {
base = 5;
mod = 0;
} else {
base = (bt & 7);
mod = memory_mod(eaflags, ins, o, known,
base != REG_NUM_EBP);
}
output->sib_present = true;
output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
output->modrm = GEN_MODRM(mod, rfield, 4);
output->sib = GEN_SIB(scale, index, base);
}
} else { /* it's 16-bit */
int mod, rm;
int16_t o = input->offset;
/* check for 64-bit long mode */
if (addrbits == 64)
goto err;
/* check all registers are BX, BP, SI or DI */
if ((b != -1 && b != R_BP && b != R_BX && b != R_SI && b != R_DI) ||
(i != -1 && i != R_BP && i != R_BX && i != R_SI && i != R_DI))
goto err;
/* ensure the user didn't specify DWORD/QWORD */
if (input->disp_size == 32 || input->disp_size == 64)
goto err;
if (s != 1 && i != -1)
goto err; /* no can do, in 16-bit EA */
if (b == -1 && i != -1) {
int tmp = b;
b = i;
i = tmp;
} /* swap */
if ((b == R_SI || b == R_DI) && i != -1) {
int tmp = b;
b = i;
i = tmp;
}
/* have BX/BP as base, SI/DI index */
if (b == i)
goto err; /* shouldn't ever happen, in theory */
if (i != -1 && b != -1 &&
(i == R_BP || i == R_BX || b == R_SI || b == R_DI))
goto err; /* invalid combinations */
if (b == -1) /* pure offset: handled above */
goto err; /* so if it gets to here, panic! */
rm = -1;
if (i != -1)
switch (i * 256 + b) {
case R_SI * 256 + R_BX:
rm = 0;
break;
case R_DI * 256 + R_BX:
rm = 1;
break;
case R_SI * 256 + R_BP:
rm = 2;
break;
case R_DI * 256 + R_BP:
rm = 3;
break;
} else
switch (b) {
case R_SI:
rm = 4;
break;
case R_DI:
rm = 5;
break;
case R_BP:
rm = 6;
break;
case R_BX:
rm = 7;
break;
}
if (rm == -1) /* can't happen, in theory */
goto err; /* so panic if it does */
mod = memory_mod(eaflags, ins, o, known, rm != 6);
output->sib_present = false; /* no SIB - it's 16-bit */
output->bytes = mod; /* bytes of offset needed */
output->modrm = GEN_MODRM(mod, rfield, rm);
}
if (eaflags & EAF_REL) {
/* Explicit REL reference with indirect memory */
nasm_warn(WARN_OTHER,
"indirect address displacements cannot be RIP-relative");
}
}
}
output->size = 1 + output->sib_present + output->bytes;
/*
* The type parsed might not match one supplied by
* a caller. In this case exit with error and let
* the caller to decide how critical it is.
*/
if (output->type != expected)
goto err_set_msg;
return 0;
err:
output->type = EA_INVALID;
goto err_set_msg;
err_set_msg:
if (!errmsg) {
/* Default error message */
static char invalid_address_msg[40];
snprintf(invalid_address_msg, sizeof invalid_address_msg,
"invalid %d-bit effective address", addrbits);
errmsg = invalid_address_msg;
}
*errmsgp = errmsg;
return -1;
}
static void add_asp(insn *ins)
{
const int bits = ins->bits;
int j, valid;
int defdisp;
int asp_bits;
valid = (bits == 64) ? 64|32 : 32|16;
switch (ins->prefixes[PPS_ASIZE]) {
case P_A16:
valid &= 16;
break;
case P_A32:
valid &= 32;
break;
case P_A64:
valid &= 64;
break;
case P_ASP:
valid &= (bits == 32) ? 16 : 32;
break;
default:
break;
}
for (j = 0; j < ins->operands; j++) {
if (is_class(MEMORY, ins->oprs[j].type)) {
opflags_t i, b;
/* Verify as Register */
if (!is_register(ins->oprs[j].indexreg))
i = 0;
else
i = nasm_reg_flags[ins->oprs[j].indexreg];
/* Verify as Register */
if (!is_register(ins->oprs[j].basereg))
b = 0;
else
b = nasm_reg_flags[ins->oprs[j].basereg];
if (ins->oprs[j].scale == 0)
i = 0;
if (!i && !b) {
int ds = ins->oprs[j].disp_size;
if ((bits != 64 && ds > 8) ||
(bits == 64 && ds == 16))
valid &= ds;
} else {
if (!(REG16 & ~b))
valid &= 16;
if (!(REG32 & ~b))
valid &= 32;
if (!(REG64 & ~b))
valid &= 64;
if (!(REG16 & ~i))
valid &= 16;
if (!(REG32 & ~i))
valid &= 32;
if (!(REG64 & ~i))
valid &= 64;
}
}
}
asp_bits = (bits == 32) ? 16 : 32;
if (valid & bits) {
ins->addr_size = bits;
} else if (valid & asp_bits) {
/* Add an address size prefix */
ins->prefixes[PPS_ASIZE] = (bits == 32) ? P_A16 : P_A32;
ins->addr_size = asp_bits;
} else {
/* Impossible... */
nasm_nonfatal("impossible combination of address sizes");
ins->addr_size = bits; /* Error recovery */
}
defdisp = ins->addr_size == 16 ? 16 : 32;
for (j = 0; j < ins->operands; j++) {
int disp_size;
if (!is_class(MEM_OFFS, ins->oprs[j].type))
continue;
disp_size = ins->oprs[j].disp_size;
if (!disp_size)
disp_size = defdisp;
if (disp_size != ins->addr_size) {
/*
* mem_offs sizes must match the address size; if not,
* strip the MEM_OFFS bit and match only EA instructions
*/
ins->oprs[j].type &= ~(MEM_OFFS & ~MEMORY);
}
}
}
/*
* Set the initial operand size, based only on the mode and any prefixes.
* The actual operand size may change after instruction pattern selection.
*/
static void set_initial_opsize(insn *ins)
{
const int bits = ins->bits;
switch (ins->prefixes[PPS_OSIZE]) {
case P_OSP:
ins->op_size = bits == 16 ? 32 : 16;
break;
case P_O16:
ins->op_size = 16;
break;
case P_O32:
ins->op_size = 32;
break;
case P_O64:
ins->op_size = 64;
break;
default:
ins->op_size = bits == 16 ? 16 : 32;
break;
}
}
static void insn_early_setup(insn *instruction)
{
/* Check to see if we need an address-size prefix */
add_asp(instruction);
/* Set default/prefix-controlled operand size */
set_initial_opsize(instruction);
}
static void do_list_nonfinal_pass(int64_t start)
{
struct out_data dummy;
nasm_zero(dummy);
/* OUT_RAWDATA with .data is special */
dummy.type = OUT_RAWDATA;
dummy.loc = location;
dummy.size = location.offset - start;
dummy.loc.offset = start;
lfmt->output(&dummy);
}
static inline void list_nonfinal_pass(int64_t start)
{
if (list_option('p'))
do_list_nonfinal_pass(start);
}
/*
* Process a single instruction without TIMES; this is a common case
* so optimize it.
*/
static void process_one_insn(insn *ins)
{
int64_t l;
ins->loc = location;
if (!pass_final()) {
l = insn_size(ins);
if (l < 0)
return; /* Invalid instruction */
list_nonfinal_pass(ins->loc.offset);
} else {
l = assemble(ins);
nasm_assert(l >= 0); /* Invalid instruction here: bad */
}
increment_offset(l);
}
/*
* Process an instruction with TIMES handling. As this instruction
* may end up getting processed multiple times and it is permitted
* for the intervening layers to change the contents of the instruction
* structure, it is necessary to keep the original and re-initializing
* the structure on each iteration.
*/
static void process_times_insn(insn *ins)
{
int64_t l;
insn tmpins;
ins->loc = location;
/*
* NOTE: insn_size() and therefore assemble() can change
* ins->times (usually to 1) when called due to merging certain
* operations (e.g. TIMES x RESB y).
*
* Therefore, it is necessary to check the returned times
* value for each iteration.
*/
if (!pass_final()) {
int64_t times = ins->times;
while (times > 0) {
tmpins = *ins;
tmpins.loc.offset = location.offset;
tmpins.times = times;
l = insn_size(&tmpins);
if (l < 0)
break; /* Invalid instruction */
increment_offset(l);
times = tmpins.times - 1;
}
list_nonfinal_pass(ins->loc.offset); /* The original starting offset */
} else {
int64_t times;
tmpins = *ins;
l = assemble(&tmpins);
nasm_assert(l >= 0); /* Invalid instruction here: bad */
increment_offset(l);
times = tmpins.times;
if (times <= 1)
return;
lfmt->uplevel(LIST_TIMES, times);
times--;
while (times) {
tmpins = *ins;
tmpins.loc.offset = location.offset;
tmpins.times = times;
l = assemble(&tmpins);
nasm_assert(l >= 0);
increment_offset(l);
times = tmpins.times - 1;
}
lfmt->downlevel(LIST_TIMES);
}
}
/*
* This is the main entry point to this module, called from asm/nasm.c.
*/
void process_insn(insn *ins)
{
if (likely(ins->times == 1)) {
process_one_insn(ins);
} else if (!ins->times) {
/* TIMES 0 = nothing to do */
} else if (likely(ins->times > 0)) {
process_times_insn(ins);
} else {
nasm_nonfatalf(ERR_PASS2, "TIMES value %"PRId32" is negative",
ins->times);
}
}