1
0
mirror of https://github.com/go-gitea/gitea.git synced 2024-12-04 14:46:57 -05:00
gitea/vendor/github.com/golang/snappy/encode.go
Thomas Boerger b6a95a8cb3 Integrate public as bindata optionally (#293)
* Dropped unused codekit config

* Integrated dynamic and static bindata for public

* Ignore public bindata

* Add a general generate make task

* Integrated flexible public assets into web command

* Updated vendoring, added all missiong govendor deps

* Made the linter happy with the bindata and dynamic code

* Moved public bindata definition to modules directory

* Ignoring the new bindata path now

* Updated to the new public modules import path

* Updated public bindata command and drop the new prefix
2016-11-30 00:26:36 +08:00

404 lines
12 KiB
Go

// Copyright 2011 The Snappy-Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package snappy
import (
"encoding/binary"
"errors"
"io"
)
// maxOffset limits how far copy back-references can go, the same as the C++
// code.
const maxOffset = 1 << 15
// emitLiteral writes a literal chunk and returns the number of bytes written.
func emitLiteral(dst, lit []byte) int {
i, n := 0, uint(len(lit)-1)
switch {
case n < 60:
dst[0] = uint8(n)<<2 | tagLiteral
i = 1
case n < 1<<8:
dst[0] = 60<<2 | tagLiteral
dst[1] = uint8(n)
i = 2
case n < 1<<16:
dst[0] = 61<<2 | tagLiteral
dst[1] = uint8(n)
dst[2] = uint8(n >> 8)
i = 3
case n < 1<<24:
dst[0] = 62<<2 | tagLiteral
dst[1] = uint8(n)
dst[2] = uint8(n >> 8)
dst[3] = uint8(n >> 16)
i = 4
case int64(n) < 1<<32:
dst[0] = 63<<2 | tagLiteral
dst[1] = uint8(n)
dst[2] = uint8(n >> 8)
dst[3] = uint8(n >> 16)
dst[4] = uint8(n >> 24)
i = 5
default:
panic("snappy: source buffer is too long")
}
if copy(dst[i:], lit) != len(lit) {
panic("snappy: destination buffer is too short")
}
return i + len(lit)
}
// emitCopy writes a copy chunk and returns the number of bytes written.
func emitCopy(dst []byte, offset, length int32) int {
i := 0
for length > 0 {
x := length - 4
if 0 <= x && x < 1<<3 && offset < 1<<11 {
dst[i+0] = uint8(offset>>8)&0x07<<5 | uint8(x)<<2 | tagCopy1
dst[i+1] = uint8(offset)
i += 2
break
}
x = length
if x > 1<<6 {
x = 1 << 6
}
dst[i+0] = uint8(x-1)<<2 | tagCopy2
dst[i+1] = uint8(offset)
dst[i+2] = uint8(offset >> 8)
i += 3
length -= x
}
return i
}
// Encode returns the encoded form of src. The returned slice may be a sub-
// slice of dst if dst was large enough to hold the entire encoded block.
// Otherwise, a newly allocated slice will be returned.
//
// It is valid to pass a nil dst.
func Encode(dst, src []byte) []byte {
if n := MaxEncodedLen(len(src)); n < 0 {
panic(ErrTooLarge)
} else if len(dst) < n {
dst = make([]byte, n)
}
// The block starts with the varint-encoded length of the decompressed bytes.
d := binary.PutUvarint(dst, uint64(len(src)))
for len(src) > 0 {
p := src
src = nil
if len(p) > maxBlockSize {
p, src = p[:maxBlockSize], p[maxBlockSize:]
}
d += encodeBlock(dst[d:], p)
}
return dst[:d]
}
// encodeBlock encodes a non-empty src to a guaranteed-large-enough dst. It
// assumes that the varint-encoded length of the decompressed bytes has already
// been written.
//
// It also assumes that:
// len(dst) >= MaxEncodedLen(len(src)) &&
// 0 < len(src) && len(src) <= maxBlockSize
func encodeBlock(dst, src []byte) (d int) {
// Return early if src is short.
if len(src) <= 4 {
return emitLiteral(dst, src)
}
// Initialize the hash table. Its size ranges from 1<<8 to 1<<14 inclusive.
const maxTableSize = 1 << 14
shift, tableSize := uint(32-8), 1<<8
for tableSize < maxTableSize && tableSize < len(src) {
shift--
tableSize *= 2
}
var table [maxTableSize]int32
// Iterate over the source bytes.
var (
s int32 // The iterator position.
t int32 // The last position with the same hash as s.
lit int32 // The start position of any pending literal bytes.
// Copied from the C++ snappy implementation:
//
// Heuristic match skipping: If 32 bytes are scanned with no matches
// found, start looking only at every other byte. If 32 more bytes are
// scanned, look at every third byte, etc.. When a match is found,
// immediately go back to looking at every byte. This is a small loss
// (~5% performance, ~0.1% density) for compressible data due to more
// bookkeeping, but for non-compressible data (such as JPEG) it's a
// huge win since the compressor quickly "realizes" the data is
// incompressible and doesn't bother looking for matches everywhere.
//
// The "skip" variable keeps track of how many bytes there are since
// the last match; dividing it by 32 (ie. right-shifting by five) gives
// the number of bytes to move ahead for each iteration.
skip uint32 = 32
)
for uint32(s+3) < uint32(len(src)) { // The uint32 conversions catch overflow from the +3.
// Update the hash table.
b0, b1, b2, b3 := src[s], src[s+1], src[s+2], src[s+3]
h := uint32(b0) | uint32(b1)<<8 | uint32(b2)<<16 | uint32(b3)<<24
p := &table[(h*0x1e35a7bd)>>shift]
// We need to to store values in [-1, inf) in table. To save
// some initialization time, (re)use the table's zero value
// and shift the values against this zero: add 1 on writes,
// subtract 1 on reads.
t, *p = *p-1, s+1
// If t is invalid or src[s:s+4] differs from src[t:t+4], accumulate a literal byte.
if t < 0 || s-t >= maxOffset || b0 != src[t] || b1 != src[t+1] || b2 != src[t+2] || b3 != src[t+3] {
s += int32(skip >> 5)
skip++
continue
}
skip = 32
// Otherwise, we have a match. First, emit any pending literal bytes.
if lit != s {
d += emitLiteral(dst[d:], src[lit:s])
}
// Extend the match to be as long as possible.
s0 := s
s, t = s+4, t+4
for int(s) < len(src) && src[s] == src[t] {
s++
t++
}
// Emit the copied bytes.
d += emitCopy(dst[d:], s-t, s-s0)
lit = s
}
// Emit any final pending literal bytes and return.
if int(lit) != len(src) {
d += emitLiteral(dst[d:], src[lit:])
}
return d
}
// MaxEncodedLen returns the maximum length of a snappy block, given its
// uncompressed length.
//
// It will return a negative value if srcLen is too large to encode.
func MaxEncodedLen(srcLen int) int {
n := uint64(srcLen)
if n > 0xffffffff {
return -1
}
// Compressed data can be defined as:
// compressed := item* literal*
// item := literal* copy
//
// The trailing literal sequence has a space blowup of at most 62/60
// since a literal of length 60 needs one tag byte + one extra byte
// for length information.
//
// Item blowup is trickier to measure. Suppose the "copy" op copies
// 4 bytes of data. Because of a special check in the encoding code,
// we produce a 4-byte copy only if the offset is < 65536. Therefore
// the copy op takes 3 bytes to encode, and this type of item leads
// to at most the 62/60 blowup for representing literals.
//
// Suppose the "copy" op copies 5 bytes of data. If the offset is big
// enough, it will take 5 bytes to encode the copy op. Therefore the
// worst case here is a one-byte literal followed by a five-byte copy.
// That is, 6 bytes of input turn into 7 bytes of "compressed" data.
//
// This last factor dominates the blowup, so the final estimate is:
n = 32 + n + n/6
if n > 0xffffffff {
return -1
}
return int(n)
}
var errClosed = errors.New("snappy: Writer is closed")
// NewWriter returns a new Writer that compresses to w.
//
// The Writer returned does not buffer writes. There is no need to Flush or
// Close such a Writer.
//
// Deprecated: the Writer returned is not suitable for many small writes, only
// for few large writes. Use NewBufferedWriter instead, which is efficient
// regardless of the frequency and shape of the writes, and remember to Close
// that Writer when done.
func NewWriter(w io.Writer) *Writer {
return &Writer{
w: w,
obuf: make([]byte, obufLen),
}
}
// NewBufferedWriter returns a new Writer that compresses to w, using the
// framing format described at
// https://github.com/google/snappy/blob/master/framing_format.txt
//
// The Writer returned buffers writes. Users must call Close to guarantee all
// data has been forwarded to the underlying io.Writer. They may also call
// Flush zero or more times before calling Close.
func NewBufferedWriter(w io.Writer) *Writer {
return &Writer{
w: w,
ibuf: make([]byte, 0, maxBlockSize),
obuf: make([]byte, obufLen),
}
}
// Writer is an io.Writer than can write Snappy-compressed bytes.
type Writer struct {
w io.Writer
err error
// ibuf is a buffer for the incoming (uncompressed) bytes.
//
// Its use is optional. For backwards compatibility, Writers created by the
// NewWriter function have ibuf == nil, do not buffer incoming bytes, and
// therefore do not need to be Flush'ed or Close'd.
ibuf []byte
// obuf is a buffer for the outgoing (compressed) bytes.
obuf []byte
// wroteStreamHeader is whether we have written the stream header.
wroteStreamHeader bool
}
// Reset discards the writer's state and switches the Snappy writer to write to
// w. This permits reusing a Writer rather than allocating a new one.
func (w *Writer) Reset(writer io.Writer) {
w.w = writer
w.err = nil
if w.ibuf != nil {
w.ibuf = w.ibuf[:0]
}
w.wroteStreamHeader = false
}
// Write satisfies the io.Writer interface.
func (w *Writer) Write(p []byte) (nRet int, errRet error) {
if w.ibuf == nil {
// Do not buffer incoming bytes. This does not perform or compress well
// if the caller of Writer.Write writes many small slices. This
// behavior is therefore deprecated, but still supported for backwards
// compatibility with code that doesn't explicitly Flush or Close.
return w.write(p)
}
// The remainder of this method is based on bufio.Writer.Write from the
// standard library.
for len(p) > (cap(w.ibuf)-len(w.ibuf)) && w.err == nil {
var n int
if len(w.ibuf) == 0 {
// Large write, empty buffer.
// Write directly from p to avoid copy.
n, _ = w.write(p)
} else {
n = copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
w.ibuf = w.ibuf[:len(w.ibuf)+n]
w.Flush()
}
nRet += n
p = p[n:]
}
if w.err != nil {
return nRet, w.err
}
n := copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
w.ibuf = w.ibuf[:len(w.ibuf)+n]
nRet += n
return nRet, nil
}
func (w *Writer) write(p []byte) (nRet int, errRet error) {
if w.err != nil {
return 0, w.err
}
for len(p) > 0 {
obufStart := len(magicChunk)
if !w.wroteStreamHeader {
w.wroteStreamHeader = true
copy(w.obuf, magicChunk)
obufStart = 0
}
var uncompressed []byte
if len(p) > maxBlockSize {
uncompressed, p = p[:maxBlockSize], p[maxBlockSize:]
} else {
uncompressed, p = p, nil
}
checksum := crc(uncompressed)
// Compress the buffer, discarding the result if the improvement
// isn't at least 12.5%.
compressed := Encode(w.obuf[obufHeaderLen:], uncompressed)
chunkType := uint8(chunkTypeCompressedData)
chunkLen := 4 + len(compressed)
obufEnd := obufHeaderLen + len(compressed)
if len(compressed) >= len(uncompressed)-len(uncompressed)/8 {
chunkType = chunkTypeUncompressedData
chunkLen = 4 + len(uncompressed)
obufEnd = obufHeaderLen
}
// Fill in the per-chunk header that comes before the body.
w.obuf[len(magicChunk)+0] = chunkType
w.obuf[len(magicChunk)+1] = uint8(chunkLen >> 0)
w.obuf[len(magicChunk)+2] = uint8(chunkLen >> 8)
w.obuf[len(magicChunk)+3] = uint8(chunkLen >> 16)
w.obuf[len(magicChunk)+4] = uint8(checksum >> 0)
w.obuf[len(magicChunk)+5] = uint8(checksum >> 8)
w.obuf[len(magicChunk)+6] = uint8(checksum >> 16)
w.obuf[len(magicChunk)+7] = uint8(checksum >> 24)
if _, err := w.w.Write(w.obuf[obufStart:obufEnd]); err != nil {
w.err = err
return nRet, err
}
if chunkType == chunkTypeUncompressedData {
if _, err := w.w.Write(uncompressed); err != nil {
w.err = err
return nRet, err
}
}
nRet += len(uncompressed)
}
return nRet, nil
}
// Flush flushes the Writer to its underlying io.Writer.
func (w *Writer) Flush() error {
if w.err != nil {
return w.err
}
if len(w.ibuf) == 0 {
return nil
}
w.write(w.ibuf)
w.ibuf = w.ibuf[:0]
return w.err
}
// Close calls Flush and then closes the Writer.
func (w *Writer) Close() error {
w.Flush()
ret := w.err
if w.err == nil {
w.err = errClosed
}
return ret
}