1
0
mirror of https://github.com/go-gitea/gitea.git synced 2024-12-04 14:46:57 -05:00
gitea/vendor/github.com/klauspost/crc32/crc32_amd64.go
2016-11-04 08:43:11 +01:00

231 lines
6.9 KiB
Go

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !appengine,!gccgo
// AMD64-specific hardware-assisted CRC32 algorithms. See crc32.go for a
// description of the interface that each architecture-specific file
// implements.
package crc32
import "unsafe"
// This file contains the code to call the SSE 4.2 version of the Castagnoli
// and IEEE CRC.
// haveSSE41/haveSSE42/haveCLMUL are defined in crc_amd64.s and use
// CPUID to test for SSE 4.1, 4.2 and CLMUL support.
func haveSSE41() bool
func haveSSE42() bool
func haveCLMUL() bool
// castagnoliSSE42 is defined in crc32_amd64.s and uses the SSE4.2 CRC32
// instruction.
//go:noescape
func castagnoliSSE42(crc uint32, p []byte) uint32
// castagnoliSSE42Triple is defined in crc32_amd64.s and uses the SSE4.2 CRC32
// instruction.
//go:noescape
func castagnoliSSE42Triple(
crcA, crcB, crcC uint32,
a, b, c []byte,
rounds uint32,
) (retA uint32, retB uint32, retC uint32)
// ieeeCLMUL is defined in crc_amd64.s and uses the PCLMULQDQ
// instruction as well as SSE 4.1.
//go:noescape
func ieeeCLMUL(crc uint32, p []byte) uint32
var sse42 = haveSSE42()
var useFastIEEE = haveCLMUL() && haveSSE41()
const castagnoliK1 = 168
const castagnoliK2 = 1344
type sse42Table [4]Table
var castagnoliSSE42TableK1 *sse42Table
var castagnoliSSE42TableK2 *sse42Table
func archAvailableCastagnoli() bool {
return sse42
}
func archInitCastagnoli() {
if !sse42 {
panic("arch-specific Castagnoli not available")
}
castagnoliSSE42TableK1 = new(sse42Table)
castagnoliSSE42TableK2 = new(sse42Table)
// See description in updateCastagnoli.
// t[0][i] = CRC(i000, O)
// t[1][i] = CRC(0i00, O)
// t[2][i] = CRC(00i0, O)
// t[3][i] = CRC(000i, O)
// where O is a sequence of K zeros.
var tmp [castagnoliK2]byte
for b := 0; b < 4; b++ {
for i := 0; i < 256; i++ {
val := uint32(i) << uint32(b*8)
castagnoliSSE42TableK1[b][i] = castagnoliSSE42(val, tmp[:castagnoliK1])
castagnoliSSE42TableK2[b][i] = castagnoliSSE42(val, tmp[:])
}
}
}
// castagnoliShift computes the CRC32-C of K1 or K2 zeroes (depending on the
// table given) with the given initial crc value. This corresponds to
// CRC(crc, O) in the description in updateCastagnoli.
func castagnoliShift(table *sse42Table, crc uint32) uint32 {
return table[3][crc>>24] ^
table[2][(crc>>16)&0xFF] ^
table[1][(crc>>8)&0xFF] ^
table[0][crc&0xFF]
}
func archUpdateCastagnoli(crc uint32, p []byte) uint32 {
if !sse42 {
panic("not available")
}
// This method is inspired from the algorithm in Intel's white paper:
// "Fast CRC Computation for iSCSI Polynomial Using CRC32 Instruction"
// The same strategy of splitting the buffer in three is used but the
// combining calculation is different; the complete derivation is explained
// below.
//
// -- The basic idea --
//
// The CRC32 instruction (available in SSE4.2) can process 8 bytes at a
// time. In recent Intel architectures the instruction takes 3 cycles;
// however the processor can pipeline up to three instructions if they
// don't depend on each other.
//
// Roughly this means that we can process three buffers in about the same
// time we can process one buffer.
//
// The idea is then to split the buffer in three, CRC the three pieces
// separately and then combine the results.
//
// Combining the results requires precomputed tables, so we must choose a
// fixed buffer length to optimize. The longer the length, the faster; but
// only buffers longer than this length will use the optimization. We choose
// two cutoffs and compute tables for both:
// - one around 512: 168*3=504
// - one around 4KB: 1344*3=4032
//
// -- The nitty gritty --
//
// Let CRC(I, X) be the non-inverted CRC32-C of the sequence X (with
// initial non-inverted CRC I). This function has the following properties:
// (a) CRC(I, AB) = CRC(CRC(I, A), B)
// (b) CRC(I, A xor B) = CRC(I, A) xor CRC(0, B)
//
// Say we want to compute CRC(I, ABC) where A, B, C are three sequences of
// K bytes each, where K is a fixed constant. Let O be the sequence of K zero
// bytes.
//
// CRC(I, ABC) = CRC(I, ABO xor C)
// = CRC(I, ABO) xor CRC(0, C)
// = CRC(CRC(I, AB), O) xor CRC(0, C)
// = CRC(CRC(I, AO xor B), O) xor CRC(0, C)
// = CRC(CRC(I, AO) xor CRC(0, B), O) xor CRC(0, C)
// = CRC(CRC(CRC(I, A), O) xor CRC(0, B), O) xor CRC(0, C)
//
// The castagnoliSSE42Triple function can compute CRC(I, A), CRC(0, B),
// and CRC(0, C) efficiently. We just need to find a way to quickly compute
// CRC(uvwx, O) given a 4-byte initial value uvwx. We can precompute these
// values; since we can't have a 32-bit table, we break it up into four
// 8-bit tables:
//
// CRC(uvwx, O) = CRC(u000, O) xor
// CRC(0v00, O) xor
// CRC(00w0, O) xor
// CRC(000x, O)
//
// We can compute tables corresponding to the four terms for all 8-bit
// values.
crc = ^crc
// If a buffer is long enough to use the optimization, process the first few
// bytes to align the buffer to an 8 byte boundary (if necessary).
if len(p) >= castagnoliK1*3 {
delta := int(uintptr(unsafe.Pointer(&p[0])) & 7)
if delta != 0 {
delta = 8 - delta
crc = castagnoliSSE42(crc, p[:delta])
p = p[delta:]
}
}
// Process 3*K2 at a time.
for len(p) >= castagnoliK2*3 {
// Compute CRC(I, A), CRC(0, B), and CRC(0, C).
crcA, crcB, crcC := castagnoliSSE42Triple(
crc, 0, 0,
p, p[castagnoliK2:], p[castagnoliK2*2:],
castagnoliK2/24)
// CRC(I, AB) = CRC(CRC(I, A), O) xor CRC(0, B)
crcAB := castagnoliShift(castagnoliSSE42TableK2, crcA) ^ crcB
// CRC(I, ABC) = CRC(CRC(I, AB), O) xor CRC(0, C)
crc = castagnoliShift(castagnoliSSE42TableK2, crcAB) ^ crcC
p = p[castagnoliK2*3:]
}
// Process 3*K1 at a time.
for len(p) >= castagnoliK1*3 {
// Compute CRC(I, A), CRC(0, B), and CRC(0, C).
crcA, crcB, crcC := castagnoliSSE42Triple(
crc, 0, 0,
p, p[castagnoliK1:], p[castagnoliK1*2:],
castagnoliK1/24)
// CRC(I, AB) = CRC(CRC(I, A), O) xor CRC(0, B)
crcAB := castagnoliShift(castagnoliSSE42TableK1, crcA) ^ crcB
// CRC(I, ABC) = CRC(CRC(I, AB), O) xor CRC(0, C)
crc = castagnoliShift(castagnoliSSE42TableK1, crcAB) ^ crcC
p = p[castagnoliK1*3:]
}
// Use the simple implementation for what's left.
crc = castagnoliSSE42(crc, p)
return ^crc
}
func archAvailableIEEE() bool {
return useFastIEEE
}
var archIeeeTable8 *slicing8Table
func archInitIEEE() {
if !useFastIEEE {
panic("not available")
}
// We still use slicing-by-8 for small buffers.
archIeeeTable8 = slicingMakeTable(IEEE)
}
func archUpdateIEEE(crc uint32, p []byte) uint32 {
if !useFastIEEE {
panic("not available")
}
if len(p) >= 64 {
left := len(p) & 15
do := len(p) - left
crc = ^ieeeCLMUL(^crc, p[:do])
p = p[do:]
}
if len(p) == 0 {
return crc
}
return slicingUpdate(crc, archIeeeTable8, p)
}