You can also create a bucket only if it doesn't exist by using the
`Tx.CreateBucketIfNotExists()` function. It's a common pattern to call this
function for all your top-level buckets after you open your database so you can
guarantee that they exist for future transactions.
To delete a bucket, simply call the `Tx.DeleteBucket()` function.
### Using key/value pairs
To save a key/value pair to a bucket, use the `Bucket.Put()` function:
```go
db.Update(func(tx *bolt.Tx) error {
b := tx.Bucket([]byte("MyBucket"))
err := b.Put([]byte("answer"), []byte("42"))
return err
})
```
This will set the value of the `"answer"` key to `"42"` in the `MyBucket`
bucket. To retrieve this value, we can use the `Bucket.Get()` function:
```go
db.View(func(tx *bolt.Tx) error {
b := tx.Bucket([]byte("MyBucket"))
v := b.Get([]byte("answer"))
fmt.Printf("The answer is: %s\n", v)
return nil
})
```
The `Get()` function does not return an error because its operation is
guaranteed to work (unless there is some kind of system failure). If the key
exists then it will return its byte slice value. If it doesn't exist then it
will return `nil`. It's important to note that you can have a zero-length value
set to a key which is different than the key not existing.
Use the `Bucket.Delete()` function to delete a key from the bucket.
Please note that values returned from `Get()` are only valid while the
transaction is open. If you need to use a value outside of the transaction
then you must use `copy()` to copy it to another byte slice.
### Autoincrementing integer for the bucket
By using the `NextSequence()` function, you can let Bolt determine a sequence
which can be used as the unique identifier for your key/value pairs. See the
example below.
```go
// CreateUser saves u to the store. The new user ID is set on u once the data is persisted.
func (s *Store) CreateUser(u *User) error {
return s.db.Update(func(tx *bolt.Tx) error {
// Retrieve the users bucket.
// This should be created when the DB is first opened.
b := tx.Bucket([]byte("users"))
// Generate ID for the user.
// This returns an error only if the Tx is closed or not writeable.
// That can't happen in an Update() call so I ignore the error check.
id, _ := b.NextSequence()
u.ID = int(id)
// Marshal user data into bytes.
buf, err := json.Marshal(u)
if err != nil {
return err
}
// Persist bytes to users bucket.
return b.Put(itob(u.ID), buf)
})
}
// itob returns an 8-byte big endian representation of v.
func itob(v int) []byte {
b := make([]byte, 8)
binary.BigEndian.PutUint64(b, uint64(v))
return b
}
type User struct {
ID int
...
}
```
### Iterating over keys
Bolt stores its keys in byte-sorted order within a bucket. This makes sequential
iteration over these keys extremely fast. To iterate over keys we'll use a
`Cursor`:
```go
db.View(func(tx *bolt.Tx) error {
// Assume bucket exists and has keys
b := tx.Bucket([]byte("MyBucket"))
c := b.Cursor()
for k, v := c.First(); k != nil; k, v = c.Next() {
fmt.Printf("key=%s, value=%s\n", k, v)
}
return nil
})
```
The cursor allows you to move to a specific point in the list of keys and move
forward or backward through the keys one at a time.
The following functions are available on the cursor:
```
First() Move to the first key.
Last() Move to the last key.
Seek() Move to a specific key.
Next() Move to the next key.
Prev() Move to the previous key.
```
Each of those functions has a return signature of `(key []byte, value []byte)`.
When you have iterated to the end of the cursor then `Next()` will return a
`nil` key. You must seek to a position using `First()`, `Last()`, or `Seek()`
before calling `Next()` or `Prev()`. If you do not seek to a position then
these functions will return a `nil` key.
During iteration, if the key is non-`nil` but the value is `nil`, that means
the key refers to a bucket rather than a value. Use `Bucket.Bucket()` to
access the sub-bucket.
#### Prefix scans
To iterate over a key prefix, you can combine `Seek()` and `bytes.HasPrefix()`:
```go
db.View(func(tx *bolt.Tx) error {
// Assume bucket exists and has keys
c := tx.Bucket([]byte("MyBucket")).Cursor()
prefix := []byte("1234")
for k, v := c.Seek(prefix); k != nil && bytes.HasPrefix(k, prefix); k, v = c.Next() {
fmt.Printf("key=%s, value=%s\n", k, v)
}
return nil
})
```
#### Range scans
Another common use case is scanning over a range such as a time range. If you
use a sortable time encoding such as RFC3339 then you can query a specific
date range like this:
```go
db.View(func(tx *bolt.Tx) error {
// Assume our events bucket exists and has RFC3339 encoded time keys.
c := tx.Bucket([]byte("Events")).Cursor()
// Our time range spans the 90's decade.
min := []byte("1990-01-01T00:00:00Z")
max := []byte("2000-01-01T00:00:00Z")
// Iterate over the 90's.
for k, v := c.Seek(min); k != nil && bytes.Compare(k, max) <= 0; k, v = c.Next() {
fmt.Printf("%s: %s\n", k, v)
}
return nil
})
```
Note that, while RFC3339 is sortable, the Golang implementation of RFC3339Nano does not use a fixed number of digits after the decimal point and is therefore not sortable.
#### ForEach()
You can also use the function `ForEach()` if you know you'll be iterating over
all the keys in a bucket:
```go
db.View(func(tx *bolt.Tx) error {
// Assume bucket exists and has keys
b := tx.Bucket([]byte("MyBucket"))
b.ForEach(func(k, v []byte) error {
fmt.Printf("key=%s, value=%s\n", k, v)
return nil
})
return nil
})
```
Please note that keys and values in `ForEach()` are only valid while
the transaction is open. If you need to use a key or value outside of
the transaction, you must use `copy()` to copy it to another byte
slice.
### Nested buckets
You can also store a bucket in a key to create nested buckets. The API is the
same as the bucket management API on the `DB` object:
Say you had a multi-tenant application where the root level bucket was the account bucket. Inside of this bucket was a sequence of accounts which themselves are buckets. And inside the sequence bucket you could have many buckets pertaining to the Account itself (Users, Notes, etc) isolating the information into logical groupings.
```go
// createUser creates a new user in the given account.
func createUser(accountID int, u *User) error {
// Start the transaction.
tx, err := db.Begin(true)
if err != nil {
return err
}
defer tx.Rollback()
// Retrieve the root bucket for the account.
// Assume this has already been created when the account was set up.
NSLog(@"Error excluding %@ from backup %@", [URL lastPathComponent], error);
}
return success;
}
```
## Resources
For more information on getting started with Bolt, check out the following articles:
* [Intro to BoltDB: Painless Performant Persistence](http://npf.io/2014/07/intro-to-boltdb-painless-performant-persistence/) by [Nate Finch](https://github.com/natefinch).
* [Bolt -- an embedded key/value database for Go](https://www.progville.com/go/bolt-embedded-db-golang/) by Progville
## Comparison with other databases
### Postgres, MySQL, & other relational databases
Relational databases structure data into rows and are only accessible through
the use of SQL. This approach provides flexibility in how you store and query
your data but also incurs overhead in parsing and planning SQL statements. Bolt
accesses all data by a byte slice key. This makes Bolt fast to read and write
data by key but provides no built-in support for joining values together.
Most relational databases (with the exception of SQLite) are standalone servers
that run separately from your application. This gives your systems
flexibility to connect multiple application servers to a single database
server but also adds overhead in serializing and transporting data over the
network. Bolt runs as a library included in your application so all data access
has to go through your application's process. This brings data closer to your
application but limits multi-process access to the data.
### LevelDB, RocksDB
LevelDB and its derivatives (RocksDB, HyperLevelDB) are similar to Bolt in that
they are libraries bundled into the application, however, their underlying
structure is a log-structured merge-tree (LSM tree). An LSM tree optimizes
random writes by using a write ahead log and multi-tiered, sorted files called
SSTables. Bolt uses a B+tree internally and only a single file. Both approaches
have trade-offs.
If you require a high random write throughput (>10,000 w/sec) or you need to use
spinning disks then LevelDB could be a good choice. If your application is
read-heavy or does a lot of range scans then Bolt could be a good choice.
One other important consideration is that LevelDB does not have transactions.
It supports batch writing of key/values pairs and it supports read snapshots
but it will not give you the ability to do a compare-and-swap operation safely.
Bolt is a relatively small code base (<5KLOC)foranembedded,serializable,
transactional key/value database so it can be a good starting point for people
interested in how databases work.
The best places to start are the main entry points into Bolt:
-`Open()` - Initializes the reference to the database. It's responsible for
creating the database if it doesn't exist, obtaining an exclusive lock on the
file, reading the meta pages, & memory-mapping the file.
-`DB.Begin()` - Starts a read-only or read-write transaction depending on the
value of the `writable` argument. This requires briefly obtaining the "meta"
lock to keep track of open transactions. Only one read-write transaction can
exist at a time so the "rwlock" is acquired during the life of a read-write
transaction.
-`Bucket.Put()` - Writes a key/value pair into a bucket. After validating the
arguments, a cursor is used to traverse the B+tree to the page and position
where they key & value will be written. Once the position is found, the bucket
materializes the underlying page and the page's parent pages into memory as
"nodes". These nodes are where mutations occur during read-write transactions.
These changes get flushed to disk during commit.
-`Bucket.Get()` - Retrieves a key/value pair from a bucket. This uses a cursor
to move to the page & position of a key/value pair. During a read-only
transaction, the key and value data is returned as a direct reference to the
underlying mmap file so there's no allocation overhead. For read-write
transactions, this data may reference the mmap file or one of the in-memory
node values.
-`Cursor` - This object is simply for traversing the B+tree of on-disk pages
or in-memory nodes. It can seek to a specific key, move to the first or last
value, or it can move forward or backward. The cursor handles the movement up
and down the B+tree transparently to the end user.
-`Tx.Commit()` - Converts the in-memory dirty nodes and the list of free pages
into pages to be written to disk. Writing to disk then occurs in two phases.
First, the dirty pages are written to disk and an `fsync()` occurs. Second, a
new meta page with an incremented transaction ID is written and another
`fsync()` occurs. This two phase write ensures that partially written data
pages are ignored in the event of a crash since the meta page pointing to them
is never written. Partially written meta pages are invalidated because they
are written with a checksum.
If you have additional notes that could be helpful for others, please submit
them via pull request.
## Other Projects Using Bolt
Below is a list of public, open source projects that use Bolt:
* [Algernon](https://github.com/xyproto/algernon) - A HTTP/2 web server with built-in support for Lua. Uses BoltDB as the default database backend.
* [Bazil](https://bazil.org/) - A file system that lets your data reside where it is most convenient for it to reside.
* [bolter](https://github.com/hasit/bolter) - Command-line app for viewing BoltDB file in your terminal.
* [boltcli](https://github.com/spacewander/boltcli) - the redis-cli for boltdb with Lua script support.
* [BoltHold](https://github.com/timshannon/bolthold) - An embeddable NoSQL store for Go types built on BoltDB
* [BoltStore](https://github.com/yosssi/boltstore) - Session store using Bolt.
* [Boltdb Boilerplate](https://github.com/bobintornado/boltdb-boilerplate) - Boilerplate wrapper around bolt aiming to make simple calls one-liners.
* [BoltDbWeb](https://github.com/evnix/boltdbweb) - A web based GUI for BoltDB files.
* [bleve](http://www.blevesearch.com/) - A pure Go search engine similar to ElasticSearch that uses Bolt as the default storage backend.
* [btcwallet](https://github.com/btcsuite/btcwallet) - A bitcoin wallet.
* [buckets](https://github.com/joyrexus/buckets) - a bolt wrapper streamlining
simple tx and key scans.
* [cayley](https://github.com/google/cayley) - Cayley is an open-source graph database using Bolt as optional backend.
* [ChainStore](https://github.com/pressly/chainstore) - Simple key-value interface to a variety of storage engines organized as a chain of operations.
* [Consul](https://github.com/hashicorp/consul) - Consul is service discovery and configuration made easy. Distributed, highly available, and datacenter-aware.
* [DVID](https://github.com/janelia-flyem/dvid) - Added Bolt as optional storage engine and testing it against Basho-tuned leveldb.
* [dcrwallet](https://github.com/decred/dcrwallet) - A wallet for the Decred cryptocurrency.
* [drive](https://github.com/odeke-em/drive) - drive is an unofficial Google Drive command line client for \*NIX operating systems.
* [event-shuttle](https://github.com/sclasen/event-shuttle) - A Unix system service to collect and reliably deliver messages to Kafka.
* [Freehold](http://tshannon.bitbucket.org/freehold/) - An open, secure, and lightweight platform for your files and data.
* [Go Report Card](https://goreportcard.com/) - Go code quality report cards as a (free and open source) service.
* [GoWebApp](https://github.com/josephspurrier/gowebapp) - A basic MVC web application in Go using BoltDB.
* [GoShort](https://github.com/pankajkhairnar/goShort) - GoShort is a URL shortener written in Golang and BoltDB for persistent key/value storage and for routing it's using high performent HTTPRouter.
* [gopherpit](https://github.com/gopherpit/gopherpit) - A web service to manage Go remote import paths with custom domains
* [gokv](https://github.com/philippgille/gokv) - Simple key-value store abstraction and implementations for Go (Redis, Consul, etcd, bbolt, BadgerDB, LevelDB, Memcached, DynamoDB, S3, PostgreSQL, MongoDB, CockroachDB and many more)
* [InfluxDB](https://influxdata.com) - Scalable datastore for metrics, events, and real-time analytics.
* [ipLocator](https://github.com/AndreasBriese/ipLocator) - A fast ip-geo-location-server using bolt with bloom filters.
* [ipxed](https://github.com/kelseyhightower/ipxed) - Web interface and api for ipxed.
* [Ironsmith](https://github.com/timshannon/ironsmith) - A simple, script-driven continuous integration (build - > test -> release) tool, with no external dependencies
* [Kala](https://github.com/ajvb/kala) - Kala is a modern job scheduler optimized to run on a single node. It is persistent, JSON over HTTP API, ISO 8601 duration notation, and dependent jobs.
* [Key Value Access Langusge (KVAL)](https://github.com/kval-access-language) - A proposed grammar for key-value datastores offering a bbolt binding.
* [LedisDB](https://github.com/siddontang/ledisdb) - A high performance NoSQL, using Bolt as optional storage.
* [lru](https://github.com/crowdriff/lru) - Easy to use Bolt-backed Least-Recently-Used (LRU) read-through cache with chainable remote stores.
* [mbuckets](https://github.com/abhigupta912/mbuckets) - A Bolt wrapper that allows easy operations on multi level (nested) buckets.
* [MetricBase](https://github.com/msiebuhr/MetricBase) - Single-binary version of Graphite.
* [MuLiFS](https://github.com/dankomiocevic/mulifs) - Music Library Filesystem creates a filesystem to organise your music files.
* [Operation Go: A Routine Mission](http://gocode.io) - An online programming game for Golang using Bolt for user accounts and a leaderboard.
* [photosite/session](https://godoc.org/bitbucket.org/kardianos/photosite/session) - Sessions for a photo viewing site.
* [Prometheus Annotation Server](https://github.com/oliver006/prom_annotation_server) - Annotation server for PromDash & Prometheus service monitoring system.
* [reef-pi](https://github.com/reef-pi/reef-pi) - reef-pi is an award winning, modular, DIY reef tank controller using easy to learn electronics based on a Raspberry Pi.
* [Request Baskets](https://github.com/darklynx/request-baskets) - A web service to collect arbitrary HTTP requests and inspect them via REST API or simple web UI, similar to [RequestBin](http://requestb.in/) service
* [Seaweed File System](https://github.com/chrislusf/seaweedfs) - Highly scalable distributed key~file system with O(1) disk read.
* [stow](https://github.com/djherbis/stow) - a persistence manager for objects
backed by boltdb.
* [Storm](https://github.com/asdine/storm) - Simple and powerful ORM for BoltDB.
* [SimpleBolt](https://github.com/xyproto/simplebolt) - A simple way to use BoltDB. Deals mainly with strings.
* [Skybox Analytics](https://github.com/skybox/skybox) - A standalone funnel analysis tool for web analytics.
* [Scuttlebutt](https://github.com/benbjohnson/scuttlebutt) - Uses Bolt to store and process all Twitter mentions of GitHub projects.
* [tentacool](https://github.com/optiflows/tentacool) - REST api server to manage system stuff (IP, DNS, Gateway...) on a linux server.
* [torrent](https://github.com/anacrolix/torrent) - Full-featured BitTorrent client package and utilities in Go. BoltDB is a storage backend in development.
* [Wiki](https://github.com/peterhellberg/wiki) - A tiny wiki using Goji, BoltDB and Blackfriday.
If you are using Bolt in a project please send a pull request to add it to the list.