1
0
mirror of https://gitlab.xiph.org/xiph/icecast-common.git synced 2024-11-03 04:17:20 -05:00
icecast-common/net/sock.c
Michael Smith c54d71e63b Implement listing of all currently connected clients on a mountpoint
svn path=/trunk/net/; revision=4434
2003-03-07 14:57:36 +00:00

702 lines
15 KiB
C

/* sock.c
* - General Socket Functions
*
* Copyright (c) 1999 the icecast team
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <sys/types.h>
#include <ctype.h>
#include <string.h>
#include <fcntl.h>
#include <errno.h>
#ifndef _WIN32
#include <unistd.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
#include <sys/time.h>
#include <netdb.h>
#else
#include <winsock2.h>
#define vsnprintf _vsnprintf
#define EINPROGRESS WSAEINPROGRESS
#define ENOTSOCK WSAENOTSOCK
#define EWOULDBLOCK WSAEWOULDBLOCK
#define EALREADY WSAEALREADY
#define socklen_t int
#endif
#include "sock.h"
#include "resolver.h"
/* sock_initialize
**
** initializes the socket library. you must call this
** before using the library!
*/
void sock_initialize(void)
{
#ifdef _WIN32
WSADATA wsad;
WSAStartup(0x0101, &wsad);
#endif
resolver_initialize();
}
/* sock_shutdown
**
** shutdown the socket library. remember to call this when you're
** through using the lib
*/
void sock_shutdown(void)
{
#ifdef _WIN32
WSACleanup();
#endif
}
/* sock_get_localip
**
** gets the local ip address for the machine
** the ip it returns *should* be on the internet.
** in any case, it's as close as we can hope to get
** unless someone has better ideas on how to do this
*/
char *sock_get_localip(char *buff, int len)
{
char temp[1024];
if (gethostname(temp, 1024) != 0)
return NULL;
if (resolver_getip(temp, buff, len))
return buff;
return NULL;
}
/* sock_error
**
** returns the last socket error
*/
int sock_error(void)
{
#ifdef _WIN32
return WSAGetLastError();
#else
return errno;
#endif
}
/* sock_recoverable
**
** determines if the socket error is recoverable
** in terms of non blocking sockets
*/
int sock_recoverable(int error)
{
return (error == 0 || error == EAGAIN || error == EINTR ||
error == EINPROGRESS || error == EWOULDBLOCK);
}
int sock_stalled (int error)
{
return error == EAGAIN || error == EINPROGRESS || error == EWOULDBLOCK ||
error == EALREADY;
}
int sock_success (int error)
{
return error == 0;
}
int sock_connect_pending (int error)
{
return error == EINPROGRESS || error == EALREADY;
}
/* sock_valid_socket
**
** determines if a sock_t represents a valid socket
*/
int sock_valid_socket(sock_t sock)
{
int ret;
int optval;
socklen_t optlen;
optlen = sizeof(int);
ret = getsockopt(sock, SOL_SOCKET, SO_TYPE, &optval, &optlen);
return (ret == 0);
}
/* inet_aton
**
** turns an ascii ip address into a binary representation
*/
#ifdef _WIN32
int inet_aton(const char *s, struct in_addr *a)
{
int lsb, b2, b3, msb;
if (sscanf(s, "%d.%d.%d.%d", &lsb, &b2, &b3, &msb) < 4) {
return 0;
}
a->s_addr = inet_addr(s);
return (a->s_addr != INADDR_NONE);
}
#endif /* _WIN32 */
/* sock_set_blocking
**
** set the sock blocking or nonblocking
** SOCK_BLOCK for blocking
** SOCK_NONBLOCK for nonblocking
*/
int sock_set_blocking(sock_t sock, const int block)
{
#ifdef _WIN32
int varblock = block;
#endif
if ((!sock_valid_socket(sock)) || (block < 0) || (block > 1))
return SOCK_ERROR;
#ifdef _WIN32
return ioctlsocket(sock, FIONBIO, &varblock);
#else
return fcntl(sock, F_SETFL, (block == SOCK_BLOCK) ? 0 : O_NONBLOCK);
#endif
}
int sock_set_nolinger(sock_t sock)
{
struct linger lin = { 0, 0 };
return setsockopt(sock, SOL_SOCKET, SO_LINGER, (void *)&lin,
sizeof(struct linger));
}
int sock_set_nodelay(sock_t sock)
{
int nodelay = 1;
return setsockopt(sock, IPPROTO_TCP, TCP_NODELAY, (void *)nodelay,
sizeof(int));
}
int sock_set_keepalive(sock_t sock)
{
int keepalive = 1;
return setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE, (void *)&keepalive,
sizeof(int));
}
/* sock_close
**
** close the socket
*/
int sock_close(sock_t sock)
{
#ifdef _WIN32
return closesocket(sock);
#else
return close(sock);
#endif
}
/* sock_writev
*
* write multiple buffers at once, return bytes actually written
*/
#ifdef HAVE_WRITEV
ssize_t sock_writev (int sock, const struct iovec *iov, const size_t count)
{
return writev (sock, iov, count);
}
#else
ssize_t sock_writev (int sock, const struct iovec *iov, const size_t count)
{
int i = count, accum = 0, ret;
const struct iovec *v = iov;
while (i)
{
if (v->iov_base && v->iov_len)
{
ret = sock_write_bytes (sock, v->iov_base, v->iov_len);
if (ret == -1 && accum==0)
return -1;
if (ret == -1)
ret = 0;
accum += ret;
if (ret < (int)v->iov_len)
break;
}
v++;
i--;
}
return accum;
}
#endif
/* sock_write_bytes
**
** write bytes to the socket
** this function will _NOT_ block
*/
int sock_write_bytes(sock_t sock, const void *buff, const size_t len)
{
/* sanity check */
if (!buff) {
return SOCK_ERROR;
} else if (len <= 0) {
return SOCK_ERROR;
} /*else if (!sock_valid_socket(sock)) {
return SOCK_ERROR;
} */
return send(sock, buff, len, 0);
}
/* sock_write_string
**
** writes a string to a socket
** this function always blocks even if the socket is nonblocking
*/
int sock_write_string(sock_t sock, const char *buff)
{
return (sock_write_bytes(sock, buff, strlen(buff)) > 0);
}
/* sock_write
**
** write a formatted string to the socket
** this function will always block, even if the socket is nonblocking
** will truncate the string if it's greater than 1024 chars.
*/
int sock_write(sock_t sock, const char *fmt, ...)
{
char buff[1024];
va_list ap;
va_start(ap, fmt);
vsnprintf(buff, 1024, fmt, ap);
va_end(ap);
return sock_write_bytes(sock, buff, strlen(buff));
}
int sock_write_fmt(sock_t sock, char *fmt, va_list ap)
{
char buff[1024];
vsnprintf(buff, 1024, fmt, ap);
return sock_write_bytes(sock, buff, strlen(buff));
}
int sock_read_bytes(sock_t sock, char *buff, const int len)
{
/*if (!sock_valid_socket(sock)) return 0; */
if (!buff) return 0;
if (len <= 0) return 0;
return recv(sock, buff, len, 0);
}
/* sock_read_line
**
** Read one line of at max len bytes from sock into buff.
** If ok, return 1 and nullterminate buff. Otherwize return 0.
** Terminating \n is not put into the buffer.
**
** this function will probably not work on sockets in nonblocking mode
*/
int sock_read_line(sock_t sock, char *buff, const int len)
{
char c = '\0';
int read_bytes, pos;
/*if (!sock_valid_socket(sock)) {
return 0;
} else*/ if (!buff) {
return 0;
} else if (len <= 0) {
return 0;
}
pos = 0;
read_bytes = recv(sock, &c, 1, 0);
if (read_bytes < 0) {
return 0;
}
while ((c != '\n') && (pos < len) && (read_bytes == 1)) {
if (c != '\r')
buff[pos++] = c;
read_bytes = recv(sock, &c, 1, 0);
}
if (read_bytes == 1) {
buff[pos] = '\0';
return 1;
} else {
return 0;
}
}
/* see if a connection can be written to
** return -1 unable to check
** return 0 for not yet
** return 1 for ok
*/
int sock_connected (int sock, unsigned timeout)
{
fd_set wfds;
int val = SOCK_ERROR;
socklen_t size = sizeof val;
struct timeval tv;
tv.tv_sec = timeout;
tv.tv_usec = 0;
FD_ZERO(&wfds);
FD_SET(sock, &wfds);
switch (select(sock + 1, NULL, &wfds, NULL, &tv))
{
case 0: return SOCK_TIMEOUT;
default: if (getsockopt(sock, SOL_SOCKET, SO_ERROR, &val, &size) < 0)
val = SOCK_ERROR;
case -1: return val;
}
}
#ifdef HAVE_GETADDRINFO
int sock_connect_non_blocking (const char *hostname, const unsigned port)
{
int sock = SOCK_ERROR;
struct addrinfo *ai, *head, hints;
char service[8];
memset (&hints, 0, sizeof (hints));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
snprintf (service, sizeof (service), "%u", port);
if (getaddrinfo (hostname, service, &hints, &head))
return SOCK_ERROR;
ai = head;
while (ai)
{
if ((sock = socket (ai->ai_family, ai->ai_socktype, ai->ai_protocol))
> -1)
{
sock_set_blocking (sock, SOCK_NONBLOCK);
if (connect(sock, ai->ai_addr, ai->ai_addrlen) < 0 &&
!sock_connect_pending(sock_error()))
{
sock_close (sock);
sock = SOCK_ERROR;
}
else
break;
}
ai = ai->ai_next;
}
if (head) freeaddrinfo (head);
return sock;
}
sock_t sock_connect_wto(const char *hostname, const int port, const int timeout)
{
int sock = SOCK_ERROR;
struct addrinfo *ai, *head, hints;
char service[8];
memset (&hints, 0, sizeof (hints));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
snprintf (service, sizeof (service), "%u", port);
if (getaddrinfo (hostname, service, &hints, &head))
return SOCK_ERROR;
ai = head;
while (ai)
{
if ((sock = socket (ai->ai_family, ai->ai_socktype, ai->ai_protocol))
> -1)
{
if (timeout)
{
sock_set_blocking (sock, SOCK_NONBLOCK);
if (connect (sock, ai->ai_addr, ai->ai_addrlen) < 0)
{
int ret = sock_connected (sock, timeout);
if (ret <= 0)
{
sock_close (sock);
sock = SOCK_ERROR;
}
}
sock_set_blocking(sock, SOCK_BLOCK);
}
else
{
if (connect (sock, ai->ai_addr, ai->ai_addrlen) < 0)
{
sock_close (sock);
sock = SOCK_ERROR;
}
}
}
ai = ai->ai_next;
}
if (head) freeaddrinfo (head);
return sock;
}
#else
int sock_try_connection (int sock, const char *hostname, const unsigned port)
{
struct sockaddr_in sin, server;
char ip[MAX_ADDR_LEN];
if (!hostname || !hostname[0] || port == 0)
return -1;
memset(&sin, 0, sizeof(struct sockaddr_in));
memset(&server, 0, sizeof(struct sockaddr_in));
if (!resolver_getip(hostname, ip, MAX_ADDR_LEN))
{
sock_close (sock);
return -1;
}
if (inet_aton(ip, (struct in_addr *)&sin.sin_addr) == 0)
{
sock_close(sock);
return -1;
}
memcpy(&server.sin_addr, &sin.sin_addr, sizeof(struct sockaddr_in));
server.sin_family = AF_INET;
server.sin_port = htons(port);
return connect(sock, (struct sockaddr *)&server, sizeof(server));
}
int sock_connect_non_blocking (const char *hostname, const unsigned port)
{
int sock;
sock = socket(AF_INET, SOCK_STREAM, 0);
if (sock == -1)
return -1;
sock_set_blocking (sock, SOCK_NONBLOCK);
sock_try_connection (sock, hostname, port);
return sock;
}
sock_t sock_connect_wto(const char *hostname, const int port, const int timeout)
{
int sock;
sock = socket(AF_INET, SOCK_STREAM, 0);
if (sock == -1)
return -1;
if (timeout)
{
sock_set_blocking (sock, SOCK_NONBLOCK);
if (sock_try_connection (sock, hostname, port) < 0)
{
int ret = sock_connected (sock, timeout);
if (ret <= 0)
{
sock_close (sock);
return SOCK_ERROR;
}
}
sock_set_blocking(sock, SOCK_BLOCK);
}
else
{
if (sock_try_connection (sock, hostname, port) < 0)
{
sock_close (sock);
sock = SOCK_ERROR;
}
}
return sock;
}
#endif
/* sock_get_server_socket
**
** create a socket for incoming requests on a specified port and
** interface. if interface is null, listen on all interfaces.
** returns the socket, or SOCK_ERROR on failure
*/
sock_t sock_get_server_socket(const int port, char *sinterface)
{
#ifdef HAVE_IPV6
struct sockaddr_storage sa;
#else
struct sockaddr_in sa;
#endif
int sa_family, sa_len, error, opt;
sock_t sock;
char ip[MAX_ADDR_LEN];
if (port < 0)
return SOCK_ERROR;
/* defaults */
memset(&sa, 0, sizeof(sa));
sa_family = AF_INET;
sa_len = sizeof(struct sockaddr_in);
/* set the interface to bind to if specified */
if (sinterface != NULL) {
if (!resolver_getip(sinterface, ip, sizeof (ip)))
return SOCK_ERROR;
#ifdef HAVE_IPV6
if (inet_pton(AF_INET, ip, &((struct sockaddr_in*)&sa)->sin_addr) > 0) {
((struct sockaddr_in*)&sa)->sin_family = AF_INET;
((struct sockaddr_in*)&sa)->sin_port = htons(port);
} else if (inet_pton(AF_INET6, ip,
&((struct sockaddr_in6*)&sa)->sin6_addr) > 0) {
sa_family = AF_INET6;
sa_len = sizeof (struct sockaddr_in6);
((struct sockaddr_in6*)&sa)->sin6_family = AF_INET6;
((struct sockaddr_in6*)&sa)->sin6_port = htons(port);
} else {
return SOCK_ERROR;
}
#else
if (!inet_aton(ip, &sa.sin_addr)) {
return SOCK_ERROR;
} else {
sa.sin_family = AF_INET;
sa.sin_port = htons(port);
}
#endif
} else {
((struct sockaddr_in*)&sa)->sin_addr.s_addr = INADDR_ANY;
((struct sockaddr_in*)&sa)->sin_family = AF_INET;
((struct sockaddr_in*)&sa)->sin_port = htons(port);
}
/* get a socket */
sock = socket(sa_family, SOCK_STREAM, 0);
if (sock == -1)
return SOCK_ERROR;
/* reuse it if we can */
opt = 1;
setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, (const void *)&opt, sizeof(int));
/* bind socket to port */
error = bind(sock, (struct sockaddr *)&sa, sa_len);
if (error == -1)
return SOCK_ERROR;
return sock;
}
int sock_listen(sock_t serversock, int backlog)
{
if (!sock_valid_socket(serversock))
return 0;
if (backlog <= 0)
backlog = 10;
return (listen(serversock, backlog) == 0);
}
int sock_accept(sock_t serversock, char *ip, int len)
{
#ifdef HAVE_IPV6
struct sockaddr_storage sa;
#else
struct sockaddr_in sa;
#endif
int ret;
socklen_t slen;
if (!sock_valid_socket(serversock))
return SOCK_ERROR;
slen = sizeof(sa);
ret = accept(serversock, (struct sockaddr *)&sa, &slen);
if (ret >= 0 && ip != NULL) {
#ifdef HAVE_IPV6
if(((struct sockaddr_in *)&sa)->sin_family == AF_INET)
inet_ntop(AF_INET, &((struct sockaddr_in *)&sa)->sin_addr,
ip, len);
else if(((struct sockaddr_in6 *)&sa)->sin6_family == AF_INET6)
inet_ntop(AF_INET6, &((struct sockaddr_in6 *)&sa)->sin6_addr,
ip, len);
else {
strncpy(ip, "ERROR", len-1);
ip[len-1] = 0;
}
#else
/* inet_ntoa is not reentrant, we should protect this */
strncpy(ip, inet_ntoa(sa.sin_addr), len);
#endif
sock_set_nolinger(ret);
sock_set_keepalive(ret);
}
return ret;
}