1
0
mirror of https://github.com/go-gitea/gitea.git synced 2024-12-04 14:46:57 -05:00
gitea/vendor/github.com/keybase/go-crypto/openpgp/read.go

508 lines
16 KiB
Go
Vendored

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package openpgp implements high level operations on OpenPGP messages.
package openpgp // import "github.com/keybase/go-crypto/openpgp"
import (
"crypto"
"crypto/hmac"
_ "crypto/sha256"
"hash"
"io"
"strconv"
"github.com/keybase/go-crypto/openpgp/armor"
"github.com/keybase/go-crypto/openpgp/errors"
"github.com/keybase/go-crypto/openpgp/packet"
)
// SignatureType is the armor type for a PGP signature.
var SignatureType = "PGP SIGNATURE"
// readArmored reads an armored block with the given type.
func readArmored(r io.Reader, expectedType string) (body io.Reader, err error) {
block, err := armor.Decode(r)
if err != nil {
return
}
if block.Type != expectedType {
return nil, errors.InvalidArgumentError("expected '" + expectedType + "', got: " + block.Type)
}
return block.Body, nil
}
// MessageDetails contains the result of parsing an OpenPGP encrypted and/or
// signed message.
type MessageDetails struct {
IsEncrypted bool // true if the message was encrypted.
EncryptedToKeyIds []uint64 // the list of recipient key ids.
IsSymmetricallyEncrypted bool // true if a passphrase could have decrypted the message.
DecryptedWith Key // the private key used to decrypt the message, if any.
IsSigned bool // true if the message is signed.
SignedByKeyId uint64 // the key id of the signer, if any.
SignedBy *Key // the key of the signer, if available.
LiteralData *packet.LiteralData // the metadata of the contents
UnverifiedBody io.Reader // the contents of the message.
// If IsSigned is true and SignedBy is non-zero then the signature will
// be verified as UnverifiedBody is read. The signature cannot be
// checked until the whole of UnverifiedBody is read so UnverifiedBody
// must be consumed until EOF before the data can trusted. Even if a
// message isn't signed (or the signer is unknown) the data may contain
// an authentication code that is only checked once UnverifiedBody has
// been consumed. Once EOF has been seen, the following fields are
// valid. (An authentication code failure is reported as a
// SignatureError error when reading from UnverifiedBody.)
SignatureError error // nil if the signature is good.
Signature *packet.Signature // the signature packet itself, if v4 (default)
SignatureV3 *packet.SignatureV3 // the signature packet if it is a v2 or v3 signature
// Does the Message include multiple signatures? Also called "nested signatures".
MultiSig bool
decrypted io.ReadCloser
}
// A PromptFunction is used as a callback by functions that may need to decrypt
// a private key, or prompt for a passphrase. It is called with a list of
// acceptable, encrypted private keys and a boolean that indicates whether a
// passphrase is usable. It should either decrypt a private key or return a
// passphrase to try. If the decrypted private key or given passphrase isn't
// correct, the function will be called again, forever. Any error returned will
// be passed up.
type PromptFunction func(keys []Key, symmetric bool) ([]byte, error)
// A keyEnvelopePair is used to store a private key with the envelope that
// contains a symmetric key, encrypted with that key.
type keyEnvelopePair struct {
key Key
encryptedKey *packet.EncryptedKey
}
// ReadMessage parses an OpenPGP message that may be signed and/or encrypted.
// The given KeyRing should contain both public keys (for signature
// verification) and, possibly encrypted, private keys for decrypting.
// If config is nil, sensible defaults will be used.
func ReadMessage(r io.Reader, keyring KeyRing, prompt PromptFunction, config *packet.Config) (md *MessageDetails, err error) {
var p packet.Packet
var symKeys []*packet.SymmetricKeyEncrypted
var pubKeys []keyEnvelopePair
var se *packet.SymmetricallyEncrypted
packets := packet.NewReader(r)
md = new(MessageDetails)
md.IsEncrypted = true
// The message, if encrypted, starts with a number of packets
// containing an encrypted decryption key. The decryption key is either
// encrypted to a public key, or with a passphrase. This loop
// collects these packets.
ParsePackets:
for {
p, err = packets.Next()
if err != nil {
return nil, err
}
switch p := p.(type) {
case *packet.SymmetricKeyEncrypted:
// This packet contains the decryption key encrypted with a passphrase.
md.IsSymmetricallyEncrypted = true
symKeys = append(symKeys, p)
case *packet.EncryptedKey:
// This packet contains the decryption key encrypted to a public key.
md.EncryptedToKeyIds = append(md.EncryptedToKeyIds, p.KeyId)
switch p.Algo {
case packet.PubKeyAlgoRSA, packet.PubKeyAlgoRSAEncryptOnly, packet.PubKeyAlgoElGamal, packet.PubKeyAlgoECDH:
break
default:
continue
}
var keys []Key
if p.KeyId == 0 {
keys = keyring.DecryptionKeys()
} else {
keys = keyring.KeysById(p.KeyId, nil)
}
for _, k := range keys {
pubKeys = append(pubKeys, keyEnvelopePair{k, p})
}
case *packet.SymmetricallyEncrypted:
se = p
break ParsePackets
case *packet.Compressed, *packet.LiteralData, *packet.OnePassSignature:
// This message isn't encrypted.
if len(symKeys) != 0 || len(pubKeys) != 0 {
return nil, errors.StructuralError("key material not followed by encrypted message")
}
packets.Unread(p)
return readSignedMessage(packets, nil, keyring)
}
}
var candidates []Key
var decrypted io.ReadCloser
// Now that we have the list of encrypted keys we need to decrypt at
// least one of them or, if we cannot, we need to call the prompt
// function so that it can decrypt a key or give us a passphrase.
FindKey:
for {
// See if any of the keys already have a private key available
candidates = candidates[:0]
candidateFingerprints := make(map[string]bool)
for _, pk := range pubKeys {
if pk.key.PrivateKey == nil {
continue
}
if !pk.key.PrivateKey.Encrypted {
if pk.key.PrivateKey.PrivateKey == nil {
// Key is stubbed
continue
}
if len(pk.encryptedKey.Key) == 0 {
err := pk.encryptedKey.Decrypt(pk.key.PrivateKey, config)
if err != nil {
continue
}
}
if len(pk.encryptedKey.Key) == 0 {
continue
}
decrypted, err = se.Decrypt(pk.encryptedKey.CipherFunc, pk.encryptedKey.Key)
if err != nil && err != errors.ErrKeyIncorrect {
return nil, err
}
if decrypted != nil {
md.DecryptedWith = pk.key
break FindKey
}
} else {
fpr := string(pk.key.PublicKey.Fingerprint[:])
if v := candidateFingerprints[fpr]; v {
continue
}
candidates = append(candidates, pk.key)
candidateFingerprints[fpr] = true
}
}
if len(candidates) == 0 && len(symKeys) == 0 {
return nil, errors.ErrKeyIncorrect
}
if prompt == nil {
return nil, errors.ErrKeyIncorrect
}
passphrase, err := prompt(candidates, len(symKeys) != 0)
if err != nil {
return nil, err
}
// Try the symmetric passphrase first
if len(symKeys) != 0 && passphrase != nil {
for _, s := range symKeys {
key, cipherFunc, err := s.Decrypt(passphrase)
if err == nil {
decrypted, err = se.Decrypt(cipherFunc, key)
if err != nil && err != errors.ErrKeyIncorrect {
return nil, err
}
if decrypted != nil {
break FindKey
}
}
}
}
}
md.decrypted = decrypted
if err := packets.Push(decrypted); err != nil {
return nil, err
}
return readSignedMessage(packets, md, keyring)
}
// readSignedMessage reads a possibly signed message if mdin is non-zero then
// that structure is updated and returned. Otherwise a fresh MessageDetails is
// used.
func readSignedMessage(packets *packet.Reader, mdin *MessageDetails, keyring KeyRing) (md *MessageDetails, err error) {
if mdin == nil {
mdin = new(MessageDetails)
}
md = mdin
var p packet.Packet
var h hash.Hash
var wrappedHash hash.Hash
FindLiteralData:
for {
p, err = packets.Next()
if err != nil {
return nil, err
}
switch p := p.(type) {
case *packet.Compressed:
if err := packets.Push(p.Body); err != nil {
return nil, err
}
case *packet.OnePassSignature:
if md.IsSigned {
// If IsSigned is set, it means we have multiple
// OnePassSignature packets.
md.MultiSig = true
if md.SignedBy != nil {
// We've already found the signature we were looking
// for, made by key that we had in keyring and can
// check signature against. Continue with that instead
// of trying to find another.
continue FindLiteralData
}
}
h, wrappedHash, err = hashForSignature(p.Hash, p.SigType)
if err != nil {
md = nil
return
}
md.IsSigned = true
md.SignedByKeyId = p.KeyId
keys := keyring.KeysByIdUsage(p.KeyId, nil, packet.KeyFlagSign)
if len(keys) > 0 {
md.SignedBy = &keys[0]
}
case *packet.LiteralData:
md.LiteralData = p
break FindLiteralData
}
}
if md.SignedBy != nil {
md.UnverifiedBody = &signatureCheckReader{packets, h, wrappedHash, md}
} else if md.decrypted != nil {
md.UnverifiedBody = checkReader{md}
} else {
md.UnverifiedBody = md.LiteralData.Body
}
return md, nil
}
// hashForSignature returns a pair of hashes that can be used to verify a
// signature. The signature may specify that the contents of the signed message
// should be preprocessed (i.e. to normalize line endings). Thus this function
// returns two hashes. The second should be used to hash the message itself and
// performs any needed preprocessing.
func hashForSignature(hashId crypto.Hash, sigType packet.SignatureType) (hash.Hash, hash.Hash, error) {
if !hashId.Available() {
return nil, nil, errors.UnsupportedError("hash not available: " + strconv.Itoa(int(hashId)))
}
h := hashId.New()
switch sigType {
case packet.SigTypeBinary:
return h, h, nil
case packet.SigTypeText:
return h, NewCanonicalTextHash(h), nil
}
return nil, nil, errors.UnsupportedError("unsupported signature type: " + strconv.Itoa(int(sigType)))
}
// checkReader wraps an io.Reader from a LiteralData packet. When it sees EOF
// it closes the ReadCloser from any SymmetricallyEncrypted packet to trigger
// MDC checks.
type checkReader struct {
md *MessageDetails
}
func (cr checkReader) Read(buf []byte) (n int, err error) {
n, err = cr.md.LiteralData.Body.Read(buf)
if err == io.EOF {
mdcErr := cr.md.decrypted.Close()
if mdcErr != nil {
err = mdcErr
}
}
return
}
// signatureCheckReader wraps an io.Reader from a LiteralData packet and hashes
// the data as it is read. When it sees an EOF from the underlying io.Reader
// it parses and checks a trailing Signature packet and triggers any MDC checks.
type signatureCheckReader struct {
packets *packet.Reader
h, wrappedHash hash.Hash
md *MessageDetails
}
func (scr *signatureCheckReader) Read(buf []byte) (n int, err error) {
n, err = scr.md.LiteralData.Body.Read(buf)
scr.wrappedHash.Write(buf[:n])
if err == io.EOF {
for {
var p packet.Packet
p, scr.md.SignatureError = scr.packets.Next()
if scr.md.SignatureError != nil {
if scr.md.MultiSig {
// If we are in MultiSig, we might have found other
// signature that cannot be verified using our key.
// Clear Signature field so it's clear for consumers
// that this message failed to verify.
scr.md.Signature = nil
}
return
}
var ok bool
if scr.md.Signature, ok = p.(*packet.Signature); ok {
var err error
if keyID := scr.md.Signature.IssuerKeyId; keyID != nil {
if *keyID != scr.md.SignedBy.PublicKey.KeyId {
if scr.md.MultiSig {
continue // try again to find a sig we can verify
}
err = errors.StructuralError("bad key id")
}
}
if fingerprint := scr.md.Signature.IssuerFingerprint; fingerprint != nil {
if !hmac.Equal(fingerprint, scr.md.SignedBy.PublicKey.Fingerprint[:]) {
if scr.md.MultiSig {
continue // try again to find a sig we can verify
}
err = errors.StructuralError("bad key fingerprint")
}
}
if err == nil {
err = scr.md.SignedBy.PublicKey.VerifySignature(scr.h, scr.md.Signature)
}
scr.md.SignatureError = err
} else if scr.md.SignatureV3, ok = p.(*packet.SignatureV3); ok {
scr.md.SignatureError = scr.md.SignedBy.PublicKey.VerifySignatureV3(scr.h, scr.md.SignatureV3)
} else {
scr.md.SignatureError = errors.StructuralError("LiteralData not followed by Signature")
return
}
// Parse only one packet by default, unless message is MultiSig. Then
// we ask for more packets after discovering non-matching signature,
// until we find one that we can verify.
break
}
// The SymmetricallyEncrypted packet, if any, might have an
// unsigned hash of its own. In order to check this we need to
// close that Reader.
if scr.md.decrypted != nil {
mdcErr := scr.md.decrypted.Close()
if mdcErr != nil {
err = mdcErr
}
}
}
return
}
// CheckDetachedSignature takes a signed file and a detached signature and
// returns the signer if the signature is valid. If the signer isn't known,
// ErrUnknownIssuer is returned.
func CheckDetachedSignature(keyring KeyRing, signed, signature io.Reader) (signer *Entity, err error) {
signer, _, err = checkDetachedSignature(keyring, signed, signature)
return signer, err
}
func checkDetachedSignature(keyring KeyRing, signed, signature io.Reader) (signer *Entity, issuer *uint64, err error) {
var issuerKeyId uint64
var issuerFingerprint []byte
var hashFunc crypto.Hash
var sigType packet.SignatureType
var keys []Key
var p packet.Packet
packets := packet.NewReader(signature)
for {
p, err = packets.Next()
if err == io.EOF {
return nil, nil, errors.ErrUnknownIssuer
}
if err != nil {
return nil, nil, err
}
switch sig := p.(type) {
case *packet.Signature:
if sig.IssuerKeyId == nil {
return nil, nil, errors.StructuralError("signature doesn't have an issuer")
}
issuerKeyId = *sig.IssuerKeyId
hashFunc = sig.Hash
sigType = sig.SigType
issuerFingerprint = sig.IssuerFingerprint
case *packet.SignatureV3:
issuerKeyId = sig.IssuerKeyId
hashFunc = sig.Hash
sigType = sig.SigType
default:
return nil, nil, errors.StructuralError("non signature packet found")
}
keys = keyring.KeysByIdUsage(issuerKeyId, issuerFingerprint, packet.KeyFlagSign)
if len(keys) > 0 {
break
}
}
if len(keys) == 0 {
panic("unreachable")
}
h, wrappedHash, err := hashForSignature(hashFunc, sigType)
if err != nil {
return nil, nil, err
}
if _, err := io.Copy(wrappedHash, signed); err != nil && err != io.EOF {
return nil, nil, err
}
for _, key := range keys {
switch sig := p.(type) {
case *packet.Signature:
err = key.PublicKey.VerifySignature(h, sig)
case *packet.SignatureV3:
err = key.PublicKey.VerifySignatureV3(h, sig)
default:
panic("unreachable")
}
if err == nil {
return key.Entity, &issuerKeyId, nil
}
}
return nil, nil, err
}
// CheckArmoredDetachedSignature performs the same actions as
// CheckDetachedSignature but expects the signature to be armored.
func CheckArmoredDetachedSignature(keyring KeyRing, signed, signature io.Reader) (signer *Entity, err error) {
signer, _, err = checkArmoredDetachedSignature(keyring, signed, signature)
return signer, err
}
func checkArmoredDetachedSignature(keyring KeyRing, signed, signature io.Reader) (signer *Entity, issuer *uint64, err error) {
body, err := readArmored(signature, SignatureType)
if err != nil {
return
}
return checkDetachedSignature(keyring, signed, body)
}