mirror of
https://github.com/go-gitea/gitea.git
synced 2024-11-01 08:47:40 -04:00
1023 lines
27 KiB
Go
1023 lines
27 KiB
Go
// Copyright (c) 2015 Klaus Post, released under MIT License. See LICENSE file.
|
||
|
||
// Package cpuid provides information about the CPU running the current program.
|
||
//
|
||
// CPU features are detected on startup, and kept for fast access through the life of the application.
|
||
// Currently x86 / x64 (AMD64) is supported.
|
||
//
|
||
// You can access the CPU information by accessing the shared CPU variable of the cpuid library.
|
||
//
|
||
// Package home: https://github.com/klauspost/cpuid
|
||
package cpuid
|
||
|
||
import "strings"
|
||
|
||
// Vendor is a representation of a CPU vendor.
|
||
type Vendor int
|
||
|
||
const (
|
||
Other Vendor = iota
|
||
Intel
|
||
AMD
|
||
VIA
|
||
Transmeta
|
||
NSC
|
||
KVM // Kernel-based Virtual Machine
|
||
MSVM // Microsoft Hyper-V or Windows Virtual PC
|
||
VMware
|
||
XenHVM
|
||
)
|
||
|
||
const (
|
||
CMOV = 1 << iota // i686 CMOV
|
||
NX // NX (No-Execute) bit
|
||
AMD3DNOW // AMD 3DNOW
|
||
AMD3DNOWEXT // AMD 3DNowExt
|
||
MMX // standard MMX
|
||
MMXEXT // SSE integer functions or AMD MMX ext
|
||
SSE // SSE functions
|
||
SSE2 // P4 SSE functions
|
||
SSE3 // Prescott SSE3 functions
|
||
SSSE3 // Conroe SSSE3 functions
|
||
SSE4 // Penryn SSE4.1 functions
|
||
SSE4A // AMD Barcelona microarchitecture SSE4a instructions
|
||
SSE42 // Nehalem SSE4.2 functions
|
||
AVX // AVX functions
|
||
AVX2 // AVX2 functions
|
||
FMA3 // Intel FMA 3
|
||
FMA4 // Bulldozer FMA4 functions
|
||
XOP // Bulldozer XOP functions
|
||
F16C // Half-precision floating-point conversion
|
||
BMI1 // Bit Manipulation Instruction Set 1
|
||
BMI2 // Bit Manipulation Instruction Set 2
|
||
TBM // AMD Trailing Bit Manipulation
|
||
LZCNT // LZCNT instruction
|
||
POPCNT // POPCNT instruction
|
||
AESNI // Advanced Encryption Standard New Instructions
|
||
CLMUL // Carry-less Multiplication
|
||
HTT // Hyperthreading (enabled)
|
||
HLE // Hardware Lock Elision
|
||
RTM // Restricted Transactional Memory
|
||
RDRAND // RDRAND instruction is available
|
||
RDSEED // RDSEED instruction is available
|
||
ADX // Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
|
||
SHA // Intel SHA Extensions
|
||
AVX512F // AVX-512 Foundation
|
||
AVX512DQ // AVX-512 Doubleword and Quadword Instructions
|
||
AVX512IFMA // AVX-512 Integer Fused Multiply-Add Instructions
|
||
AVX512PF // AVX-512 Prefetch Instructions
|
||
AVX512ER // AVX-512 Exponential and Reciprocal Instructions
|
||
AVX512CD // AVX-512 Conflict Detection Instructions
|
||
AVX512BW // AVX-512 Byte and Word Instructions
|
||
AVX512VL // AVX-512 Vector Length Extensions
|
||
AVX512VBMI // AVX-512 Vector Bit Manipulation Instructions
|
||
MPX // Intel MPX (Memory Protection Extensions)
|
||
ERMS // Enhanced REP MOVSB/STOSB
|
||
RDTSCP // RDTSCP Instruction
|
||
CX16 // CMPXCHG16B Instruction
|
||
SGX // Software Guard Extensions
|
||
|
||
// Performance indicators
|
||
SSE2SLOW // SSE2 is supported, but usually not faster
|
||
SSE3SLOW // SSE3 is supported, but usually not faster
|
||
ATOM // Atom processor, some SSSE3 instructions are slower
|
||
)
|
||
|
||
var flagNames = map[Flags]string{
|
||
CMOV: "CMOV", // i686 CMOV
|
||
NX: "NX", // NX (No-Execute) bit
|
||
AMD3DNOW: "AMD3DNOW", // AMD 3DNOW
|
||
AMD3DNOWEXT: "AMD3DNOWEXT", // AMD 3DNowExt
|
||
MMX: "MMX", // Standard MMX
|
||
MMXEXT: "MMXEXT", // SSE integer functions or AMD MMX ext
|
||
SSE: "SSE", // SSE functions
|
||
SSE2: "SSE2", // P4 SSE2 functions
|
||
SSE3: "SSE3", // Prescott SSE3 functions
|
||
SSSE3: "SSSE3", // Conroe SSSE3 functions
|
||
SSE4: "SSE4.1", // Penryn SSE4.1 functions
|
||
SSE4A: "SSE4A", // AMD Barcelona microarchitecture SSE4a instructions
|
||
SSE42: "SSE4.2", // Nehalem SSE4.2 functions
|
||
AVX: "AVX", // AVX functions
|
||
AVX2: "AVX2", // AVX functions
|
||
FMA3: "FMA3", // Intel FMA 3
|
||
FMA4: "FMA4", // Bulldozer FMA4 functions
|
||
XOP: "XOP", // Bulldozer XOP functions
|
||
F16C: "F16C", // Half-precision floating-point conversion
|
||
BMI1: "BMI1", // Bit Manipulation Instruction Set 1
|
||
BMI2: "BMI2", // Bit Manipulation Instruction Set 2
|
||
TBM: "TBM", // AMD Trailing Bit Manipulation
|
||
LZCNT: "LZCNT", // LZCNT instruction
|
||
POPCNT: "POPCNT", // POPCNT instruction
|
||
AESNI: "AESNI", // Advanced Encryption Standard New Instructions
|
||
CLMUL: "CLMUL", // Carry-less Multiplication
|
||
HTT: "HTT", // Hyperthreading (enabled)
|
||
HLE: "HLE", // Hardware Lock Elision
|
||
RTM: "RTM", // Restricted Transactional Memory
|
||
RDRAND: "RDRAND", // RDRAND instruction is available
|
||
RDSEED: "RDSEED", // RDSEED instruction is available
|
||
ADX: "ADX", // Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
|
||
SHA: "SHA", // Intel SHA Extensions
|
||
AVX512F: "AVX512F", // AVX-512 Foundation
|
||
AVX512DQ: "AVX512DQ", // AVX-512 Doubleword and Quadword Instructions
|
||
AVX512IFMA: "AVX512IFMA", // AVX-512 Integer Fused Multiply-Add Instructions
|
||
AVX512PF: "AVX512PF", // AVX-512 Prefetch Instructions
|
||
AVX512ER: "AVX512ER", // AVX-512 Exponential and Reciprocal Instructions
|
||
AVX512CD: "AVX512CD", // AVX-512 Conflict Detection Instructions
|
||
AVX512BW: "AVX512BW", // AVX-512 Byte and Word Instructions
|
||
AVX512VL: "AVX512VL", // AVX-512 Vector Length Extensions
|
||
AVX512VBMI: "AVX512VBMI", // AVX-512 Vector Bit Manipulation Instructions
|
||
MPX: "MPX", // Intel MPX (Memory Protection Extensions)
|
||
ERMS: "ERMS", // Enhanced REP MOVSB/STOSB
|
||
RDTSCP: "RDTSCP", // RDTSCP Instruction
|
||
CX16: "CX16", // CMPXCHG16B Instruction
|
||
SGX: "SGX", // Software Guard Extensions
|
||
|
||
// Performance indicators
|
||
SSE2SLOW: "SSE2SLOW", // SSE2 supported, but usually not faster
|
||
SSE3SLOW: "SSE3SLOW", // SSE3 supported, but usually not faster
|
||
ATOM: "ATOM", // Atom processor, some SSSE3 instructions are slower
|
||
|
||
}
|
||
|
||
// CPUInfo contains information about the detected system CPU.
|
||
type CPUInfo struct {
|
||
BrandName string // Brand name reported by the CPU
|
||
VendorID Vendor // Comparable CPU vendor ID
|
||
Features Flags // Features of the CPU
|
||
PhysicalCores int // Number of physical processor cores in your CPU. Will be 0 if undetectable.
|
||
ThreadsPerCore int // Number of threads per physical core. Will be 1 if undetectable.
|
||
LogicalCores int // Number of physical cores times threads that can run on each core through the use of hyperthreading. Will be 0 if undetectable.
|
||
Family int // CPU family number
|
||
Model int // CPU model number
|
||
CacheLine int // Cache line size in bytes. Will be 0 if undetectable.
|
||
Cache struct {
|
||
L1I int // L1 Instruction Cache (per core or shared). Will be -1 if undetected
|
||
L1D int // L1 Data Cache (per core or shared). Will be -1 if undetected
|
||
L2 int // L2 Cache (per core or shared). Will be -1 if undetected
|
||
L3 int // L3 Instruction Cache (per core or shared). Will be -1 if undetected
|
||
}
|
||
SGX SGXSupport
|
||
maxFunc uint32
|
||
maxExFunc uint32
|
||
}
|
||
|
||
var cpuid func(op uint32) (eax, ebx, ecx, edx uint32)
|
||
var cpuidex func(op, op2 uint32) (eax, ebx, ecx, edx uint32)
|
||
var xgetbv func(index uint32) (eax, edx uint32)
|
||
var rdtscpAsm func() (eax, ebx, ecx, edx uint32)
|
||
|
||
// CPU contains information about the CPU as detected on startup,
|
||
// or when Detect last was called.
|
||
//
|
||
// Use this as the primary entry point to you data,
|
||
// this way queries are
|
||
var CPU CPUInfo
|
||
|
||
func init() {
|
||
initCPU()
|
||
Detect()
|
||
}
|
||
|
||
// Detect will re-detect current CPU info.
|
||
// This will replace the content of the exported CPU variable.
|
||
//
|
||
// Unless you expect the CPU to change while you are running your program
|
||
// you should not need to call this function.
|
||
// If you call this, you must ensure that no other goroutine is accessing the
|
||
// exported CPU variable.
|
||
func Detect() {
|
||
CPU.maxFunc = maxFunctionID()
|
||
CPU.maxExFunc = maxExtendedFunction()
|
||
CPU.BrandName = brandName()
|
||
CPU.CacheLine = cacheLine()
|
||
CPU.Family, CPU.Model = familyModel()
|
||
CPU.Features = support()
|
||
CPU.SGX = sgx(CPU.Features&SGX != 0)
|
||
CPU.ThreadsPerCore = threadsPerCore()
|
||
CPU.LogicalCores = logicalCores()
|
||
CPU.PhysicalCores = physicalCores()
|
||
CPU.VendorID = vendorID()
|
||
CPU.cacheSize()
|
||
}
|
||
|
||
// Generated here: http://play.golang.org/p/BxFH2Gdc0G
|
||
|
||
// Cmov indicates support of CMOV instructions
|
||
func (c CPUInfo) Cmov() bool {
|
||
return c.Features&CMOV != 0
|
||
}
|
||
|
||
// Amd3dnow indicates support of AMD 3DNOW! instructions
|
||
func (c CPUInfo) Amd3dnow() bool {
|
||
return c.Features&AMD3DNOW != 0
|
||
}
|
||
|
||
// Amd3dnowExt indicates support of AMD 3DNOW! Extended instructions
|
||
func (c CPUInfo) Amd3dnowExt() bool {
|
||
return c.Features&AMD3DNOWEXT != 0
|
||
}
|
||
|
||
// MMX indicates support of MMX instructions
|
||
func (c CPUInfo) MMX() bool {
|
||
return c.Features&MMX != 0
|
||
}
|
||
|
||
// MMXExt indicates support of MMXEXT instructions
|
||
// (SSE integer functions or AMD MMX ext)
|
||
func (c CPUInfo) MMXExt() bool {
|
||
return c.Features&MMXEXT != 0
|
||
}
|
||
|
||
// SSE indicates support of SSE instructions
|
||
func (c CPUInfo) SSE() bool {
|
||
return c.Features&SSE != 0
|
||
}
|
||
|
||
// SSE2 indicates support of SSE 2 instructions
|
||
func (c CPUInfo) SSE2() bool {
|
||
return c.Features&SSE2 != 0
|
||
}
|
||
|
||
// SSE3 indicates support of SSE 3 instructions
|
||
func (c CPUInfo) SSE3() bool {
|
||
return c.Features&SSE3 != 0
|
||
}
|
||
|
||
// SSSE3 indicates support of SSSE 3 instructions
|
||
func (c CPUInfo) SSSE3() bool {
|
||
return c.Features&SSSE3 != 0
|
||
}
|
||
|
||
// SSE4 indicates support of SSE 4 (also called SSE 4.1) instructions
|
||
func (c CPUInfo) SSE4() bool {
|
||
return c.Features&SSE4 != 0
|
||
}
|
||
|
||
// SSE42 indicates support of SSE4.2 instructions
|
||
func (c CPUInfo) SSE42() bool {
|
||
return c.Features&SSE42 != 0
|
||
}
|
||
|
||
// AVX indicates support of AVX instructions
|
||
// and operating system support of AVX instructions
|
||
func (c CPUInfo) AVX() bool {
|
||
return c.Features&AVX != 0
|
||
}
|
||
|
||
// AVX2 indicates support of AVX2 instructions
|
||
func (c CPUInfo) AVX2() bool {
|
||
return c.Features&AVX2 != 0
|
||
}
|
||
|
||
// FMA3 indicates support of FMA3 instructions
|
||
func (c CPUInfo) FMA3() bool {
|
||
return c.Features&FMA3 != 0
|
||
}
|
||
|
||
// FMA4 indicates support of FMA4 instructions
|
||
func (c CPUInfo) FMA4() bool {
|
||
return c.Features&FMA4 != 0
|
||
}
|
||
|
||
// XOP indicates support of XOP instructions
|
||
func (c CPUInfo) XOP() bool {
|
||
return c.Features&XOP != 0
|
||
}
|
||
|
||
// F16C indicates support of F16C instructions
|
||
func (c CPUInfo) F16C() bool {
|
||
return c.Features&F16C != 0
|
||
}
|
||
|
||
// BMI1 indicates support of BMI1 instructions
|
||
func (c CPUInfo) BMI1() bool {
|
||
return c.Features&BMI1 != 0
|
||
}
|
||
|
||
// BMI2 indicates support of BMI2 instructions
|
||
func (c CPUInfo) BMI2() bool {
|
||
return c.Features&BMI2 != 0
|
||
}
|
||
|
||
// TBM indicates support of TBM instructions
|
||
// (AMD Trailing Bit Manipulation)
|
||
func (c CPUInfo) TBM() bool {
|
||
return c.Features&TBM != 0
|
||
}
|
||
|
||
// Lzcnt indicates support of LZCNT instruction
|
||
func (c CPUInfo) Lzcnt() bool {
|
||
return c.Features&LZCNT != 0
|
||
}
|
||
|
||
// Popcnt indicates support of POPCNT instruction
|
||
func (c CPUInfo) Popcnt() bool {
|
||
return c.Features&POPCNT != 0
|
||
}
|
||
|
||
// HTT indicates the processor has Hyperthreading enabled
|
||
func (c CPUInfo) HTT() bool {
|
||
return c.Features&HTT != 0
|
||
}
|
||
|
||
// SSE2Slow indicates that SSE2 may be slow on this processor
|
||
func (c CPUInfo) SSE2Slow() bool {
|
||
return c.Features&SSE2SLOW != 0
|
||
}
|
||
|
||
// SSE3Slow indicates that SSE3 may be slow on this processor
|
||
func (c CPUInfo) SSE3Slow() bool {
|
||
return c.Features&SSE3SLOW != 0
|
||
}
|
||
|
||
// AesNi indicates support of AES-NI instructions
|
||
// (Advanced Encryption Standard New Instructions)
|
||
func (c CPUInfo) AesNi() bool {
|
||
return c.Features&AESNI != 0
|
||
}
|
||
|
||
// Clmul indicates support of CLMUL instructions
|
||
// (Carry-less Multiplication)
|
||
func (c CPUInfo) Clmul() bool {
|
||
return c.Features&CLMUL != 0
|
||
}
|
||
|
||
// NX indicates support of NX (No-Execute) bit
|
||
func (c CPUInfo) NX() bool {
|
||
return c.Features&NX != 0
|
||
}
|
||
|
||
// SSE4A indicates support of AMD Barcelona microarchitecture SSE4a instructions
|
||
func (c CPUInfo) SSE4A() bool {
|
||
return c.Features&SSE4A != 0
|
||
}
|
||
|
||
// HLE indicates support of Hardware Lock Elision
|
||
func (c CPUInfo) HLE() bool {
|
||
return c.Features&HLE != 0
|
||
}
|
||
|
||
// RTM indicates support of Restricted Transactional Memory
|
||
func (c CPUInfo) RTM() bool {
|
||
return c.Features&RTM != 0
|
||
}
|
||
|
||
// Rdrand indicates support of RDRAND instruction is available
|
||
func (c CPUInfo) Rdrand() bool {
|
||
return c.Features&RDRAND != 0
|
||
}
|
||
|
||
// Rdseed indicates support of RDSEED instruction is available
|
||
func (c CPUInfo) Rdseed() bool {
|
||
return c.Features&RDSEED != 0
|
||
}
|
||
|
||
// ADX indicates support of Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
|
||
func (c CPUInfo) ADX() bool {
|
||
return c.Features&ADX != 0
|
||
}
|
||
|
||
// SHA indicates support of Intel SHA Extensions
|
||
func (c CPUInfo) SHA() bool {
|
||
return c.Features&SHA != 0
|
||
}
|
||
|
||
// AVX512F indicates support of AVX-512 Foundation
|
||
func (c CPUInfo) AVX512F() bool {
|
||
return c.Features&AVX512F != 0
|
||
}
|
||
|
||
// AVX512DQ indicates support of AVX-512 Doubleword and Quadword Instructions
|
||
func (c CPUInfo) AVX512DQ() bool {
|
||
return c.Features&AVX512DQ != 0
|
||
}
|
||
|
||
// AVX512IFMA indicates support of AVX-512 Integer Fused Multiply-Add Instructions
|
||
func (c CPUInfo) AVX512IFMA() bool {
|
||
return c.Features&AVX512IFMA != 0
|
||
}
|
||
|
||
// AVX512PF indicates support of AVX-512 Prefetch Instructions
|
||
func (c CPUInfo) AVX512PF() bool {
|
||
return c.Features&AVX512PF != 0
|
||
}
|
||
|
||
// AVX512ER indicates support of AVX-512 Exponential and Reciprocal Instructions
|
||
func (c CPUInfo) AVX512ER() bool {
|
||
return c.Features&AVX512ER != 0
|
||
}
|
||
|
||
// AVX512CD indicates support of AVX-512 Conflict Detection Instructions
|
||
func (c CPUInfo) AVX512CD() bool {
|
||
return c.Features&AVX512CD != 0
|
||
}
|
||
|
||
// AVX512BW indicates support of AVX-512 Byte and Word Instructions
|
||
func (c CPUInfo) AVX512BW() bool {
|
||
return c.Features&AVX512BW != 0
|
||
}
|
||
|
||
// AVX512VL indicates support of AVX-512 Vector Length Extensions
|
||
func (c CPUInfo) AVX512VL() bool {
|
||
return c.Features&AVX512VL != 0
|
||
}
|
||
|
||
// AVX512VBMI indicates support of AVX-512 Vector Bit Manipulation Instructions
|
||
func (c CPUInfo) AVX512VBMI() bool {
|
||
return c.Features&AVX512VBMI != 0
|
||
}
|
||
|
||
// MPX indicates support of Intel MPX (Memory Protection Extensions)
|
||
func (c CPUInfo) MPX() bool {
|
||
return c.Features&MPX != 0
|
||
}
|
||
|
||
// ERMS indicates support of Enhanced REP MOVSB/STOSB
|
||
func (c CPUInfo) ERMS() bool {
|
||
return c.Features&ERMS != 0
|
||
}
|
||
|
||
func (c CPUInfo) RDTSCP() bool {
|
||
return c.Features&RDTSCP != 0
|
||
}
|
||
|
||
func (c CPUInfo) CX16() bool {
|
||
return c.Features&CX16 != 0
|
||
}
|
||
|
||
// Atom indicates an Atom processor
|
||
func (c CPUInfo) Atom() bool {
|
||
return c.Features&ATOM != 0
|
||
}
|
||
|
||
// Intel returns true if vendor is recognized as Intel
|
||
func (c CPUInfo) Intel() bool {
|
||
return c.VendorID == Intel
|
||
}
|
||
|
||
// AMD returns true if vendor is recognized as AMD
|
||
func (c CPUInfo) AMD() bool {
|
||
return c.VendorID == AMD
|
||
}
|
||
|
||
// Transmeta returns true if vendor is recognized as Transmeta
|
||
func (c CPUInfo) Transmeta() bool {
|
||
return c.VendorID == Transmeta
|
||
}
|
||
|
||
// NSC returns true if vendor is recognized as National Semiconductor
|
||
func (c CPUInfo) NSC() bool {
|
||
return c.VendorID == NSC
|
||
}
|
||
|
||
// VIA returns true if vendor is recognized as VIA
|
||
func (c CPUInfo) VIA() bool {
|
||
return c.VendorID == VIA
|
||
}
|
||
|
||
// RTCounter returns the 64-bit time-stamp counter
|
||
// Uses the RDTSCP instruction. The value 0 is returned
|
||
// if the CPU does not support the instruction.
|
||
func (c CPUInfo) RTCounter() uint64 {
|
||
if !c.RDTSCP() {
|
||
return 0
|
||
}
|
||
a, _, _, d := rdtscpAsm()
|
||
return uint64(a) | (uint64(d) << 32)
|
||
}
|
||
|
||
// Ia32TscAux returns the IA32_TSC_AUX part of the RDTSCP.
|
||
// This variable is OS dependent, but on Linux contains information
|
||
// about the current cpu/core the code is running on.
|
||
// If the RDTSCP instruction isn't supported on the CPU, the value 0 is returned.
|
||
func (c CPUInfo) Ia32TscAux() uint32 {
|
||
if !c.RDTSCP() {
|
||
return 0
|
||
}
|
||
_, _, ecx, _ := rdtscpAsm()
|
||
return ecx
|
||
}
|
||
|
||
// LogicalCPU will return the Logical CPU the code is currently executing on.
|
||
// This is likely to change when the OS re-schedules the running thread
|
||
// to another CPU.
|
||
// If the current core cannot be detected, -1 will be returned.
|
||
func (c CPUInfo) LogicalCPU() int {
|
||
if c.maxFunc < 1 {
|
||
return -1
|
||
}
|
||
_, ebx, _, _ := cpuid(1)
|
||
return int(ebx >> 24)
|
||
}
|
||
|
||
// VM Will return true if the cpu id indicates we are in
|
||
// a virtual machine. This is only a hint, and will very likely
|
||
// have many false negatives.
|
||
func (c CPUInfo) VM() bool {
|
||
switch c.VendorID {
|
||
case MSVM, KVM, VMware, XenHVM:
|
||
return true
|
||
}
|
||
return false
|
||
}
|
||
|
||
// Flags contains detected cpu features and caracteristics
|
||
type Flags uint64
|
||
|
||
// String returns a string representation of the detected
|
||
// CPU features.
|
||
func (f Flags) String() string {
|
||
return strings.Join(f.Strings(), ",")
|
||
}
|
||
|
||
// Strings returns and array of the detected features.
|
||
func (f Flags) Strings() []string {
|
||
s := support()
|
||
r := make([]string, 0, 20)
|
||
for i := uint(0); i < 64; i++ {
|
||
key := Flags(1 << i)
|
||
val := flagNames[key]
|
||
if s&key != 0 {
|
||
r = append(r, val)
|
||
}
|
||
}
|
||
return r
|
||
}
|
||
|
||
func maxExtendedFunction() uint32 {
|
||
eax, _, _, _ := cpuid(0x80000000)
|
||
return eax
|
||
}
|
||
|
||
func maxFunctionID() uint32 {
|
||
a, _, _, _ := cpuid(0)
|
||
return a
|
||
}
|
||
|
||
func brandName() string {
|
||
if maxExtendedFunction() >= 0x80000004 {
|
||
v := make([]uint32, 0, 48)
|
||
for i := uint32(0); i < 3; i++ {
|
||
a, b, c, d := cpuid(0x80000002 + i)
|
||
v = append(v, a, b, c, d)
|
||
}
|
||
return strings.Trim(string(valAsString(v...)), " ")
|
||
}
|
||
return "unknown"
|
||
}
|
||
|
||
func threadsPerCore() int {
|
||
mfi := maxFunctionID()
|
||
if mfi < 0x4 || vendorID() != Intel {
|
||
return 1
|
||
}
|
||
|
||
if mfi < 0xb {
|
||
_, b, _, d := cpuid(1)
|
||
if (d & (1 << 28)) != 0 {
|
||
// v will contain logical core count
|
||
v := (b >> 16) & 255
|
||
if v > 1 {
|
||
a4, _, _, _ := cpuid(4)
|
||
// physical cores
|
||
v2 := (a4 >> 26) + 1
|
||
if v2 > 0 {
|
||
return int(v) / int(v2)
|
||
}
|
||
}
|
||
}
|
||
return 1
|
||
}
|
||
_, b, _, _ := cpuidex(0xb, 0)
|
||
if b&0xffff == 0 {
|
||
return 1
|
||
}
|
||
return int(b & 0xffff)
|
||
}
|
||
|
||
func logicalCores() int {
|
||
mfi := maxFunctionID()
|
||
switch vendorID() {
|
||
case Intel:
|
||
// Use this on old Intel processors
|
||
if mfi < 0xb {
|
||
if mfi < 1 {
|
||
return 0
|
||
}
|
||
// CPUID.1:EBX[23:16] represents the maximum number of addressable IDs (initial APIC ID)
|
||
// that can be assigned to logical processors in a physical package.
|
||
// The value may not be the same as the number of logical processors that are present in the hardware of a physical package.
|
||
_, ebx, _, _ := cpuid(1)
|
||
logical := (ebx >> 16) & 0xff
|
||
return int(logical)
|
||
}
|
||
_, b, _, _ := cpuidex(0xb, 1)
|
||
return int(b & 0xffff)
|
||
case AMD:
|
||
_, b, _, _ := cpuid(1)
|
||
return int((b >> 16) & 0xff)
|
||
default:
|
||
return 0
|
||
}
|
||
}
|
||
|
||
func familyModel() (int, int) {
|
||
if maxFunctionID() < 0x1 {
|
||
return 0, 0
|
||
}
|
||
eax, _, _, _ := cpuid(1)
|
||
family := ((eax >> 8) & 0xf) + ((eax >> 20) & 0xff)
|
||
model := ((eax >> 4) & 0xf) + ((eax >> 12) & 0xf0)
|
||
return int(family), int(model)
|
||
}
|
||
|
||
func physicalCores() int {
|
||
switch vendorID() {
|
||
case Intel:
|
||
return logicalCores() / threadsPerCore()
|
||
case AMD:
|
||
if maxExtendedFunction() >= 0x80000008 {
|
||
_, _, c, _ := cpuid(0x80000008)
|
||
return int(c&0xff) + 1
|
||
}
|
||
}
|
||
return 0
|
||
}
|
||
|
||
// Except from http://en.wikipedia.org/wiki/CPUID#EAX.3D0:_Get_vendor_ID
|
||
var vendorMapping = map[string]Vendor{
|
||
"AMDisbetter!": AMD,
|
||
"AuthenticAMD": AMD,
|
||
"CentaurHauls": VIA,
|
||
"GenuineIntel": Intel,
|
||
"TransmetaCPU": Transmeta,
|
||
"GenuineTMx86": Transmeta,
|
||
"Geode by NSC": NSC,
|
||
"VIA VIA VIA ": VIA,
|
||
"KVMKVMKVMKVM": KVM,
|
||
"Microsoft Hv": MSVM,
|
||
"VMwareVMware": VMware,
|
||
"XenVMMXenVMM": XenHVM,
|
||
}
|
||
|
||
func vendorID() Vendor {
|
||
_, b, c, d := cpuid(0)
|
||
v := valAsString(b, d, c)
|
||
vend, ok := vendorMapping[string(v)]
|
||
if !ok {
|
||
return Other
|
||
}
|
||
return vend
|
||
}
|
||
|
||
func cacheLine() int {
|
||
if maxFunctionID() < 0x1 {
|
||
return 0
|
||
}
|
||
|
||
_, ebx, _, _ := cpuid(1)
|
||
cache := (ebx & 0xff00) >> 5 // cflush size
|
||
if cache == 0 && maxExtendedFunction() >= 0x80000006 {
|
||
_, _, ecx, _ := cpuid(0x80000006)
|
||
cache = ecx & 0xff // cacheline size
|
||
}
|
||
// TODO: Read from Cache and TLB Information
|
||
return int(cache)
|
||
}
|
||
|
||
func (c *CPUInfo) cacheSize() {
|
||
c.Cache.L1D = -1
|
||
c.Cache.L1I = -1
|
||
c.Cache.L2 = -1
|
||
c.Cache.L3 = -1
|
||
vendor := vendorID()
|
||
switch vendor {
|
||
case Intel:
|
||
if maxFunctionID() < 4 {
|
||
return
|
||
}
|
||
for i := uint32(0); ; i++ {
|
||
eax, ebx, ecx, _ := cpuidex(4, i)
|
||
cacheType := eax & 15
|
||
if cacheType == 0 {
|
||
break
|
||
}
|
||
cacheLevel := (eax >> 5) & 7
|
||
coherency := int(ebx&0xfff) + 1
|
||
partitions := int((ebx>>12)&0x3ff) + 1
|
||
associativity := int((ebx>>22)&0x3ff) + 1
|
||
sets := int(ecx) + 1
|
||
size := associativity * partitions * coherency * sets
|
||
switch cacheLevel {
|
||
case 1:
|
||
if cacheType == 1 {
|
||
// 1 = Data Cache
|
||
c.Cache.L1D = size
|
||
} else if cacheType == 2 {
|
||
// 2 = Instruction Cache
|
||
c.Cache.L1I = size
|
||
} else {
|
||
if c.Cache.L1D < 0 {
|
||
c.Cache.L1I = size
|
||
}
|
||
if c.Cache.L1I < 0 {
|
||
c.Cache.L1I = size
|
||
}
|
||
}
|
||
case 2:
|
||
c.Cache.L2 = size
|
||
case 3:
|
||
c.Cache.L3 = size
|
||
}
|
||
}
|
||
case AMD:
|
||
// Untested.
|
||
if maxExtendedFunction() < 0x80000005 {
|
||
return
|
||
}
|
||
_, _, ecx, edx := cpuid(0x80000005)
|
||
c.Cache.L1D = int(((ecx >> 24) & 0xFF) * 1024)
|
||
c.Cache.L1I = int(((edx >> 24) & 0xFF) * 1024)
|
||
|
||
if maxExtendedFunction() < 0x80000006 {
|
||
return
|
||
}
|
||
_, _, ecx, _ = cpuid(0x80000006)
|
||
c.Cache.L2 = int(((ecx >> 16) & 0xFFFF) * 1024)
|
||
}
|
||
|
||
return
|
||
}
|
||
|
||
type SGXSupport struct {
|
||
Available bool
|
||
SGX1Supported bool
|
||
SGX2Supported bool
|
||
MaxEnclaveSizeNot64 int64
|
||
MaxEnclaveSize64 int64
|
||
}
|
||
|
||
func sgx(available bool) (rval SGXSupport) {
|
||
rval.Available = available
|
||
|
||
if !available {
|
||
return
|
||
}
|
||
|
||
a, _, _, d := cpuidex(0x12, 0)
|
||
rval.SGX1Supported = a&0x01 != 0
|
||
rval.SGX2Supported = a&0x02 != 0
|
||
rval.MaxEnclaveSizeNot64 = 1 << (d & 0xFF) // pow 2
|
||
rval.MaxEnclaveSize64 = 1 << ((d >> 8) & 0xFF) // pow 2
|
||
|
||
return
|
||
}
|
||
|
||
func support() Flags {
|
||
mfi := maxFunctionID()
|
||
vend := vendorID()
|
||
if mfi < 0x1 {
|
||
return 0
|
||
}
|
||
rval := uint64(0)
|
||
_, _, c, d := cpuid(1)
|
||
if (d & (1 << 15)) != 0 {
|
||
rval |= CMOV
|
||
}
|
||
if (d & (1 << 23)) != 0 {
|
||
rval |= MMX
|
||
}
|
||
if (d & (1 << 25)) != 0 {
|
||
rval |= MMXEXT
|
||
}
|
||
if (d & (1 << 25)) != 0 {
|
||
rval |= SSE
|
||
}
|
||
if (d & (1 << 26)) != 0 {
|
||
rval |= SSE2
|
||
}
|
||
if (c & 1) != 0 {
|
||
rval |= SSE3
|
||
}
|
||
if (c & 0x00000200) != 0 {
|
||
rval |= SSSE3
|
||
}
|
||
if (c & 0x00080000) != 0 {
|
||
rval |= SSE4
|
||
}
|
||
if (c & 0x00100000) != 0 {
|
||
rval |= SSE42
|
||
}
|
||
if (c & (1 << 25)) != 0 {
|
||
rval |= AESNI
|
||
}
|
||
if (c & (1 << 1)) != 0 {
|
||
rval |= CLMUL
|
||
}
|
||
if c&(1<<23) != 0 {
|
||
rval |= POPCNT
|
||
}
|
||
if c&(1<<30) != 0 {
|
||
rval |= RDRAND
|
||
}
|
||
if c&(1<<29) != 0 {
|
||
rval |= F16C
|
||
}
|
||
if c&(1<<13) != 0 {
|
||
rval |= CX16
|
||
}
|
||
if vend == Intel && (d&(1<<28)) != 0 && mfi >= 4 {
|
||
if threadsPerCore() > 1 {
|
||
rval |= HTT
|
||
}
|
||
}
|
||
|
||
// Check XGETBV, OXSAVE and AVX bits
|
||
if c&(1<<26) != 0 && c&(1<<27) != 0 && c&(1<<28) != 0 {
|
||
// Check for OS support
|
||
eax, _ := xgetbv(0)
|
||
if (eax & 0x6) == 0x6 {
|
||
rval |= AVX
|
||
if (c & 0x00001000) != 0 {
|
||
rval |= FMA3
|
||
}
|
||
}
|
||
}
|
||
|
||
// Check AVX2, AVX2 requires OS support, but BMI1/2 don't.
|
||
if mfi >= 7 {
|
||
_, ebx, ecx, _ := cpuidex(7, 0)
|
||
if (rval&AVX) != 0 && (ebx&0x00000020) != 0 {
|
||
rval |= AVX2
|
||
}
|
||
if (ebx & 0x00000008) != 0 {
|
||
rval |= BMI1
|
||
if (ebx & 0x00000100) != 0 {
|
||
rval |= BMI2
|
||
}
|
||
}
|
||
if ebx&(1<<2) != 0 {
|
||
rval |= SGX
|
||
}
|
||
if ebx&(1<<4) != 0 {
|
||
rval |= HLE
|
||
}
|
||
if ebx&(1<<9) != 0 {
|
||
rval |= ERMS
|
||
}
|
||
if ebx&(1<<11) != 0 {
|
||
rval |= RTM
|
||
}
|
||
if ebx&(1<<14) != 0 {
|
||
rval |= MPX
|
||
}
|
||
if ebx&(1<<18) != 0 {
|
||
rval |= RDSEED
|
||
}
|
||
if ebx&(1<<19) != 0 {
|
||
rval |= ADX
|
||
}
|
||
if ebx&(1<<29) != 0 {
|
||
rval |= SHA
|
||
}
|
||
|
||
// Only detect AVX-512 features if XGETBV is supported
|
||
if c&((1<<26)|(1<<27)) == (1<<26)|(1<<27) {
|
||
// Check for OS support
|
||
eax, _ := xgetbv(0)
|
||
|
||
// Verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
|
||
// ZMM16-ZMM31 state are enabled by OS)
|
||
/// and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by OS).
|
||
if (eax>>5)&7 == 7 && (eax>>1)&3 == 3 {
|
||
if ebx&(1<<16) != 0 {
|
||
rval |= AVX512F
|
||
}
|
||
if ebx&(1<<17) != 0 {
|
||
rval |= AVX512DQ
|
||
}
|
||
if ebx&(1<<21) != 0 {
|
||
rval |= AVX512IFMA
|
||
}
|
||
if ebx&(1<<26) != 0 {
|
||
rval |= AVX512PF
|
||
}
|
||
if ebx&(1<<27) != 0 {
|
||
rval |= AVX512ER
|
||
}
|
||
if ebx&(1<<28) != 0 {
|
||
rval |= AVX512CD
|
||
}
|
||
if ebx&(1<<30) != 0 {
|
||
rval |= AVX512BW
|
||
}
|
||
if ebx&(1<<31) != 0 {
|
||
rval |= AVX512VL
|
||
}
|
||
// ecx
|
||
if ecx&(1<<1) != 0 {
|
||
rval |= AVX512VBMI
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if maxExtendedFunction() >= 0x80000001 {
|
||
_, _, c, d := cpuid(0x80000001)
|
||
if (c & (1 << 5)) != 0 {
|
||
rval |= LZCNT
|
||
rval |= POPCNT
|
||
}
|
||
if (d & (1 << 31)) != 0 {
|
||
rval |= AMD3DNOW
|
||
}
|
||
if (d & (1 << 30)) != 0 {
|
||
rval |= AMD3DNOWEXT
|
||
}
|
||
if (d & (1 << 23)) != 0 {
|
||
rval |= MMX
|
||
}
|
||
if (d & (1 << 22)) != 0 {
|
||
rval |= MMXEXT
|
||
}
|
||
if (c & (1 << 6)) != 0 {
|
||
rval |= SSE4A
|
||
}
|
||
if d&(1<<20) != 0 {
|
||
rval |= NX
|
||
}
|
||
if d&(1<<27) != 0 {
|
||
rval |= RDTSCP
|
||
}
|
||
|
||
/* Allow for selectively disabling SSE2 functions on AMD processors
|
||
with SSE2 support but not SSE4a. This includes Athlon64, some
|
||
Opteron, and some Sempron processors. MMX, SSE, or 3DNow! are faster
|
||
than SSE2 often enough to utilize this special-case flag.
|
||
AV_CPU_FLAG_SSE2 and AV_CPU_FLAG_SSE2SLOW are both set in this case
|
||
so that SSE2 is used unless explicitly disabled by checking
|
||
AV_CPU_FLAG_SSE2SLOW. */
|
||
if vendorID() != Intel &&
|
||
rval&SSE2 != 0 && (c&0x00000040) == 0 {
|
||
rval |= SSE2SLOW
|
||
}
|
||
|
||
/* XOP and FMA4 use the AVX instruction coding scheme, so they can't be
|
||
* used unless the OS has AVX support. */
|
||
if (rval & AVX) != 0 {
|
||
if (c & 0x00000800) != 0 {
|
||
rval |= XOP
|
||
}
|
||
if (c & 0x00010000) != 0 {
|
||
rval |= FMA4
|
||
}
|
||
}
|
||
|
||
if vendorID() == Intel {
|
||
family, model := familyModel()
|
||
if family == 6 && (model == 9 || model == 13 || model == 14) {
|
||
/* 6/9 (pentium-m "banias"), 6/13 (pentium-m "dothan"), and
|
||
* 6/14 (core1 "yonah") theoretically support sse2, but it's
|
||
* usually slower than mmx. */
|
||
if (rval & SSE2) != 0 {
|
||
rval |= SSE2SLOW
|
||
}
|
||
if (rval & SSE3) != 0 {
|
||
rval |= SSE3SLOW
|
||
}
|
||
}
|
||
/* The Atom processor has SSSE3 support, which is useful in many cases,
|
||
* but sometimes the SSSE3 version is slower than the SSE2 equivalent
|
||
* on the Atom, but is generally faster on other processors supporting
|
||
* SSSE3. This flag allows for selectively disabling certain SSSE3
|
||
* functions on the Atom. */
|
||
if family == 6 && model == 28 {
|
||
rval |= ATOM
|
||
}
|
||
}
|
||
}
|
||
return Flags(rval)
|
||
}
|
||
|
||
func valAsString(values ...uint32) []byte {
|
||
r := make([]byte, 4*len(values))
|
||
for i, v := range values {
|
||
dst := r[i*4:]
|
||
dst[0] = byte(v & 0xff)
|
||
dst[1] = byte((v >> 8) & 0xff)
|
||
dst[2] = byte((v >> 16) & 0xff)
|
||
dst[3] = byte((v >> 24) & 0xff)
|
||
switch {
|
||
case dst[0] == 0:
|
||
return r[:i*4]
|
||
case dst[1] == 0:
|
||
return r[:i*4+1]
|
||
case dst[2] == 0:
|
||
return r[:i*4+2]
|
||
case dst[3] == 0:
|
||
return r[:i*4+3]
|
||
}
|
||
}
|
||
return r
|
||
}
|